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1. (a) (2 points) What was the most interesting topic in this course? (Any nonempty
answer gets full credit.)

Solution: Write whatever you want.

(b) (3 points) What is a call option? Explain.

Solution: A call option is the right to buy a stock at a specified price (strike
price).

(c) (2 points) What is the definition of a convex set?

Solution: C is convex if for all x, y ∈ C and 0 ≤ α ≤ 1, we have (1−α)x+
αy ∈ C.

(d) (3 points) What is the statement of the separating hyperplane theorem? (There
are weak and strong versions. Either of them is fine.)

Solution: If sets C,D are nonempty, convex, and C ∩D = ∅, then there ex-
ists a hyperplane that separates them. More precisely, there exists a nonzero
vector a such that

a · x ≤ a · y

for all x ∈ C and y ∈ D. (The strong version says that if C,D are nonempty,
convex, and C is closed and D is compact, then the above inequality is strict.)

2. Consider an economy with two goods and an agent with utility function

u(x1, x2) = −e−x1 − e−x2 .

Suppose that the agent has initial wealth w. Let the prices be p1 = 1 and p2 = p.

(a) (3 points) Write down the Lagrangian for the utility maximization problem.

Solution:

L(x1, x2, λ) = −e−x1 − e−x2 + λ(w − x1 − px2).

(b) (3 points) Using the first-order condition, express x1, x2 using p and λ.

Solution: By FOC, we have e−x1 − λ = 0 ⇐⇒ x1 = − log λ and e−x2 −
λp ⇐⇒ x2 = − log(λp).

(c) (4 points) Express the demand using only p and w.



Solution: By complementary slackness, we have

w = x1 + px2 = − log λ− p log(λp) = −(1 + p) log λ− p log p

⇐⇒ − log λ =
w

1 + p
+
p log p

1 + p
.

Therefore

x1 =
w

1 + p
+
p log p

1 + p
,

x2 =
w

1 + p
− log p

1 + p
.

3. Consider an economy with two goods and two agents. The utility functions are

U1(x1, x2) = x1 −
1

2x22
,

U2(x1, x2) = − 1

2x21
+ x2.

The endowments are e1 = e2 = (e, e), where e > 0. Assume that agent 1 can consume
good 1 in negative amounts, and agent 2 can consume good 2 in negative amounts.

(a) (4 points) Let the prices be p1 = 1 and p2 = p. Compute the demand of agent
1.

Solution: Agent 1’s budget constraint is x1 + px2 ≤ (1 + p)e. Since the
utility function is monotonic, we have x1 = (1 + p)e− px2. Therefore agent
1’s problem is to maximize

(1 + p)e− px2 −
1

2x22
.

The first-order condition is

−p+ x−32 = 0 ⇐⇒ x2 = p−1/3.

Therefore x1 = (1 + p)e− p 2
3 . Thus agent 1’s demand is

(x11, x12) =
(

(1 + p)e− p
2
3 , p−

1
3

)
.

(b) (3 points) Let z1(p) be the aggregate excess demand of good 1. Compute z1(p).

Solution: Utility functions are symmetric, changing goods 1, 2, and letting
p→ 1/p, agent 2’s demand is

(x21, x22) =
(
p

1
3 , (1 + 1/p)e− p−

2
3

)
.
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Hence
z1(p) = x11 + x21 − 2e = (p− 1)e− p

2
3 + p

1
3 .

(c) (2 points) Show that z1(1) = 0 and z1(∞) =∞.

Solution: Trivial by direct substitution.

(d) (2 points) Compute z′1(1).

Solution: Since

z′1(p) = e− 2

3
p−1/3 +

1

3
p−2/3,

substituting p = 1 we obtain

z′1(1) = e− 2

3
+

1

3
= e− 1

3
.

(e) (4 points) Show that this economy has more than one equilibria if 0 < e < 1
3
.

Solution: Since 0 < e < 1/3, we have z′1(1) = e−1/3 < 0. Since z1(1) = 0, it
follows that z1(p) < 0 when p > 1 is sufficiently close to 1. Since z1(∞) =∞,
by the intermediate value theorem there exists p∗ > 1 such that z1(p

∗) = 0,
so there exist multiple equilibria.

4. Consider an economy with two countries, i = A,B, and three consumption goods,
l = 1, 2, 3. Both countries have labor endowment e1 = e2 = 1. The utility functions
are

uA(x1, x2, x3) =
1

2
log x1 +

1

4
log x2 +

1

4
log x3,

uB(x1, x2, x3) =
1

3
log x1 +

1

3
log x2 +

1

3
log x3.

Each country can produce the consumption goods from labor using the linear tech-
nology y = aile, where e is labor input, y is output of good l, and ail > 0 is the
productivity. Assume that productivities are

(aA1, aA2, aA3) = (4, 2, 2),

(aB1, aB2, aB3) = (1, 1, 2).

(a) (3 points) What is the definition of comparative advantage of country A over
B? Compute the comparative advantage for each industry.

Solution: The comparative advantage is the ratio of productivities aAl/aBl.
Therefore they are (

aA1

aB1

,
aA2

aB2

,
aA3

aB3

)
= (4, 2, 1).
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(b) (3 points) Given the price p = (p1, p2, p3) and the wage wA of country A, com-
pute the demand of country A.

Solution: The income of country A is wA × e1 = wA. Since the utility
function is Cobb-Douglas, the demand is

(xA1, xA2, xA3) =

(
wA

2p1
,
wA

4p2
,
wA

4p3

)
.

(c) (3 points) Assuming that both countries produce good 2 in free trade and setting
p2 = 1, compute p1, p3, wA, wB.

Solution: If country i produces good l, by profit maximization (zero profit)
it must be plail = wi. Setting p2 = 1, we get wA = aA2 = 2, wB = aB2 = 1,
p1 = wA/aA1 = 2/4 = 1/2, and p3 = wB/aB3 = 1/2.

(d) (3 points) Compute the free trade equilibrium consumption in each country.

Solution: Substituting the prices into the above formula, we get

(xA1, xA2, xA3) =

(
2

2(1/2)
,
2

4
,

2

4(1/2)

)
= (2, 1/2, 1).

Similarly, the consumption of country B is

(xB1, xB2, xB3) =

(
1

3(1/2)
,
1

3
,

1

3(1/2)

)
= (2/3, 1/3, 2/3).

(e) (3 points) Compute the labor allocation across each industry for each country.

Solution: In order to produce

xA1 + xB1 = 2 +
2

3
=

8

3

units of good 1, country A has to hire labor

eA1 =
8

3
/4 =

2

3
.

Therefore eA2 = 1
3

and eA3 = 0.

In order to produce

xA3 + xB3 = 1 +
2

3
=

5

3

units of good 3, country B has to hire labor

eB3 =
5

3
/2 =

5

6
.
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Therefore eB2 = 1
6

and eB1 = 0.

Then the world output of good 2 is

2× 1

3
+ 1× 1

6
=

5

6
= xA2 + xB2,

so the markets clear.

5. Consider an economy with two countries, A,B, and two goods, l = 1, 2. There are
many agents, and the utility function of agent i is ui(x1, x2), which is increasing,
quasi-concave, and differentiable. Let the world price of good 2 equal p.

(a) (5 points) If all countries adopt free trade, what is the marginal rate of substi-
tution between goods 1 and 2 evaluated at the equilibrium allocation?

Solution: By the first-order condition (∂ui

∂xl
= λipl), the marginal rate of

substitution at the equilibrium allocation is

∂ui
∂x2

/
∂ui
∂x1

= p.

(b) (5 points) Suppose the government of country A is concerned about protecting
industry 2 and imposes a tariff, so the domestic price of good 2 in country A is
p2 = p(1 + τ), where τ > 0 is tariff. If country B adopts free trade, prove that
no matter how the government of country A transfers the revenue from tariff to
its citizens, the equilibrium is Pareto inefficient.

Solution: Due to the tariff, the marginal rate of substitution of an agent at
the equilibrium allocation in contry A is

∂ui
∂x2

/
∂ui
∂x1

= p(1 + τ).

Since this number is different from the marginal rate of substitution of an
agent in country B (which is p), the equilibrium is inefficient.

(c) (5 points) Suppose that you are an economist advising the government for trade
policy. Propose a policy that achieves Pareto efficiency but at the same time
makes everybody at least as well off as autarky.

Solution: According to the lecture note, one way to achieve both goals is
to adopt a free trade policy but transfer wealth across citizens so that the
autarky allocation is just affordable.

6. Suppose that there are two assets, a stock and a (risk-free) bond. The current stock
price is 100 and can either go up to 120 or go down to 75 tomorrow. The risk-free
interest rate is 5%. In answering the questions below, always use fractions.
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(a) (5 points) Let u, d stand for the up and down states and pu, pd be the state
prices. Derive two equations that pu, pd satisfy.

Solution: Since the stock pays 120 in the up state and 90 in the down state,
its price must be 120pu + 90pd. Therefore

120pu + 75pd = 100.

Similarly, accounting the bond price, we obtain 105pu + 105pd = 100.

(b) (4 points) Compute pu, pd.

Solution: Solving the above equations, we get pu = 40
63

and pd = 20
63

.

(c) (2 points) Compute the price of a call option with strike 100.

Solution: The call option pays out max {120− 100, 0} = 20 in the up state
and max {75− 100, 0} = 0 in the down state. Therefore its price is

20pu + 0pd =
800

63
.

(d) (2 points) Compute the price of a put option with strike 100.

Solution: The put option pays out max {100− 120, 0} = 0 in the up state
and max {100− 75, 0} = 25 in the down state. Therefore its price is

0pu + 25pd =
500

63
.

(e) (2 points) Compute the price of a convertible bond that promises to pay 100
tomorrow. (A convertible bond is a promise to pay 100, with an option to
deliver the stock instead.)

Solution: Since 75 < 100 < 120, the convertible bond is exercised only in
the down state, so it pays 100 in the up state and 75 in the down state.
Therefore its price is

100pu + 75pd =
5500

63
.

7. Consider an economy with two periods, denoted by t = 0, 1, and three agents, denoted
by i = 1, 2, 3. There are two states at t = 1, denoted by s = 1, 2. The two states
occur with equal probability π1 = π2 = 1/2. Suppose that agent i’s utility function is

Ui(x0, x1, x2) = ui(x0) + π1ui(x1) + π2ui(x2),
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where x0, x1, x2 denote the consumption at t = 0 and states s = 1, 2, and the Bernoulli
utility functions ui(x) are given by

u1(x) =
√

2x,

u2(x) =
√

2x− 2,

u3(x) =
√

2x+ 2.

The initial endowments ei = (ei0, ei1, ei2) are given by

e1 = (1, 2, 5),

e2 = (2, 2, 4),

e3 = (3/2, 4, 7/2).

(a) (2 points) What is the name of this type of utility functions?

Solution: Hyperbolic absolute risk aversion (HARA) utilities. Note that a
HARA utility has a representation

u(x) =
1

a− 1
(ax+ b)1−

1
a .

The given functions correspond to a = 2 and b = 0,−2, 2.

(b) (2 points) For a given level of consumption, which agent is the most risk averse?
Answer based on reasoning.

Solution: The absolute risk aversion (ARA) coefficient is given by

−u
′′(x)

u′(x)
=

1

ax+ b
.

Since a > 0 is common across agents, ARA is larger when b is smaller.
Therefore agent 2 is the most risk averse.

(c) (6 points) Normalize the price of t = 0 good to be p0 = 1. Compute the equi-
librium state prices p1, p2.

Solution: Since agents have HARA utility with common a, by the argument
in the lecture note, we can compute the equilibrium price through aggrega-
tion. Let es be the aggregate endowment in state s. Then

e0 = 1 + 2 +
3

2
=

9

2
,

e1 = 2 + 2 + 4 = 8,

e2 = 5 + 4 +
7

2
=

25

2
.

Let π0 = 1. Then the equilibrium price is given by

ps = Cπs(aes + b)−
1
a

Page 7



for some constant C > 0, where b =
∑3

i=1 bi = 0 + (−2) + 2 = 0. Setting
a = 2 and b = 0, it follows that

1 = p0 = C9−
1
2 =

1

3
C ⇐⇒ C = 3,

so

p1 = 3
1

2
16−

1
2 =

3

8
,

p2 = 3
1

2
25−

1
2 =

3

10
.

(d) (3 points) Compute the (gross) risk-free interest rate.

Solution: The risk-free asset pays 1 in states s = 1, 2. Therefore its price is

q = p1 + p2 =
3

8
+

3

10
=

27

40
.

The gross risk-free rate is

Rf =
1

q
=

40

27
.

(e) (3 points) Consider an asset (stock) that pays out the aggregate endowment as
dividend. Compute the ex-dividend stock price (the stock price excluding the
dividend) at t = 0.

Solution: The stock pays es in state s. Therefore its price is

q = p1e1 + p2e2 =
3

8
8 +

3

10

25

2
=

27

4
.

(f) (2 points) Compute the expected stock return at t = 0 and show that it is higher
than the risk-free rate.

Solution: Since each state occurs with probability 1/2, the expected stock
return is

E[R] =
E[es]

q
=

4

27

1

2

(
8 +

25

2

)
=

41

27
>

40

27
= Rf .

(g) (2 points) Compute the price at t = 0 of a call option written on a stock with
strike price 10.

Solution: Since the stock price (including the dividend) is es in state s, and
e1 = 8 < 10 and e2 = 25/2 > 10, the call is exercised only in state s. Letting
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K = 10 be the strike, the call price is therefore

q = p2(e2 −K) =
3

10

(
25

2
− 10

)
=

3

4
.
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You can detach this sheet and use as a scratch paper.
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