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1. (10 points) As discussed during lectures, the equilibrium of an Arrow-Debreu econ-
omy need not be unique. Discuss conditions under which the equilibrium is unique.
(No proofs are required but the more exhaustive the list is, the better.)

Solution: Examples of equilibrium uniqueness are:

• quasi-linear economy with strictly concave nonlinear parts,

• additively separable preferences with relative risk aversion bounded above
by 1,

• identical homothetic preferences with strictly quasi-concave utility func-
tions,

• arbitrary homothetic preferences with strictly quasi-concave utility func-
tions and collinear endowments.

2. (20 points) Consider an Arrow-Debreu economy with two agents denoted by i = A,B
and S states denoted by s = 1, . . . , S. Let πs > 0 be the objective probability of
state s, where

∑S
s=1 πs = 1. Let eis > 0 be agent i’s initial endowment of good s.

Suppose that the utility functions are given by

UA(x) =
S∑

s=1

πsu(xs),

UB(x) =
S∑

s=1

πsxs,

where u′ > 0, u′′ < 0, u′(0) = ∞, and u′(∞) = 0. What is the most you can say
about equilibrium prices and allocations?

Solution: Since utilities are continuous, quasi-concave, and locally nonsatiated,
an equilibrium exists. Let p = (p1, . . . , pS)′ be the price vector. The Lagrangian
of the utility maximization problems are

LA(x, λA) =
S∑

s=1

πsu(xs) + λA

(
wA −

S∑
s=1

psxs

)
,

LB(x, λB) =
S∑

s=1

πsxs + λB

(
wB −

S∑
s=1

psxs

)
+

S∑
s=1

νsxs,

where wA, wB are initial wealth, λA, λB ≥ 0 are Lagrange multipliers for the
budget constraint, and νs ≥ 0 is the Lagrange multiplier for the nonnegativ-
ity constraint xs ≥ 0 for agent B. Note that we can ignore the nonnegativity
constraint for agent A due to the Inada condition.



Suppose agent B’s nonnegativity constraint does not bind in state s, so xBs > 0.
By the first-order condition, we obtain πs − λBps = 0. Since price levels are
irrelevant for equilibrium, without loss of generality we may assume λB = 1 and
hence ps = πs. Thus the price is equal to the state probability whenever agent
B consumes a positive amount. By the first-order condition for agent A, we then
obtain

πsu
′(xAs) = λAps = λAπs ⇐⇒ u′(xAs) = λA.

Therefore xAs = (u′)−1(λA) for all s with xBs > 0, so agent A consumes the same
amount in every state. Thus the risk neutral agent B accepts all the risk and
provides perfect insurance to the risk averse agent A for all states in which the
nonnegativity constraint does not bind.

3. Consider an Arrow-Debreu economy with two agents indexed by i = 1, 2. Suppose
that the utility functions are

U1(x1, x2) = α log x1 + (1− α) log x2,

U2(x1, x2) = min{x1, x2},

where 0 < α < 1 is a preference parameter. Let agent i’s initial endowment be
(ei1, ei2). Let p1 = 1 and p2 = p be the prices.

(a) (10 points) Compute each agent’s demand for good 1, given p.

Solution: Agent 1 has a Cobb-Douglas utility function, so by the usual
formula the demand for good 1 is x11 = αw1 = α(e11 + pe12). Agent 2 has
a Leontief utility function, so the demand must satisfy x1 = x2. Using the
budget constraint, we obtain x21 = e21+pe22

1+p
.

(b) (10 points) Derive a necessary and sufficient condition such that p is an equi-
librium price for some e12 > 0.

Solution: The excess demand function for good 1 is

z1(p) = x11 + x21 − e11 − e21

= α(e11 + pe12) +
e21 + pe22

1 + p
− e11 − e21

= −(1− α)e11 + αpe12 +
p

1 + p
(e22 − e21).

Since Cobb-Douglas utility is strongly monotonic, by the Walras law a nec-
essary and sufficient condition for equilibrium is z1(p) = 0. Therefore p is an
equilibrium price for some e12 > 0 if and only if

αpe12 = (1− α)e11 +
p

1 + p
(e21 − e22) > 0.
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(c) (10 points) Show that when agent 1 likes good 1 more (α increases), the relative
price of good 1, which is 1/p, increases (so p decreases).

Solution: Let F (p, α) be the excess demand of good 1 given the price p and
the preference parameter α. In equilibrium, we have F (p, α) = 0. By the
implicit function theorem, we have

∂p

∂α
= −∂F

∂α
/
∂F

∂p
.

Clearly
∂F

∂α
= e11 + pe12 > 0.

Therefore the slope of the relative price 1/p has the same sign as ∂F/∂p.
Using the above equilibrium condition, we obtain

∂F

∂p
= αe12 −

e21 − e22
(1 + p)2

=
(1− α)e11

p
+
e21 − e22

1 + p
− e21 − e22

(1 + p)2

=
1− α
p

e11 +
p

(1 + p)2
(e21 − e22).

If e22 ≤ e21, clearly ∂F/∂p > 0. If e22 > e21, since p
1+p

< 1, it follows that

p
∂F

∂p
= (1− α)e11 +

(
p

1 + p

)2

(e21 − e22)

> (1− α)e11 +
p

1 + p
(e21 − e22) > 0

by the equilibrium condition. Therefore ∂F/∂p > 0 at the equilibrium, so
the relative price of good 1, 1/p, always increases when agent 1 likes good 1
more.

4. Consider the following general equilibrium model. There are three time periods
indexed by t = 0, 1, 2. There is a continuum of ex ante identical agents, where the
population is normalized to 1. At t = 0, agents are endowed with e > 0 units of
consumption good. At t = 0, agents can invest goods in two technologies. One unit
of investment in technology 1 yields 1 unit of good at t = 1. One unit of investment
in technology 2 yields R > 0 units of good at t = 2. Agents get utility only from
consumption at t = 1, 2. At the beginning of t = 1, agents get “liquidity shocks”,
and with probability πi > 0, their utility function becomes

Ui(x1, x2) = (1− βi) log x1 + βi log x2,

where βi ∈ (0, 1) is the discount factor of type i and
∑I

i=1 πi = 1. Without loss of
generality, assume

β1 < · · · < βI ,
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so a type with a smaller index is more impatient. Suppose that the ex ante utility is

U((xi1, xis)i) =
I∑

i=1

πiαiUi(xi1, xi2),

where αi > 0 is the weight on type i such that

α1 > · · · > αI ,

so agents care about emergencies in the sense that they put more utility weight on
the impatient type. Note that we assume the law of large numbers, so at t = 1,
exactly fraction πi > 0 of agents are of type i. After observing their patience type
at t = 1, agents can trade consumption for t = 1, 2 at a competitive (Arrow-Debreu)
market.

(a) (10 points) In general, let f, g be strictly increasing functions and X be a ran-
dom variable. Prove the Chebyshev inequality

E[f(X)g(X)] ≥ E[f(X)]E[g(X)],

with equality if and only if X is constant almost surely.

(Hint: let X ′ be an i.i.d. copy of X and consider the expectation of the quantity
(f(X)− f(X ′))(g(X)− g(X ′)) ≥ 0.)

Solution: Since f, g are strictly increasing, f(X)−f(X ′) and g(X)−g(X ′)
have the same sign, and they are 0 if and only if X = X ′. Therefore

(f(X)− f(X ′))(g(X)− g(X ′)) ≥ 0

with equality if and only if X = X ′. Taking the expectation and noting that
X ′ is and i.i.d. copy of X, we obtain

E[f(X)g(X)] ≥ E[f(X)]E[g(X)],

with equality if and only if X is constant almost surely.

(b) (5 points) Noting that agents are ex ante identical, at t = 0 they will all make
the same investment decision. let x ∈ (0, e) be the amount of investment in
technology 1 and let (e1, e2) = (x,R(e−x)) be the vector of t = 1, 2 endowments
conditional on x. Let (p1, p2) = (1, p) be the price of consumption at t = 1, 2.
Compute type i’s demand for the t = 1, 2 goods using p, e1, e2.

Solution: The wealth of an agent at t = 1 is

w = p1e1 + p2e2 = e1 + pe2.

Since agents have Cobb-Douglas utility, using the familiar formula, type i’s
demand is

xi1 = (1− βi)w = (1− βi)(e1 + pe2),

xi2 =
βiw

p
= βi

e1 + pe2
p

.
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(c) (5 points) For notational simplicity, let β̄ =
∑I

i=1 πiβi be the average discount
factor. Conditional on x, compute the equilibrium price p.

Solution: Since the population of agents is 1, the aggregate supply of good
at t = 1 is e1 = x. Noting that fraction πi of agents are of type i, the market
clearing condition is

I∑
i=1

πi(1− βi)(e1 + pe2) = x.

Noting that (e1, e2) = (x,R(e− x)) and solving for p, we obtain

p =
1−

∑I
i=1 πi(1− βi)

R(e− x)
∑I

i=1 πi(1− βi)
x =

β̄x

R(e− x)(1− β̄)
.

(d) (10 points) Let V (x, p) = maxU((xi1, xi2)i) be the agents’ maximized utility
conditional on short-term investment x and price p. Noting that agents choose
x optimally given p, compute the equilibrium short-term investment x∗.

Solution: Since markets are competitive, each agent maximizes V (x, p) over
x, taking p as given. Since by the above demand formula xi1, xi2 are both
proportional to e1 + pe2 = x+ pR(e− x), using

V (x, p) =
I∑

i=1

πiαi[(1− βi) log xi1 + βi log xi2],

we obtain

0 =
∂

∂x
V (x, p) =

I∑
i=1

πiαi
1− pR

x+ pR(e− x)
⇐⇒ p =

1

R
.

Using the above price formula, we obtain

p =
β̄x

R(e− x)(1− β̄)
=

1

R
⇐⇒ x∗ = (1− β̄)e.

(e) (10 points) Suppose that the government can force the agents to choose a par-
ticular x, without interfering in the subsequent consumption markets at t = 1, 2.
Let p(x) be the price of t = 2 consumption conditional on x derived above. Prove
that

d

dx
V (x, p(x))

∣∣∣∣
x=x∗

> 0,

so welfare locally increases if the government forces the agents to invest more in
the short-term investment technology.
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Solution: By the chain rule we have

d

dx
V (x, p(x)) =

∂V

∂x
+
∂V

∂p
p′(x).

At x = x∗, by the definition of equilibrium, we have ∂V/∂x = 0. Since the
numerator of p(x) is increasing in x and the denominator is decreasing in
x, clearly p is increasing in x, so p′(x) > 0. Therefore to show the claim, it
suffices to show that ∂V/∂p > 0 at x = x∗.

Since xi1 is proportional to e1 + pe2 and xi2 is proportional to (e1 + pe2)/p,
by simple algebra we obtain

∂V

∂p
=

I∑
i=1

πiαi

(
e2

e1 + pe2
− βi
p

)
.

By the previous calculation, at x = x∗ we have e1 = x∗ = (1 − β̄)e, e2 =
R(e− x∗) = Rβ̄e, and p = 1/R. Therefore we can simplify as

∂V

∂p
= R

I∑
i=1

πiαi(β̄ − βi).

Since β̄ =
∑I

i=1 πiβi, the last summation can be interpreted as

E[αi]E[βi]− E[αiβi],

where the expectation is over the probabilities (π1, . . . , πI). Since by assump-
tion βi is increasing in i and αi is decreasing in i, applying the Chebyshev
inequality to −αi and βi, we obtain

E[−αiβi] > E[−αi]E[βi] ⇐⇒ E[αi]E[βi]− E[αiβi] > 0,

so ∂V/∂p > 0.

This question is based on Geanakoplos and Walsh “Inefficient Liquidity Pro-
vision”, Economic Theory, 66(1):213-233 (2018).
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You can detach this sheet and use as a scratch paper.
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