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1. Let f(x) =
√
x2 + 4.

(a) (2 points) Compute the first and second derivatives of f .

Solution: By the chain rule and the quotient rule, we get

f ′(x) =
1

2

2x√
x2 + 4

=
x√

x2 + 4
,

f ′′(x) =

√
x2 + 4− x x√

x2+4

x2 + 4
=

4

(x2 + 4)
3

2

.

(b) (2 points) Is f convex, concave, or neither?

Solution: Since f ′′(x) = 4

(x2+4)
3

2

≥ 0, it is convex.

(c) (2 points) Find the value of x that minimizes f(x).

Solution: Since 0 = f ′(x) = x√
x2+4

⇐⇒ x = 0, the solution is x = 0.

(d) (2 points) Suppose you want to minimize f by using the Newton algorithm. Let
xn be the approximate solution at iteration n. Express xn+1 using only xn.

Solution: By the definition of the Newton algorithm,

xn+1 = xn −
f ′(xn)

f ′′(xn)

= xn −
xn

√

x2
n + 4

(x2
n + 4)

3

2

4

= xn −
1

4
xn(x

2
n + 4) = −1

4
x3
n.

(e) (2 points) What is the order of convergence of the Newton algorithm for this
particular example?

Solution: Recall that if x∗ is the limit and there exist numbers α ≥ 1 and
β > 0 such that

|xn+1 − x∗| ≤ β |xn − x∗|α ,
then the order of convergence is α. For this example, since |xn+1| = 1

4
|xn|3,

the order of convergence is 3 (by setting x∗ = 0, α = 3, and β = 1
4
).

(f) (5 points) Let x0 be the initial value for the Newton algorithm. Prove that if
|x0| ≥ 2, then the Newton algorithm does not converge to the solution.



Solution: Since |xn+1| = 1
4
|xn|3, if |x0| ≥ 2, then by induction we get

|xn| ≥ 2 for all n, so {xn} does not converge to 0.

2. Let f(x1, x2) = x2
1 − 2x1x2 + 2x2

2 − 4x1 + 2x2.

(a) (3 points) Compute the gradient and the Hessian of f .

Solution:

∇f(x1, x2) =

[

2x1 − 2x2 − 4
−2x1 + 4x2 + 2

]

,

∇2f(x1, x2) =

[

2 −2
−2 4

]

.

(b) (2 points) Determine whether f is convex, concave, or neither.

Solution: Since 2 > 0 and 2 × 4 − (−2)2 = 4 > 0, the Hessian is positive
definite. Therefore f is convex.

(c) (3 points) Find the stationary point(s) of f .

Solution: By the first-order condition, we get

∇f(x1, x2) = 0 ⇐⇒ (x1, x2) = (3, 1),

so this is the only stationary point.

(d) (2 points) Determine whether each stationary point is a maximum, minimum,
or neither.

Solution: Since f is convex, a stationary point is the minimum. Therefore
(x1, x2) = (3, 1) is the minimum of f .

3. Let f(x1, x2) = x3
1 + 3x2

1 + x1x2 + x2
2 − 5x2 + 6.

(a) (2 points) Compute the gradient and the Hessian of f .

Solution:

∇f(x1, x2) =

[

3x2
1 + 6x1 + x2

x1 + 2x2 − 5

]

,

∇2f(x1, x2) =

[

6x1 + 6 1
1 2

]

.
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(2 points for the gradient, 1 point for the Hessian.)

(b) (4 points) Find the stationary point(s) of f .

Solution: By the first-order condition, we get

∇f(x1, x2) = 0 ⇐⇒
[

3x2
1 + 6x1 + x2

x1 + 2x2 − 5

]

=

[

0
0

]

.

From the first equation, we get x2 = −3x2
1 − 6x1. Substituting into the

second equation, we get

x1 + 2(−3x2
1 − 6x1)− 5 = 0 ⇐⇒ 6x2

1 + 11x1 + 5 = 0

⇐⇒ (6x1 + 5)(x1 + 1) = 0

⇐⇒ x1 = −1,−5

6
.

If x1 = −1, then x2 = 3. If x1 = −5
6
, then x2 =

35
12
. Therefore the stationary

points are

(x1, x2) = (−1, 3),

(

−5

6
,
35

12

)

.

(c) (4 points) Determine whether each stationary point is a local maximum, local
minimum, or a saddle point.

Solution: At x1 = −1, the Hessian is

H = ∇2f(x1, x2) =

[

0 1
1 2

]

.

Since the determinant is 0× 2− 12 = −1 < 0, it is a saddle point.

At x1 = −5
6
, the Hessian is

H = ∇2f(x1, x2) =

[

1 1
1 2

]

.

Since 1 > 0 and 1 × 2 − 12 = 1 > 0, it is positive definite. Therefore it is a
local minimum.

4. Consider the problem

minimize x1 + 6x2

subject to x1 + x2
2 ≤ 0,

x1 + 2x2 ≥ 1.
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(a) (2 points) Draw a picture of the set that each constraint defines on the x1x2

plane.

Solution: The constraint x1 ≤ −x2
2 is a parabola with apex (0, 0) and axis

x2 = 0 (1 point). The constraint x1 + 2x2 ≥ 1 is a straight line (1 point).
The boundaries are tangent at the point (x1, x2) = (−1, 1).

(b) (2 points) Compute the solution.

Solution: Since the constraint set consists of the single point (x1, x2) =
(−1, 1), it is the unique solution.

(c) (3 points) Do the Karush-Kuhn-Tucker conditions hold? If so, give the Lagrange
multipliers. If not, prove it.

Solution: Let

L(x1, x2, λ1, λ2) = x1 + 6x2 + λ1(x1 + x2
2) + λ2(1− x1 − 2x2)

be the Lagrangian. If the KKT theorem holds, we must have

0 =
∂L

∂x1

= 1 + λ1 − λ2,

0 =
∂L

∂x2

= 6 + 2λ1x2 − 2λ2

at (x1, x2) = (−1, 1). Subtracting 2 times the first equation from the sec-
ond equation, we get 0 = 4, which is a contradiction. Therefore the KKT
conditions do not hold.

(d) (3 points) Explain why the KKT conditions do or do not hold in the previous
question.

Solution: It is because the Slater condition fails. Indeed, if the Slater con-
dition holds, then there exist (x1, x2) such that x1 < −x2

2 and x1 > 1− 2x2.
Combining these two inequalities, we get

−x2
2 > 1− 2x2 ⇐⇒ x2

2 − 2x2 + 1 < 0 ⇐⇒ (x2 − 1)2 < 0,

which is a contradiction.

5. Consider the problem

maximize
√
x1 + 2

√
x2

subject to x1 + x2 ≤ 1,

x1 ≥ 0, x2 ≥ 0.
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(a) (3 points) Are the Karush-Kuhn-Tucker conditions necessary for a solution?
Answer yes or no, then explain why.

Solution: Yes (2 points). Since the objective function is continuous and
the constraint set is compact, there is a solution. Since the constraints are
linear, the constraint qualification holds automatically. Therefore the KKT
conditions hold (1 point).

(b) (3 points) Are the Karush-Kuhn-Tucker conditions sufficient for a solution? An-
swer yes or no, then explain why.

Solution: Yes (2 points). Since the objective function is concave and it is
a maximization problem, the first-order conditions are sufficient (1 point).

(c) (3 points) Write down the Lagrangian.

Solution:

L(x1, x2, λ1, λ2, λ3) =
√
x1 + 2

√
x2 + λ1(1− x1 − x2) + λ2x1 + λ3x2.

(d) (4 points) Compute the solution.

Solution: The first-order conditions are

0 =
∂L

∂x1

=
1

2
√
x1

− λ1 + λ2,

0 =
∂L

∂x1
=

1√
x2

− λ1 + λ3.

From these equations, it must be x1, x2 > 0 because otherwise there will be
division by 0, which is nonsense. Therefore by complementary slackness λ2 =
λ3 = 0. Then x1 = 1

4λ2

1

and x2 = 1
λ2

1

, so λ1 > 0. Again by complementary

slackness, we get

0 = 1− x1 − x2 = 1− 5

4λ2
⇐⇒ 1

λ2
=

4

5
.

Therefore the solution is x1 =
1
5
and x2 =

4
5
.

6. Suppose that there are two firms, 1 and 2, each producing a single good. Let x1, x2

be the output of the good produced by firm 1 and 2, respectively. If the total output
is x = x1 + x2, then the price of the good will be p(x) = a − bx, where a, b > 0. (If
x > a/b, then the price is zero.) For simplicity, the cost for producing the good is
zero.
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The timing is as follows. First, firm 1 decides how much to produce. Second, observ-
ing firm 1’s output, firm 2 produces the good. The goal of each firm is to maximize
their own profit (which equals revenue, because the cost is zero).

(a) (2 points) What are the state and control variables of firm 2’s problem?

Solution: The state variable is x1, the output of firm 1. The control variable
is x2, the output of firm 2.

(b) (2 points) If firm 1 produces x1, firm 2 produces x2, and x1 + x2 ≤ a/b, what is
the profit of firm 1 and 2?

Solution: Since the price is p = a− b(x1 + x2), the profits are

π1(x1, x2) = (a− b(x1 + x2))x1,

π2(x1, x2) = (a− b(x1 + x2))x2.

(c) (2 points) Write down the Bellman equation of firm 2’s problem.

Solution: Suppose firm 1 produces 0 ≤ x1 ≤ a/b. Then the value function
of firm 2 is

V (x1) = max
x2

π2(x1, x2) = max
x2

(a− b(x1 + x2))x2.

(d) (2 points) Solve for the optimal production plan of firm 2, given firm 1’s decision.

Solution: The objective function is a concave quadratic function of x2. By
the first-order condition, the solution is

a− bx1 − 2bx2 = 0 ⇐⇒ x2 =
a− bx1

2b
.

(e) (2 points) Compute the optimal production plan of firm 1 and 2.

Solution: If firm 1 produces x1, then firm 2 produces x2 = a−bx1

2b
. Then

firm 1’s profit is

π1(x1, x2) = (a− b(x1 + x2))x1 =
1

2
(a− bx1)x1.

This is a concave quadratic function. By the first-order condition, the opti-
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mal production plan of firm 1 is

a− 2bx1 = 0 ⇐⇒ x1 =
a

2b
.

Then the optimal production plan of firm 2 is

x2 =
a− bx1

2b
=

a

4b
.

7. Consider a single investor living for T periods. The utility function is

UT (c0, · · · , cT ) = E

T
∑

t=0

βt log ct,

where 0 < β < 1 is the discount factor, ct is consumption at time t, and “E” denotes
the expectation. The initial wealth of the investor is w > 0. Suppose that the
investor can invest money in two assets, a stock and a bond. The bond is risk-free,
and the gross risk-free rate is Rf > 0. (For example, if the interest rate is 3%, then
Rf = 1.03.) The gross return on stock takes two values, Ru and Rd, with probability
1/2, independent across time. Assume Ru > Rf > Rd and 1

2
(Ru + Rd) > Rf . Let

θt ≥ 0 be the fraction of wealth invested in the stock. The goal of the investor is to
maximize the expected lifetime utility.

(a) (2 points) What are the state and control variables?

Solution: The state variables are wealth w and time to go T . The control
variables are consumption ct and portfolio θt.

(b) (2 points) If the current wealth is w, consumption is c, fraction of wealth θ is
invested in stock, and the stock return is Rs (s = u, d), then what is the next
period’s wealth?

Solution: Since remaining wealth is w−c and fraction θ is invested in stock
(hence 1− θ is in bond), if the stock return is Rs, the next period’s wealth is

w′ = (Rsθ +Rf (1− θ))(w − c).

(c) (3 points) Write down the Bellman equation.

Solution: Let w be the current wealth, and w′ be the next period’s wealth.
Let VT (w) be the value function when there are T periods to go and the
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current wealth is w. Then the Bellman equation is

VT (w) = max
c,θ

[log c+ β E[VT−1(w
′)]]

= max
c,θ

[

log c+ β
∑

s=u,d

1

2
VT−1((Rsθ +Rf (1− θ))(w − c))

]

.

(d) (4 points) Show that the value function takes the form VT (w) = aT + bT logw
for some constants aT , bT . (Hint: mathematical induction.)

Solution: Similar to the optimal savings problem.

(e) (4 points) Compute the optimal consumption and portfolio at t = 0 when T = 1.
For notational simplicity, use gu := Ru − Rf > 0 and gd := Rd −Rf < 0.

Solution: Clearly V0(w) = logw. By the Bellman equation, we get

V1(w) = max
c,θ

[

log c+ β
∑

s=u,d

1

2
log((Rsθ +Rf(1− θ))(w − c))

]

= max
c,θ

[

log c+ β log(w − c) +
β

2

∑

s=u,d

log(Rsθ +Rf(1− θ))

]

.

Note that c enters only the first two terms, and θ enters only the last term.
Since log(·) is concave, it is a concave maximization problem. The first-order
condition with respect to c is

0 =
1

c
+ β

−1

w − c
⇐⇒ c =

w

1 + β
.

Ignoring β/2, the first-order condition with respect to θ is

0 =
∑

s=u,d

Rs − Rf

Rsθ + Rf(1− θ)
=
∑

s=u,d

gs
Rf + gsθ

⇐⇒ gu(Rf + gdθ) + gd(Rf + guθ) = 0 ⇐⇒ θ = −Rf

2

gu + gd
gugd

> 0.

8. Suppose that there are two assets, the market portfolio and another risky asset.
The gross return of the market portfolio and the risky asset are denoted by Rm, Rj .
Suppose that there are three states of the world. The probability of each state and
the gross returns in each state are as in the following table.
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Probability Rm Rj

State 1 1/4 1.2 1.3
State 2 1/2 1.1 1.2
State 3 1/4 0.8 0.7

(a) (2 points) Compute the expected returns E[Rm] and E[Rj ].

Solution: It is easier to think in percent.

E[Rm] =
1

4
20 +

1

2
10 +

1

4
(−20) = 5%,

E[Rj ] =
1

4
30 +

1

2
20 +

1

4
(−30) = 10%.

(b) (2 points) Compute the beta of the risky asset.

Solution: The beta is defined by βj = Cov[Rm, Rj]/Var[Rm]. Since beta is
dimensionless, it does not matter in what unit we compute. Therefore we
use percent. Then

Var[Rm] =
1

4
152 +

1

2
52 +

1

4
252 = 225,

Cov[Rm, Rj ] =
1

4
15 · 20 + 1

2
5 · 10 + 1

4
(−25)(−40) = 350.

Therefore the beta is

βj =
Cov[Rm, Rj]

Var[Rm]
=

350

225
=

14

9
.

(c) (3 points) Compute the risk-free rate.

Solution: By the covariance pricing formula, we have

E[Rj ]−Rf = βj(E[Rm]− Rf ).

Therefore the risk-free rate is

Rf =
βj E[Rm]− E[Rj ]

βj − 1
=

14
9
5− 10
14
9
− 1

= −4%.

Page 9



9. Consider the optimization problem

maximize
N
∑

n=1

2αn

√
xn

subject to

N
∑

n=1

pnxn ≤ w,

where x1, · · · , xn > 0 are variables and w > 0, α1, . . . , αN > 0, and p1, . . . , pN > 0
are constants.

(a) (1 point) Write down the Lagrangian.

Solution: Letting λ ≥ 0 be the Lagrange multiplier on the inequality con-
straint, the Lagrangian is

L(x1, · · · , xN , λ) =
N
∑

n=1

2αn

√
xn + λ

(

w −
N
∑

n=1

pnxn

)

.

(b) (1 point) Fix α, p > 0 and λ ≥ 0 and let g(x) = 2α
√
x− λpx for x > 0. Is g(x)

convex, concave, or neither?

Solution: Since

g′(x) = αx− 1

2 − λp,

g′′(x) = −1

2
αx− 3

2 < 0,

g is concave.

(c) (4 points) Derive the dual objective function of the original problem.

Solution: By definition, the dual objective function is

ω(λ) = max
x

L(x, λ) = max
x1,··· ,xN

[

wλ+
N
∑

n=1

(2αn

√
xn − λpnxn)

]

.

Since inside the bracket is additively separable, it suffices to maximize term
by term. But the summand is the same as g(xn), except that we drop the n
subscript.

Now g′(x) = 0 ⇐⇒ x = ( α
λp
)2, and the maximum value is α2

λp
, so the dual

objective function is

ω(λ) = wλ+
1

λ

N
∑

n=1

α2
n

pn
.
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(d) (2 points) Derive the dual problem of the original problem.

Solution: Since the original problem is a maximization problem with an
inequality constraint, the dual is a minimization problem. Therefore the
dual problem is

minimize wλ+
1

λ

N
∑

n=1

α2
n

pn

subject to λ ≥ 0.

(e) (2 points) Solve the dual problem.

Solution: Let c =
∑N

n=1
α2
n

pn
. Then the dual objective function is ω(λ) =

wλ+ c
λ
, which is convex. The first-order condition is

0 = ω′(λ) = w − c

λ2
⇐⇒ λ =

√

c

w
.

Therefore the solution to the dual problem is

λ =

√

√

√

√

1

w

N
∑

n=1

α2
n

pn
.
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