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1. Consider an economy with L goods and I agents. Agent i has endowment ei and a
locally nonsatiated utility function ui(x). Let p be the price vector. If the notation
bothers you, you may set L = 2 and I = 2.

(a) (5 points) What is the definition of local nonsatiation? You may explain in
words (maximum 4 points) or mathematically.

Solution: In words, a utility function is locally nonsatiated if for any bundle
you can find an arbitrarily close bundle that gives higher utility. Mathemat-
ically, the utility function u(x) is locally nonsatiated if for all x and ε > 0,
there exists y with ‖y − x‖ < ε such that u(y) > u(x).

(b) (5 points) Suppose xi solves the utility maximization problem

maximize ui(x) subject to p · x ≤ p · ei.

Explain why it must be the case that p · xi = p · ei.

Solution: If p ·xi < p · ei, we can take a small ball with center xi and radius
ε > 0 that is contained in the budget set. By local nonsatiation, we can take
a bundle y in this ball such that ui(y) > ui(xi), which contradicts utility
maximization. See lecture note for a rigorous proof.

(c) (5 points) What does it mean that an allocation (yi) Pareto dominates the al-
location (xi)? You can explain in words (maximum 4 points) or write down the
precise mathematical definition.

Solution: (yi) Pareto dominates (xi) if ui(yi) ≥ ui(xi) for all i and ui(yi) >
ui(xi) for some i.

(d) (3 points) What does it mean that the feasible allocation (xi) is Pareto efficient?
You can explain in words.

Solution: (xi) is Pareto efficient if no other feasible allocation (yi) Pareto
dominates it.

(e) (7 points) Let {p, (xi)} be an Arrow-Debreu equilibrium. Prove that (xi) is
Pareto efficient.

Solution: See the lecture note for the proof of the First Welfare Theorem.

2. Consider an economy with two agents indexed by i = 1, 2 and two goods indexed by
l = 1, 2. The utility functions are

u1(x1, x2) = − 1

x1
− 1

x2
,

u2(x1, x2) =
2

3
log x1 +

1

3
log x2,

and the initial endowments are e1 = e2 = (1, 6).



(a) (8 points) Is the initial endowment Pareto efficient? Answer yes or no, then
explain why.

Solution: No (4 points). The marginal rate of substitution is

MRS1 =
x22
x21

= 62 = 36

for agent 1 and

MRS2 = 2
x2
x1

= 2× 6 = 12

for agent 2 at the initial allocation, which are not equal (2 points each for
computing MRS).

(b) (6 points) Compute the Pareto efficient allocation in which agent 1 consumes 1
unit of good 1.

Solution: If x11 = 1, then x21 = 1 + 1 − 1 = 1. Let x12 = t. Then
x22 = 6 + 6 − t = 12 − t. If the allocation is Pareto efficient, then the
marginal rate of substitution must be the same across agents. Therefore

t2

12
= 2

12− t
1

⇐⇒ t2 + 2t− 24 = 0 ⇐⇒ (t− 4)(t+ 6) = 0 ⇐⇒ t = 4.

Therefore the allocation is x1 = (1, 4) and x2 = (1, 8).

(c) (6 points) Compute the competitive equilibrium with transfer payments when
the allocation is the one in the previous question. (Normalize the price of good
1 to be 1, so p1 = 1.)

Solution: In equilibrium, the marginal rate of substitution must be equal
to the price ratio. Therefore

p1
p2

=
x212
x211
⇐⇒ p2 = (x11/x12)

2 =
1

16
.

Transfers are t1 = 1/8 and t2 = −1/8.

3. Consider an economy with two goods indexed by l = 1, 2. Suppose that there is a
small country (so it doesn’t affect world prices) with two agents indexed by i = 1, 2
and endowments e1 = (3/2, 1), e2 = (1, 3/2). All agents have utility function

u(x1, x2) = x1x2.

Below, always normalize the price of good 1 to be p1 = 1.

(a) (5 points) Compute the autarky equilibrium allocation and price.

Solution: By symmetry, it must be p1 = p2 = 1 and x1 = x2 = (5/4, 5/4).
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(b) (7 points) Suppose that the country opens up to trade, and the price of good 2
changes to p2 = 1/2. Compute the free trade allocation and utility and determine
who gains/loses from trade.

Solution: Let q = 1/2 be the domestic price of good 2. Using the Cobb-
Douglas formula, the demand of agent 1 is

(x11, x12) =

(
1

2

3/2 + q

1
,
1

2

3/2 + q

q

)
= (1, 2),

and the utility is

u1 = 1× 2 = 2 >

(
5

4

)2

=
25

16
.

Similarly, the demand of agent 2 is

(x21, x22) =

(
1

2

1 + (3/2)q

1
,
1

2

1 + (3/2)q

q

)
=

(
7

8
,
7

4

)
,

and the utility is

u2 =
7

8
× 7

4
=

49

32
<

50

32
=

25

16
.

Therefore agent 1 gains from trade and agent 2 loses from trade.

(c) (7 points) Suppose that the government imposes a tariff of τ = 1/4 on the import
of good 2, and the domestic price of good 2 becomes q = p2+τ = 1/2+1/4 = 3/4.
Let T be the tax revenue from the tariff, and suppose that the government gives
out the tariff revenue equally to agents (so each agent gets T/2). Derive an
equation that T satisfies.

Solution: Since agents have identical homothetic utility, the total demand
depends only on aggregate wealth. Since the aggregate endowment is (5/2, 5/2)
and the tariff revenue is T , the aggregate demand for good 2 is

1

2

(5/2) + (5/2)q + T

q
.

The import of good 2 is thus

(5/2)(1 + q) + T

2q
− 5

2
.

Since import is taxed at rate τ = 1/4, we must have

T = τ

(
(5/2)(1 + q) + T

2q
− 5

2

)
.

(d) (6 points) Solve for the new allocation and show that all agents gain from trade.

Page 3



Solution: Setting τ = 1/4 and q = 3/4, the solution to the above equation
is T = 1/8. After some algebra, the new allocation is

(x11, x12) =

(
37

32
,
37

24

)
,

(x21, x22) =

(
35

32
,
35

24

)
.

Clearly agent 1 is better off than agent 2 since consumption have common
denominators but the numerators are larger. Furthermore,

35

32
× 35

24
>

5

4
× 5

4
⇐⇒ 72

8× 6
=

49

48
> 1,

so agent 2 gains from trade. Therefore all agents gain from trade.

(e) (5 points) Propose a better policy than the government’s. Compute the alloca-
tion and utility under your suggested policy.

Solution: Adopt free trade but introduce direct tax/subsidies to make the
previous allocation just affordable, that is, determine ti (tax on agent i) such
that p · xti = p · ei − ti ⇐⇒ ti = p · (ei − xti), where xti is the consumption
of agent i under the tariff regime. Since p = (1, 1/2), e1 = (3/2, 1), and
xt1 = (37/32, 37/24), it follows that t1 = 7/96 and t2 = −7/96. The agent 1’s
demand under this transfer is

(x11, x12) =

(
1

2

37/32 + (1/2)(37/24)

1
,
1

2

37/32 + (1/2)(37/24)

1/2

)
=

37

32

(
5

6
,
5

3

)
.

For agent 2, just change 37 to 35. To see that agent 1 gains from the free
trade policy, note that

5

6
× 5

3
> 1× 4

3
⇐⇒ 25 > 24,

so free trade Pareto dominates the tariff regime.

4. Consider an economy with two countries, i = A,B, and two physical goods, l = 1, 2.
The endowment is eA = (9, 2) and eB = (2, 9). The utility functions are

uA(x1, x2) =
2

3
log x1 +

1

3
log x2,

uB(x1, x2) =
1

3
log x1 +

2

3
log x2.

Suppose that there are transportation costs, and one third (1/3) of the exported goods
perish by the time they reach the destination.
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(a) (5 points) How many kinds of goods are there in the world? Answer the number
and explain the reason.

Solution: 4, because there are two physical goods in two locations. (2 points
for the answer, 3 point for the reason.)

(b) (5 points) Explain why a model of international trade with transportation costs
can be regarded as a standard Arrow-Debreu model.

Solution: With transportation costs, goods must be distinguished by loca-
tion as well as physical properties. Since transportation is a kind of technol-
ogy that transforms a good in one country to some other goods in another
country (with potentially many inputs such as fuel used for shipping, the
labor service of a captain who operates the airplane or boat, etc.), a model of
international trade with transportation costs can be interpreted as a standard
general equilibrium model with production.

(c) (5 points) Assuming that country A imports good 2, what is its price? (Set the
price of good 1 equal to 1.)

Solution: Relabel the goods by l = 1, 2, 3, 4, where good 1 is physical good
1 in country A, good 2 is physical good 2 in country A, and so on. Let
(p1, p2, p3, p4) be the price. By symmetry, the equilibrium price must satisfy
p1 = p4 = 1 and p2 = p3. If country B exports e units of good 4, it becomes
2e/3 units of good 2. By doing so, the profit is (2p2/3 − p4)e. By profit
maximization, we get

(2p2/3− p4)e = 0 ⇐⇒ p2 =
3

2
p4 =

3

2
.

(d) (10 points) Compute the free trade equilibrium. Make sure to compute all prices,
consumption, and import/exports in each country.

Solution: By the Cobb-Douglas formula, the demand of country A,B is(
2

3

10p1 + 2p2
p1

,
1

3

10p1 + 2p2
p2

, 0, 0

)
= (8, 8/3, 0, 0),(

0, 0,
1

3

2p3 + 9p4
p3

,
2

3

2p3 + 9p4
2p4

)
= (0, 0, 8/3, 8).

Therefore the net import is yA = (−1, 2/3) for country A and yB = (2/3,−1)
for country B.
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You can detach this sheet and use as a scratch paper.
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