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Abstract

This note explains the classic Samuelson (1969) optimal consumption-
portfolio problem. Other useful references might be Hakansson (1970)
and Toda (2014).

1 Optimal portfolio problem

1.1 Model

Time is denoted by t = 0, 1, . . . , T (maybe T =∞). There are J assets indexed
by j ∈ J = {1, . . . , J}. (In Samuelson (1969), J = 2, a risky and a riskless asset.)
Starting from some initial wealth w0 > 0, the investor wants to maximize the
lifetime expected utility

E0

T∑
t=0

βt
c1−γt

1− γ
,

where β > 0 is the discount factor, γ > 0 is the relative risk aversion coefficient,
and ct is consumption. We say that such an investor has an additive CRRA
preference (CRRA stands for constant relative risk aversion).

Let P jt be the per share price of asset j, and Dj
t be the dividend. The gross

return of asset j between time t and t+ 1 is

Rjt+1 =
P jt+1 +Dj

t+1

P jt
,

that is, we adopt the convention that dividends are paid at the beginning of each
period and prices are quoted at the end of each period after dividends are paid
out. Let Rt+1 = (R1

t+1, . . . , R
J
t+1) be the vector of asset returns. For simplicity,

assume that {Rt}Tt=0 is i.i.d. over time. However, the joint distribution of asset

returns is arbitrary in the cross-section. Let θjt be the fraction of wealth invested
in asset j (θjt > 0 (< 0) corresponds to a long (short) position in asset j), and

θt = (θ1
t , . . . , θ

J
t ) be the portfolio. By accounting, we have

∑J
j=1 θ

j
t = 1.

The timing is as follows. At the beginning of period t, the asset returns Rt

realizes and determines that period’s initial wealth, wt. Given this wealth, the
investor chooses consumption ct and portfolio θt. Let

Rt+1(θ) = R′t+1θ =

J∑
j=1

Rjt+1θ
j
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be the gross return on the portfolio between time t and t+ 1. Then the budget
constraint is

wt+1 = Rt+1(θt)(wt − ct) ≥ 0.

1.2 Solution: finite horizon

Since we assumed that the returns are i.i.d., the only state variable is wealth.1

With a slight abuse of notation, let VT (w) be the value function when T periods
are left in the future (the investor has T+1 periods to live, including the current
period). Then for T ≥ 1 the Bellman equation is

VT (w) = max
c,θ

{
c1−γ

1− γ
+ β E[VT−1(w′)]

∣∣∣∣w′ = R(θ)(w − c)
}
.

If T = 0, since the investor has no choice but to consume his wealth, we have

V0(w) =
w1−γ

1− γ
.

By homotheticity, we can show:

Lemma 1. For each T , there exists aT such that VT (w) = aT
w1−γ

1−γ .

Proof. Let c0, . . . , cT be the optimal consumption starting from wealth w, with
value function VT (w). By the linearity of the budget constraint, if the initial
wealth is λw (where λ > 0), then the consumption λc0, . . . , λcT is feasible. By
the homotheticity of the utility function, the associated lifetime utility will be
λ1−γVT (w). Since the optimal value starting from wealth λw is VT (λw), it
follows that

λ1−γVT (w) ≤ VT (λw). (1)

To show the reverse inequality, let w′ = λw and λ′ = 1/λ in (1). Then we get

(1/λ′)1−γVT (λ′w′) ≤ VT (w′) ⇐⇒ (λ′)1−γVT (w′) ≥ VT (λ′w′). (2)

Dropping the primes (′) in (2) and using (1), we get

λ1−γVT (w) ≥ VT (λw). (3)

In particular, letting λ = 1/w, we get

VT (w) = VT (1)w1−γ ≡ aT
w1−γ

1− γ
.

Using the Lemma and substituting the budget constraint into the Bellman
equation, we obtain

aT
w1−γ

1− γ
= max

c,θ

{
c1−γ

1− γ
+ β E

[
aT−1

(R(θ)(w − c))1−γ

1− γ

]}
= max

c

{
c1−γ

1− γ
+ βaT−1(w − c)1−γ max

θ

1

1− γ
E[R(θ)1−γ ]

}
. (4)

From (4) we obtain the second result:

1See https://sites.google.com/site/aatoda111/file-cabinet/172B_L08.pdf for a
short note on dynamic programming.
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Proposition 2. The optimal portfolio is θ∗ ∈ arg maxθ
1

1−γ E[R(θ)1−γ ].

For later computations, it is useful to define

ρ = E[R(θ∗)1−γ ]
1

1−γ = max
θ

E[R(θ)1−γ ]
1

1−γ .

(The second equality uses the fact that x 7→ x1−γ

1−γ is monotone.) Substituting

the definition of ρ into (4), we get

aT
w1−γ

1− γ
= max

c

{
c1−γ

1− γ
+ βaT−1(w − c)1−γ ρ

1−γ

1− γ

}
. (5)

Now the right-hand side is just a maximization in one variable, c. Since the
objective function is concave in c, the first-order condition is necessary and
sufficient. Therefore

c−γ − βaT−1ρ
1−γ(w − c)−γ = 0 (6)

⇐⇒ c = (βaT−1ρ
1−γ)−

1
γ (w − c)

⇐⇒ c =
w

1 + (βaT−1ρ1−γ)
1
γ

. (7)

Substituting (7) into (5) and canceling 1− γ, we get

aTw
1−γ = c1−γ + βaT−1ρ

1−γ(w − c)1−γ

= c1−γ + c−γ(w − c) (∵ (6))

= wc−γ =
(

1 + (βaT−1ρ
1−γ)

1
γ

)γ
w1−γ (∵ (7))

⇐⇒ a
1/γ
T = 1 + (βρ1−γ)1/γa

1/γ
T−1.

Letting bT = a
1/γ
T , we obtain a first-order linear difference equation

bT = 1 + (βρ1−γ)1/γbT−1.

The initial condition is b0 = a
1/γ
0 = 1. Therefore the solution is

bT =

T∑
k=0

(βρ1−γ)k/γ =
1− (βρ1−γ)

T+1
γ

1− (βρ1−γ)
1
γ

.

Using (7), the optimal consumption rule is

c =
w

bT
=

1− (βρ1−γ)
1
γ

1− (βρ1−γ)
T+1
γ

w.

Note that
1 = b1 < b2 < · · · < bT < · · · ,

so the longer the time horizon, the smaller fraction of wealth (1/bT ) you should
consume. However, the portfolio is the same over time (at least with i.i.d.
assumptions).
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1.3 Solution: infinite horizon

The solution for the case with infinite horizon is basically the same. You might
guess that all you need to do is to let T →∞ in the finite horizon, so (assuming
βρ1−γ < 1) the coefficient of the value function is b = 1/(1 − (βρ1−γ)1/γ) and
the consumption rate is c/w = 1− (βρ1−γ)1/γ . This guess is correct, but there
are technical subtleties.

To address the technical issues, let us consider the following more general
problem:

max
{ct}∞t=0

E0

∞∑
t=0

ft(ct, xt)

subject to ct ∈ Γt(xt), xt+1 = gt+1(ct, xt).

Here xt is the state variable, ct is the control variable, ft(ct, xt) is the flow utility,
Γt is the constraint set, and gt+1 is the law of motion for the state variable. A
similar (general) problem is discussed in Stokey and Lucas (1989), but since they
put strong assumptions on ft (such as ft(c, x) = βtu(c, x) with u bounded), their
results are practically inapplicable.2 Clearly the optimal consumption-portfolio
problem is a special case by reinterpreting the variables and functions.

I attack this problem as follows. Let

V Tt (x) = sup
{ct+s}T−1

s=0

Et

T−1∑
s=0

ft+s(ct+s, xt+s)

be the T period value function starting at t and state variable x = xt. Let
V∞t (x) = lim supT→∞ V Tt (x) be the infinite horizon value function and

V ∗t (x) = sup
{ct+s}∞s=0

Et

∞∑
s=0

ft+s(ct+s, xt+s)

be the true value function.

Lemma 3. V ∗t (x) ≤ V∞t (x) always.

Proof. Take any feasible consumption plan {ct+s}∞s=0 starting from x. Then by
the definition of the value function, for any T we have

Et

T−1∑
s=0

ft+s(ct+s, xt+s) ≤ V Tt (x).

By the definition of the infinite horizon utility and infinite horizon value func-
tion, letting T →∞, we get

Et

∞∑
s=0

ft+s(ct+s, xt+s) = lim
T→∞

Et

T−1∑
s=0

ft+s(ct+s, xt+s)

≤ lim sup
T→∞

V Tt (x) = V∞t (x).

Taking the supremum of the left-hand side over {ct+s}∞s=0, we get V ∗t (x) ≤
V∞t (x).

2Dynamic programming in infinite horizon is still an active area of research. See Kamihi-
gashi (2014) for recent developments.
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I say that the plan {ct+s}∞s=0 is recursively optimal if it solves

V∞t+s(xt+s) = max
c∈Γ(xt+s)

{
ft+s(c, xt+s) + Et+s V

∞
t+s+1(gt+s+1(c, xt+s))

}
for s = 0, 1, . . . . To use the results of the finite horizon dynamic program-
ming, we want to show V ∗t (x) = V∞t (x). The following proposition provides a
necessary and sufficient condition.

Proposition 4. V ∗t (x) = V∞t (x) if and only if the transversality condition

lim sup
T→∞

Et[V
∞
T (xT )] ≤ 0

holds, where xT is the state variable obtained from a recursively optimal policy.

Proof. Take a recursively optimal policy {ct+s}∞s=0. By definition, we have

V∞t (x) = Et

T−1∑
s=0

ft+s(ct+s, xt+s) + Et[V
∞
T (xT )]. (8)

Letting T →∞ we obtain

V ∗t (x) ≥ lim inf
T→∞

Et

T−1∑
s=0

ft+s(ct+s, xt+s)

= lim inf
T→∞

[V∞t (x)− Et[V
∞
T (xT )]]

= V∞t (x)− lim sup
T→∞

Et[V
∞
T (xT )]

≥ V ∗t (x)− lim sup
T→∞

Et[V
∞
T (xT )], (∵ Lemma)

so lim supT→∞ Et[V
∞
T (xT )] ≥ 0 always. If lim supT→∞ Et[V

∞
T (xT )] ≤ 0, then

actually lim supT→∞ Et[V
∞
T (xT )] = 0, so all the above inequalities become

equalities. Therefore V ∗t (x) = V∞t (x). Conversely, if V ∗t (x) = V∞t (x), then
the recursively optimal policy is also optimal. Therefore letting T →∞ in (8),
we obtain

V ∗t (x) = lim
T→∞

Et

T−1∑
s=0

ft+s(ct+s, xt+s) + lim
T→∞

Et[V
∗
T (xT )]

= V ∗t (x) + lim
T→∞

Et[V
∗
T (xT )],

so
lim sup
T→∞

Et[V
∞
T (xT )] = lim

T→∞
Et[V

∗
T (xT )] = 0 ≤ 0.

Now we apply this proposition to solve the infinite horizon optimal consumption-
portfolio problem. Assuming βρ1−γ < 1, the infinite horizon value function is

V∞(w) = a
w1−γ

1− γ
,

where

a1/γ = b =
1

1− (βρ1−γ)1/γ
> 0.
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The transversality condition lim supT→∞ E0[βTV∞T (wT )] ≤ 0 (here there is βT

because it is a discounted problem) is trivial if γ > 1 because then V∞T (wT ) ≤ 0.
If 0 < γ < 1, then by the budget constraint we have

wt+1 = Rt+1(θ∗)(wt − ct) ≤ Rt+1(θ∗)wt,

so wT ≤ w0

∏T
t=1Rt(θ

∗). Taking the (1− γ)-th power and expectations, we get

E0[w1−γ
T ] ≤ w1−γ

0 E[R(θ∗)1−γ ]T = w1−γ
0 ρ(1−γ)T .

Hence

E0[βTV∞T (wT )] ≤ aw1−γ
0

1− γ
(βρ1−γ)T → 0

as T →∞, because βρ1−γ < 1.

2 Income fluctuation problem

With multiplicative risk (e.g., random asset returns), it is convenient to work
with CRRA utilities for tractability. With additive risk (e.g., random labor
income), CARA utilities are more convenient.

2.1 Model

Consider an agent with additive CARA utility

E0

∞∑
t=0

βtu(ct), (9)

where u(c) = −e−γc/γ with absolute risk aversion γ > 0.3 The agent can borrow
or save at a gross risk-free rate R > 1. The agent is subject to income risk. The
income process is given by

yt+1 = ρyt + εt+1, (10)

where 0 ≤ ρ < 1 and the error term εt+1 is i.i.d. over time.4 Letting wt be
the financial wealth at the beginning of time t (excluding current income), the
budget constraint is

wt+1 = R(wt − ct + yt).

The Bellman equation is

V (w, y) = max
c
{u(c) + β E[V (R(w − c+ y), y′)] | y′ = ρy + ε} . (11)

Since the CARA utility is defined on the entire real line, we assume that con-
sumption can be negative.

3I focus on CARA preferences because it is tractable with additive shocks (Calvet, 2001;
Wang, 2003, 2007; Angeletos and Calvet, 2005, 2006).

4Without loss of generality, we may assume that the AR(1) process (10) does not contain
a constant term. This is because I have put no structure on the distribution of ε, so if there
is a constant term we can always shift the distribution of ε so that the constant term is 0.
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2.2 Solution

The following proposition gives a closed-form solution of the income fluctuation
problem.

Proposition 5 (Wang, 2003). The value function and optimal consumption
rule are given by

V (w, y) = − 1

γa
e−γ(aw+b+dy), (12a)

c(w, y) = aw + b+ dy, (12b)

where

a = 1− 1/R,

b =
1

γ(1−R)
log βRE[e−γ

R−1
R−ρ ε],

d =
R− 1)

R− ρ
.

Proof. Again we prove by guess-and-verify. Substituting (12a) into the Bellman
equation, we obtain

− 1

γa
e−γ(aw+b+dy) = max

c

{
− 1

γ
e−γc − β

γa
E
[
e−γ(aR(w−c+y)+b+dy′)

]}
. (13)

The first-order condition with respect to c is

e−γc − βRE
[
e−γ(aR(w−c+y)+b+dy′)

]
= 0. (14)

Substituting (14) into (13), we obtain

− 1

γa
e−γ(aw+b+dy) = − 1

γa

(
a+

1

R

)
e−γc. (15)

Comparing the coefficients, (15) trivially holds if a = 1−1/R and c = aw+b+dy.
In this case, aR(w− c+ y) = aw+ (1−R)b+ (1−R)(d− 1)y, so (14) becomes

e−γ(aw+b+dy) = βRE
[
e−γ(aw+(1−R)b+(1−R)(d−1)y+b+dy′)

]
⇐⇒ e−γdy = βRE

[
e−γ((1−R)b+(1−R)(d−1)y+d(ρy+ε)

]
. (16)

Since (8) is an identity, comparing the coefficients of y, we obtain

d = (1−R)(d− 1) + ρd ⇐⇒ d =
R− 1

R− ρ
.

Substituting into (16), we obtain

1 = βRE
[
e−γ((1−R)b+R−1

R−ρ ε)
]

⇐⇒ b =
1

γ(1−R)
log βRE[e−γ

R−1
R−ρ ε].
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Remark. Note that E[e−γ
R−1
R−ρ ε] is the moment generating function Mε(s) =

E[esε] of ε evaluated at s = −γ R−1
R−ρ .

Remark. We can embed this income fluctuation problem into a general equi-
librium model, which is a version of the Huggett (1993) model. Toda (2017)
considers such a model with a VAR(1) income dynamics and shows that multiple
equilibria are possible (although the equilibrium is unique in the AR(1) case).
With multiple equilibria, comparative statics may go in different directions de-
pending on the choice of the equilibrium. Toda (2017) provides an example in
which increasing income risk is welfare improving!

Remark. For a proof of the transversality condition, see the appendix of Toda
(2017).
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