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• Turn off any electronic devices and put them in your bag.
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• The exam time is 80 minutes.

• This exam has 6 questions on 6 pages excluding the cover page, for a total of 100
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question. If you don’t have enough space you can use the back of the exam sheet,
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• Once you exit the exam room, you are not allowed to reenter.

• Submit your entire exam sheet before leaving the room, even if some parts are
empty or you intend to drop the class.
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1. (a) (5 points) What is your name? Legibly write down your full name as registered
to UCSD at the designated area on the cover of this exam sheet.

Solution: This should be easy.

(b) (5 points) Compute the gradient of f(x, y) = 2x2 + 3xy + 5y2.

Solution:

∇f(x, y) =

[∂f

∂x
∂f

∂y

]

=

[

4x+ 3y
3y + 10y

]

.

(3 points for knowing the definition of the gradient, 2 points for the correct
answer.)

2. Consider the problem

minimize (x1 − 2)2 + (x2 − 3)2

subject to (x1 − 1)2 + x2

2 ≤ 5,

x1 ≥ 0, x2 ≥ 0.

(a) (5 points) Are the Karush-Kuhn-Tucker conditions necessary for a solution?
That is, does the solution to the problem have to satisfy the KKT conditions?
Answer yes or no, then explain why.

Solution: Yes (2 points). Since the objective function is convex, the con-
straints are convex, and the Slater constraint qualification holds for (x1, x2) =
(1, ǫ) with ǫ > 0 small enough, the KKT theorem applies (3 points).

(b) (5 points) Are the Karush-Kuhn-Tucker conditions sufficient for a solution?
That is, does a point satisfying the KKT conditions have to be a solution to
the problem? Answer yes or no, then explain why.

Solution: Yes (2 points). Since the objective function and constraints are
convex, the KKT conditions are sufficient for optimality (3 points).

3. Consider the problem

minimize 2x1 + x2

subject to x1 ≥ 2,

x2

1 + x2

2 ≤ 4.

(a) (5 points) Draw a picture of the set that each constraint defines.

Solution: The constraint x1 ≥ 2 is a half space (2 points). The constraint
x2
1 + x2

2 ≤ 4 is a disk with center (0, 0) and radius 2 (3 points).



(b) (5 points) Compute the solution.

Solution: Since the constraint consists of the single point (x1, x2) = (2, 0),
it is the unique solution.

(c) (5 points) Compute the tangent cone and the linearizing cone at the solution.

Solution: Let x̄ = (x1, x2) = (2, 0). Since the constraint set is C = {x̄}, we
have x̄+ ty ∈ C with t > 0 only if y = (0, 0). Therefore the tangent cone is
T (x̄) = {0} (2 points).

Let g1(x) = 2− x1 and g2(x) = x2
1 + x2

2 − 4. Then

∇g1(x̄) =

[−1

0

]

, ∇g2(x̄) =

[

2x1

2x2

]

=

[

4

0

]

,

so the linearizing cone is L(x̄) = {(y1, y2) | y1 = 0} (3 points).

(d) (5 points) Do the Karush-Kuhn-Tucker conditions hold? If so, give the Lagrange
multipliers. If not, explain why.

Solution: Let

L(x1, x2, λ1, λ2) = 2x1 + x2 + λ1(2− x1) + λ2(x
2

1 + x2

2 − 4)

be the Lagrangian. If the KKT theorem holds, we must have

0 =
∂L

∂x1

= 2− λ1 + 2λ2x1,

0 =
∂L

∂x2

= 1 + 2λ2x2

at x̄ = (x1, x2) = (2, 0), but the second equation becomes 0 = 1, a contra-
diction. Therefore the KKT conditions do not hold (2 points).

The reason is because the Guignard constraint qualification L(x̄) ⊂ co T (x̄)
does not hold (3 points).

4. Consider the problem

minimize
1

x1

+
4

x2

subject to x1 + x2 ≤ 3,

where x1, x2 > 0.

(a) (5 points) Prove that the objective function is convex.
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Solution: Since (1/x)′′ = (−1/x2)′ = 2/x3 > 0, both 1/x1 and 4/x2 are
convex. Therefore 1/x1 + 4/x2 is convex.

(b) (5 points) Write down the Lagrangian.

Solution:

L(x1, x2, λ) =
1

x1

+
4

x2

+ λ(x1 + x2 − 3).

(c) (5 points) Explain why the Karush-Kuhn-Tucker conditions are both necessary
and sufficient for a solution.

Solution: Since the objective function and constraints are convex and the
Slater condition holds for (x1, x2) = (1, 1), the KKT conditions are both
necessary and sufficient. (2 points for stating convexity, 2 points for stating
SCQ, and 1 point for giving a point satisfying SCQ.)

(d) (5 points) Compute the solution.

Solution: The first-order condition is

0 =
∂L

∂x1

= − 1

x2
1

+ λ ⇐⇒ x1 =
1√
λ
,

0 =
∂L

∂x2

= − 4

x2
1

+ λ ⇐⇒ x2 =
2√
λ
.

Clearly λ > 0. The complementary slackness condition is then

λ(x1 + x2 − 3) = 0 ⇐⇒ 3√
λ
= 3 ⇐⇒ λ = 1,

so the solution is (x1, x2) = (1, 2). (2 points for first-order condition, 1 point
for complementary slackness, 2 points for solution.)

5. Consider the problem

maximize
4

3
x3

1 +
1

3
x3

2

subject to x1 + x2 ≤ 1,

x1 ≥ 0, x2 ≥ 0.

(a) (5 points) Are the Karush-Kuhn-Tucker conditions necessary for a solution?
Answer yes or no, then explain why.
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Solution: Yes (2 points). Since the objective function is continuous and
the constraint set is compact, there is a solution. Since the constraints are
linear, the constraint qualification holds automatically. Therefore the KKT
conditions hold (3 points).

(b) (5 points) Are the Karush-Kuhn-Tucker conditions sufficient for a solution? An-
swer yes or no, then explain why.

Solution: No (2 points). Since the objective function is convex but the
problem is a maximization problem, the first-order conditions are not suffi-
cient (3 points). Note that KKT conditions are sufficient for convex mini-

mization or concave maximization problems.

(c) (5 points) Write down the Lagrangian.

Solution:

L(x1, x2, λ1, λ2, λ3) =
4

3
x3

1 +
1

3
x3

2 + λ1(1− x1 − x2) + λ2x1 + λ3x2.

(d) (5 points) Compute the solution.

Solution: Since the objective function is increasing in both x1 and x2,
clearly the constraint x1 + x2 ≤ 1 binds. Therefore x1 + x2 = 1. The
first-order condition is

0 =
∂L

∂x1

= 4x2

1 − λ1 + λ2,

0 =
∂L

∂x2

= x2

2 − λ1 + λ3.

If x1 = 0, then x2 = 1, and the function value is 1

3
. If x2 = 0, then x1 = 1,

and the function value is 4

3
. If x1, x2 > 0, then by complementary slackness

λ2 = λ3 = 0. Solving the first-order conditions we get x1 = 1

2
√
λ1

and

x2 =
1√
λ1

. Since x1 + x2 = 1, we get x1 =
1

3
and x2 =

2

3
. Then the function

value is
4

3

(

1

3

)3

+
1

3

(

2

3

)3

=
4 + 8

81
=

4

27
.

Therefore the solution is (x1, x2) = (1, 0).
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6. Consider the problem

maximize
√
x1 + u1

√
x2

subject to x1 + x2 ≤ u2,

where x1, x2 > 0 are variables and u1, u2 > 0 are parameters.

(a) (5 points) Prove that the objective function is concave. (Hint: by definition f
is concave if −f is convex.)

Solution: Since (
√
x)′′ = (1

2
x− 1

2 )′ = −1

4
x− 3

2 < 0, f(x) =
√
x is concave.

Since the objective function is f(x1) + u1f(x2), it is concave.

(b) (5 points) Write down the Lagrangian.

Solution:

L(x1, x2, λ, u1, u2) =
√
x1 + u1

√
x2 + λ(u2 − x1 − x2).

(c) (5 points) Compute the solution.

Solution: Since the objective function is concave, the constraint is convex,
and the Slater condition holds, the KKT conditions are necessary and suffi-
cient for a solution. The first-order condition is

0 =
∂L

∂x1

=
1

2
√
x1

− λ ⇐⇒ x1 =
1

4λ2
,

0 =
∂L

∂x2

=
u1

2
√
x2

− λ ⇐⇒ x2 =
u2
1

4λ2
.

Clearly λ > 0. By complementary slackness, we get x1 + x2 = u2, so λ =√
1+u2

1

2
√
u2

and the solution is

(x1, x2) =

(

u2

1 + u2
1

,
u2
1u2

1 + u2
1

)

.

(2 points for first-order condition, 1 point for complementary slackness, 2
points for solution.)

(d) (5 points) Let φ(u1, u2) be the maximum value of the problem. Compute ∂φ

∂u1

and ∂φ

∂u2

.
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Solution: Let u = (u1, u2). By the envelope theorem,

[

∂φ

∂u1

∂φ

∂u2

]

= ∇uφ(u) = ∇uL(x(u), λ(u), u)

=

[√
x2

λ

]

=





u1

√
u2√

1+u2

1√
1+u2

1

2
√
u2



 .

Alternatively, you can compute φ(u1, u2) and its partial derivatives.
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