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Instruction:

• Don’t start the exam until instructed.

• Turn off any electronic devices and put them in your bag.

• Don’t put anything on your desk except the exam sheet, pens, pencils, eraser, basic
calculator, straight edge, and your ID card. Failure to do so may be regarded as
academic dishonesty.

• The exam time is 180 minutes.

• This exam has two parts, I and II.

• Part I has 11 questions on 9 pages excluding the cover page, for a total of 120
points.

• Write the answer in the space below each question, unless otherwise stated in the
question. If you don’t have enough space you can use the back of the exam sheet,
but make sure to indicate that you are using the back.

• Submit your entire exam sheet before leaving the room, even if some parts are
empty or you intend to drop the class.
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1. (a) (2 points) What is your name? Legibly write down your full name as registered
to UCSD at the designated area on the cover of both exam sheets (Parts I and
II).

Solution: This should be easy.

(b) (2 points) Define the vectors a, b by a =

[

2
1

]

and b =

[

3
−4

]

. Compute a + b.

Solution:

a + b =

[

2
1

]

+

[

3
−4

]

=

[

2 + 3
1 + (−4)

]

=

[

5
−3

]

.

(c) (2 points) Define the vectors a, b by a =

[

2
1

]

and b =

[

3
−4

]

. Compute the inner

product 〈a, b〉.

Solution:

〈a, b〉 = 2× 3 + 1× (−4) = 6− 4 = 2.

(d) (2 points) Consider the matrix A =

[

1 2
3 4

]

and vector b =

[

1
−1

]

. Compute Ab.

Solution:

Ab =

[

1 2
3 4

] [

1
−1

]

=

[

1× 1 + 2× (−1)
3× 1 + 4× (−1)

]

=

[

−1
−1

]

.

(e) (2 points) Compute the gradient of f(x, y) = x+ 2y.

Solution:

∇f(x, y) =

[∂f

∂x
∂f

∂y

]

=

[

1
2

]

.

2. Let A = {(x, y) ∈ R
2 | x > y2} and B = {(x, y) |x2 + (y − 3)2 ≤ 5}.

(a) (5 points) Draw a picture of the sets A,B on the xy plane.

Solution: A is the inside of a parabola with apex (0, 0) and axis y = 0. B
is a disk with center (0, 3) and radius

√
5.

(b) (5 points) Can A,B be separated? If so, provide an equation of a straight line
that separates them. If not, explain why.



Solution: A,B are nonempty and convex. The point (1, 1) is a common
boundary point of A,B. They can be separated by the tangent y = 1

2
x+ 1

2
.

3. Define the function f : R → R by

f(x) =

{

x2 + 2x, (x ≤ 0)

x2 − 2x. (x ≥ 0)

(a) (3 points) Draw the graph and epigraph of f on the xy plane.

Solution: Draw two parabolas corresponding to x ≤ 0 and x ≥ 0.

(b) (3 points) Is f convex? Answer yes or no, then explain why.

Solution: No (1 point), since (1,−1) ∈ epi f and (−1,−1) ∈ epi f (the apex
of each parabola) but 1/2(1,−1)+1/2(−1,−1) = (0,−1) /∈ epi f (2 points).

(c) (4 points) Let g = co f be the convex hull of f , so by definition g is a function
such that epi g = co epi f . Give a formula for g(x).

Solution:

g(x) =











x2 + 2x, (x ≤ −1)

−1, (−1 ≤ x ≤ 1)

x2 − 2x. (x ≥ 1)

4. There are N types of coins. A coin of type n has integer value vn. You want to find
the minimum number of coins needed for the value of the coins sums to S, where
S ≥ 0 is an integer.

(a) (2 points) What is (are) the state variable(s)?

Solution: The state variable is S.

(b) (4 points) Write down the Bellman equation.

Solution: Let V (S) be the minimum number of coins the sum of which is S.
If you choose type n coin first, you need to sum up to S− vn with remaining
coins. Therefore the Bellman equation is

V (S) = min
n

[1 + V (S − vn)].
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(c) (4 points) Solve the problem for S = 10 when N = 3 and (v1, v2, v3) = (1, 2, 4).

Solution: Clearly V (0) = 0 and V (1) = 1. Iterating the Bellman equation,
we get V (2) = 1, V (3) = 2, V (4) = 1, V (5) = 2, V (6) = 2, V (7) = 3,
V (8) = 2, V (9) = 3, V (10) = 3. (2 points for correct V (0) and V (1), 2
points for correct V (10).)

5. You have a call option on a stock with strike price K and time to expiration T . This
means that if you exercise the option at time t ≤ T when the stock price is St, you
will get St −K at t. If you don’t exercise the option, you will get nothing. You want
to exercise the option so as to maximize the expected discounted payoff

E

[

1

(1 + r)t
max {St −K, 0}

]

,

where t is the exercise date and r is the interest rate. Assume that the gross return
of the stock is

St+1

St

=

{

1 + µ+ σ, (with probability πu)

1 + µ− σ, (with probability πd)

where µ > 0 is the expected return, σ > µ is the volatility, and πu + πd = 1.

(a) (2 points) What is (are) the state variable(s)?

Solution: The state variables are the stock price S and the time to expira-
tion T . (1 point each.)

(b) (4 points) Write down the Bellman equation that the option value satisfies.

Solution: Let VT (S) be the option value when the stock price is S and time
to expiration is T . If you exercise, you get S−K. If you don’t exercise, you
go to the next period. Therefore the Bellman equation is

VT (S) = max

{

S −K,
1

1 + r
(πuVT−1((1 + µ+ σ)S) + πdVT−1((1 + µ− σ)S))

}

.

(c) (4 points) Compute the option value when T = 1 and the current stock price is
S, where S < K < (1 + µ+ σ)S.

Solution: Clearly V0(S) = max {S −K, 0}. Since S < K, you will not
exercise at t = 0. Since σ > µ and (1 + µ + σ)S > K, you will exercise at
t = 1 if and only if the stock goes up. Therefore

V1(S) =
1

1 + r
πu((1 + µ+ σ)S −K).
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6. You are a potato farmer. You start with some stock of potatoes. At each time, you
can eat some of them and plant the rest. If you plant x potatoes, you will harvest
Axα potatoes at the beginning of the next period, where A, α > 0. You want to
maximize your utility from consuming potatoes

T
∑

t=0

βt log ct,

where 0 < β < 1 is the discount factor, ct > 0 is consumption of potatoes at time t,
and T is the number of periods you live.

(a) (2 points) If you have k potatoes now and consume c out of it, how many pota-
toes can you harvest next period?

Solution: If you have k potatoes now and consume c, you will plant x =
k − c. Therefore you will harvest Axα = A(k − c)α next period.

(b) (3 points) Let VT (k) be the maximum utility you get when you start with k
potatoes. Write down the Bellman equation.

Solution: Let VT (k) be the maximum utility when starting from stock k
and there are T periods to go. If you consume c now, you will start with
A(k − c)α potatoes next period. Therefore the Bellman equation is

VT (k) = max
0≤c≤k

[log c+ βVT−1(A(k − c)α)] .

(c) (2 points) Solve for the optimal consumption when T = 1.

Solution: Clearly V0(k) = log k since you will consume everything if there
is no future. By the Bellman equation,

V1(k) = max
0≤c≤k

[log c+ β log(A(k − c)α)] .

The objective function is concave in c. The first-order condition is

1

c
− βα

1

k − c
= 0 ⇐⇒ c =

k

1 + αβ
,

which is the solution.

(d) (3 points) Guess that VT (k) = aT+bT log k for some constants aT , bT . Assuming
that this guess is correct, derive a relation between bT and bT−1.
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Solution: Assuming that the guess is correct, by the Bellman equation we
get

aT + bT log k = max
0≤c≤k

[log c+ β(aT−1 + bT−1 log(A(k − c)α))] .

By the first-order condition we get

1

c
− βαbT−1

1

k − c
= 0 ⇐⇒ c =

k

1 + αβbT−1

.

Substituting the optimal consumption into the Bellman equation and com-
paring the coefficients of log k, we get

bT = 1 + αβbT−1.

7. Consider the problem

minimize 3x1 + x2

subject to x2 ≤ −x2

1,

x2

1 + (x2 − 1)2 ≤ 1.

(a) (2 points) Draw a picture of the set that each constraint defines (in one picture).

Solution: The constraint x2 ≤ −x2
1 is a hyperbola with apex (0, 0) (1 point).

The constraint x2
1 + (x2 − 1)2 ≤ 1 is a disk with center (0, 1) and radius 1 (1

point).

(b) (2 points) Compute the solution.

Solution: Since the constraint consists of the single point (x1, x2) = (0, 0),
it is the unique solution.

(c) (3 points) Compute the tangent cone and the linearizing cone at the solution.

Solution: Let x̄ = (x1, x2) = (0, 0). Since the constraint set is C = {x̄}, we
have x̄+ ty ∈ C with t > 0 only if y = (0, 0). Therefore the tangent cone is
T (x̄) = {0} (1 point).

Let g1(x) = x2
1 + x2 and g2(x) = x2

1 + (x2 − 1)2 − 1. Then

∇g1(x̄) =

[

2x1

1

]

=

[

0
1

]

, ∇g2(x̄) =

[

2x1

2(x2 − 1)

]

=

[

0
−2

]

,

so the linearizing cone is L(x̄) = {(y1, y2) | y2 = 0} (2 points).
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(d) (3 points) Do the Karush-Kuhn-Tucker conditions hold? If so, give the Lagrange
multipliers. If not, explain why.

Solution: Let

L(x1, x2, λ1, λ2) = 3x1 + x2 + λ1(x
2

1 + x2) + λ2(x
2

1 + (x2 − 1)2 − 1)

be the Lagrangian. If the KKT theorem holds, we must have

0 =
∂L

∂x1

= 3 + 2λ1x1 + 2λ2x1,

0 =
∂L

∂x2

= 1 + λ1 + 2λ2(x2 − 1)

at x̄ = (x1, x2) = (0, 0), but the first equation becomes 0 = 3, a contradiction.
Therefore the KKT conditions do not hold (1 point).

The reason is because the Guignard constraint qualification L(x̄) ⊂ co T (x̄)
does not hold (2 points).

8. Consider the problem

maximize x2

1 + 2x2

2

subject to x1 + x2 ≤ 1,

x1 ≥ 0, x2 ≥ 0.

(a) (2 points) Are the Karush-Kuhn-Tucker conditions necessary for a solution?
Answer yes or no, then explain why.

Solution: Yes (1 point). Since the objective function is continuous and
the constraint set is compact, there is a solution. Since the constraints are
linear, the constraint qualification holds automatically. Therefore the KKT
conditions hold (1 point).

(b) (2 points) Are the Karush-Kuhn-Tucker conditions sufficient for a solution? An-
swer yes or no, then explain why.

Solution: No (1 point). Since the objective function is convex but the prob-
lem is a maximization problem, the first-order conditions are not sufficient
(1 point). Note that KKT conditions are sufficient for convex minimization

or concave maximization problems.

(c) (2 points) Write down the Lagrangian.
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Solution:

L(x1, x2, λ1, λ2, λ3) = x2

1 + 2x2

2 + λ1(1− x1 − x2) + λ2x1 + λ3x2.

(d) (4 points) Compute the solution.

Solution: Since the objective function is increasing in both x1 and x2,
clearly the constraint x1 + x2 ≤ 1 binds. Therefore x1 + x2 = 1. The
first-order condition is

0 =
∂L

∂x1

= 2x1 − λ1 + λ2,

0 =
∂L

∂x2

= 4x2 − λ1 + λ3.

If x1 = 0, then x2 = 1, and the function value is 2. If x2 = 0, then x1 = 1,
and the function value is 1. If x1, x2 > 0, then by complementary slackness
λ2 = λ3 = 0. Solving the first-order conditions we get x1 = λ1/2 and
x2 = λ1/4. Since x1 + x2 = 1, we get x1 =

2

3
and x2 =

1

3
. Then the function

value is
(

2

3

)2

+ 2

(

1

3

)2

=
4 + 2

9
=

2

3
.

Therefore the solution is (x1, x2) = (0, 1).

9. Consider the problem

maximize log x1 + u1 log x2

subject to x1 + x2 ≤ u2,

where x1, x2 > 0 are variables and u1, u2 > 0 are parameters.

(a) (2 points) Prove that the objective function is concave. (Hint: by definition f
is concave if −f is convex.)

Solution: Since (log x)′′ = (1/x)′ = −1/x2 < 0, f(x) = log x is concave.
Since the objective function is f(x1) + u1f(x2), it is concave.

(b) (1 point) Write down the Lagrangian.

Solution:

L(x1, x2, λ, u1, u2) = log x1 + u1 log x2 + λ(u2 − x1 − x2).
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(c) (3 points) Compute the solution.

Solution: Since the objective function is concave, the constraint is convex,
and the Slater condition holds, the KKT conditions are necessary and suffi-
cient for a solution. The first-order condition is

0 =
∂L

∂x1

=
1

x1

− λ ⇐⇒ x1 =
1

λ
,

0 =
∂L

∂x2

=
u1

x2

− λ ⇐⇒ x2 =
u1

λ
.

Clearly λ > 0. By complementary slackness, we get x1+x2 = u2, so λ = 1+u1

u2

and the solution is

(x1, x2) =

(

u2

1 + u1

,
u1u2

1 + u1

)

.

(d) (4 points) Let φ(u1, u2) be the maximum value of the problem. Compute ∂φ

∂u1

and ∂φ

∂u2

.

Solution: Let u = (u1, u2). By the envelope theorem,

[

∂φ

∂u1

∂φ

∂u2

]

= ∇uφ(u) = ∇uL(x(u), λ(u), u)

=

[

log x2

λ

]

=

[

log u1u2

1+u1

1+u1

u2

]

.

Alternatively, you can compute φ(u1, u2) and its partial derivatives.

10. Consider the problem

minimize

N
∑

n=1

[xn log xn − xn]

subject to
N
∑

n=1

anxn ≤ b,

where xn > 0 are variables and an, b are constants.

(a) (2 points) Write down the Lagrangian L(x, λ), where x = (x1, . . . , xN) and λ ≥
0 is the Lagrange multiplier.

Solution:

L(x, λ) =
N
∑

n=1

[xn log xn − xn] + λ

(

N
∑

n=1

anxn − b

)

.
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(b) (3 points) Minimize the Lagrangian with respect to x = (x1, . . . , xN ) and ex-
press xn as a function of λ.

Solution: L is convex in x. The first-order condition is

0 =
∂L

∂xn

= log xn + λan ⇐⇒ xn = e−anλ.

(c) (5 points) Derive the dual problem.

Solution: Substituting xn = e−anλ, the dual objective function is

ω(λ) = min
x

L(x, λ) = −bλ−
N
∑

n=1

e−anλ.

Therefore the dual problem is

maximize − bλ−
N
∑

n=1

e−anλ

subject to λ ≥ 0.

11. (Extra credit)

(a) (5 points) State the Separating Hyperplane Theorem. (There are a few versions,
but any one of them is fine. However, the statement must be mathematically
precise.)

Solution: Let C,D ⊂ R
N be nonempty convex sets. If C ∩ D = ∅, then

there exists a nonzero vector a ∈ R
N such that 〈a, x〉 ≤ 〈a, y〉 for all x ∈ C

and y ∈ D.

(b) (15 points) State and prove your favorite theorem that uses the Separating Hy-
perplane Theorem in the proof.
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