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1 No-arbitrage asset pricing

Consider an economy with two periods, denoted by t = 0, 1. Suppose that at
t = 1 the state of the economy can be one of s = 1, . . . , S. There are J assets in
the economy, indexed by j = 1, . . . , J . One share of asset j trades for price qj
at time 0 and pays Asj in state s. (It can be Asj < 0, in which case the holder
of one share of asset j must deliver −Asj > 0 in state s.) Let q = (q1, . . . , qJ)
the vector of asset prices and A = (Asj) be the matrix of asset payoffs. Define

W = W (q,A) =

[
−q′
A

]
be the (1 + S) × J matrix of net payments of one share of each asset in each
state. Here, state 0 is defined by time 0 and the presence of −q = (−q1, . . . ,−qJ)
means that in order to receive Asj in state s one must purchase one share of
asset j at time 0, thus paying qj (receiving −qj).

Let θ ∈ RJ be a portfolio. (θj is the number of shares of asset j an investor
buys. θj < 0 corresponds to shortselling.) The net payments of the portfolio θ
is the vector

Wθ =

[
−q′θ
Aθ

]
∈ R1+S .

Here the investor pays q′θ at t = 0 for buying the portfolio θ, and receives (Aθ)s
in state s at t = 1.

Let 〈W 〉 =
{
Wθ

∣∣ θ ∈ RJ
}
⊂ R1+S be the set of payoffs generated by all

portfolios, called the asset span. We say that the asset span 〈W 〉 exhibits no-
arbitrage if

〈W 〉 ∩ R1+S
+ = {0} .

That is, it is impossible to find a portfolio that pays a non-negative amount in
every state and a positive amount in at least one state. Then we can show the
following theorem, due to Harrison and Kreps (1979).

Theorem 1 (Fundamental Theorem of Asset Pricing). The asset span 〈W 〉
exhibits no-arbitrage if and only if there exists p ∈ RS++ such that [1, p′]W = 0.

In this case, the asset prices are given by

qj =

S∑
s=1

psAsj .
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ps > 0 is called the state price in state s.

Proof. Suppose that such a p exists. If 0 6= w = (w0, . . . , wS) ∈ R1+S
+ , then

[1, p′]w = w0 +

S∑
s=1

psws > 0,

so w /∈ 〈W 〉. This shows 〈W 〉 ∩ R1+S
+ = {0}.

Conversely, suppose that there is no arbitrage. Then 〈W 〉 ∩ ∆ = ∅, where

∆ =
{
w ∈ R1+S

+

∣∣∣∑S
s=0 ws = 1

}
is the unit simplex. Clearly 〈W 〉 ,∆ are con-

vex and nonempty, and ∆ is compact. By the (strong version of) separating
hyperplane theorem, we can find 0 6= λ ∈ R1+S such that

〈λ,w〉 < 〈λ, d〉 (1)

for any w ∈ 〈W 〉 and d ∈ ∆. If there is θ such that 〈λ,Wθ〉 6= 0, letting
w = Wαθ and α → ±∞, we will violate (1). Hence λ′Wθ = 〈λ,Wθ〉 = 0 for
any θ, so λ′W = 0. Then (1) becomes

0 < 〈λ, d〉

for all d ∈ ∆. Letting d = es (unit vector) for s = 0, 1, . . . , S, we get λs > 0.
Letting ps = λs/λ0 for s = 1, . . . , S, the vector p = (p1, . . . , pS) satisfies p � 0
and [1, p′]W = 0. Writing down this equation component-wise, we get qj =∑S
s=1 psAsj .

Since ps > 0 for all s, we have
∑S
s=1 ps > 0. Since the risk-free asset pays 1

in every state, its price is

1

1 + r
=

S∑
s=1

ps > 0.

Letting νs = ps/
∑
s ps > 0, we have

∑
s νs = 1 and

qj =
1

1 + r

S∑
s=1

νsAsj =
1

1 + r
Ẽ[Asj ].

Therefore the asset price is the discounted expected payoff of the asset using
the risk-neutral probability measure {νs}. This formula is useful for computing
option prices in continuous time. For more details, see Duffie (2001).

Letting πs be the objective probability of state s and ms = ps
πs

, we have

qj =

S∑
s=1

psAsj =

S∑
s=1

πsmsAsj = E[mAj ].

The random variable m is called the stochastic discount factor, or SDF for short.
Letting Rj = Aj/qj be the gross return of the asset, we have

E[mRj ] = 1
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for any asset. The risk-free rate Rf satisfies E[mRf ] = 1 ⇐⇒ Rf = 1/E[m].
Using the definition of covariances,

Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X] E[Y ],

we obtain

0 = E[m(Rj −Rf )] = E[m](E[Rj ]−Rf )− Cov[m,Rj −Rf ]

⇐⇒ E[Rj ]−Rf = − 1

E[m]
Cov[m,Rj −Rf ]

= −Rf Cov[m,Rj ],

which is known as the covariance pricing formula.

2 Linear factor model

A big issue in empirical asset pricing is what is the stochastic discount factor
m. Practitioners typically do not care about theory and are more interested in
linear factor pricing models. A linear factor model assumes that the SDF takes
the form

mt = a− b′ft,

where ft is a vector of factors and a, b are constants. The most famous example
is the classic capital asset pricing model (CAPM), where the single factor is
ft = Rmt, the market return.

If there are K factors and b = (b1, . . . , bK)′, then the covariance pricing
formula becomes

E[Rj ]−Rf = Rf

K∑
k=1

bk Cov[fk, Rj ].

It is common to define the beta of the asset j with respect to factor k by

βk,j =
Cov[fk, Rj ]

Var[fk]
.

Letting Rf Var[fk] = γk be the risk premium of factor k and γ0 = Rf be the
zero-beta rate, it follows that

µj = E[Rj ] = γ0 +

K∑
k=1

γkβk,j .

A classic methodology to estimate and test a linear factor model is the Fama
and MacBeth (1973) two-pass regression. In the first pass, one regress the asset
returns Rj,t on a constant and the factors to estimate the alpha and beta in

Rj,t = αj +

K∑
k=1

βk,jfk,t + εj,t.

If the model is true, then αj must be common across assets. In the second
pass, one regress µ̂j (the time series sample mean of Rj,t) on a constant and the
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estimated betas to estimate the zero beta rate γ0 and the risk premia γk. The
R2 from the second pass regression is viewed as a goodness-of-fit of the asset
pricing model.

Of course, nowadays it would be more sophisticated to estimate the param-
eters by GMM exploiting the moment condition

Et[mt+1Rj,t+1] = 1

or
Et[mt+1(Rj,t+1 −Rf,t)] = 0.

One can test the model by the J test if there are more moment conditions than
the number of factors. The empirical literature on linear factor pricing is huge
and I am not knowledgeable enough to review here.

The problem with GMM is that the asymptotic distribution of the J statistic
is calculated under the null. If the model is incorrect, then the asymptotic
distribution would be something different, so the J test tends to have low power
(i.e., tends to underreject the null when the null is untrue). Since all economic
models are merely an approximation of reality (and hence necessarily wrong),
this is a big problem.

In fact, there is a recent literature that shows that applying standard GMM
may lead to spurious results. For example, suppose that the model mt = a−b′ft
is approximately true, but one includes a spurious factor gt, assumed to be
independent of all asset returns. Then the moment condition is

Et[(a− b′ft − cgt)(Rj,t −Rf,t)] = 0.

This condition holds trivially by setting b = 0, c = 1, and a = E[gt], since by
assumption gt is independent of returns. Therefore if one estimates the model
parameters by GMM but the estimating equations contains a spurious factor,
then the coefficient on the spurious factor will be significant, the coefficients on
the useful factors will be insignificant, and the model will fit perfectly. Such
cases are discussed in Kan and Zhang (1999a,b) and Burnside (2016). Since
most macroeconomic factors such as consumption growth are weakly correlated
with asset returns, the GMM estimation of such models may lead to spurious
results.

Kan et al. (2013) and Gospodinov et al. (2014) develop the asymptotic theory
of the Fama-MacBeth two-pass regression and the GMM of linear factor models
under possible model misspecification. (I am sure there is new development in
this field—check the website of Gospodinov.)

3 Binomial option pricing

As an application of the no-arbitrage asset pricing, in this section I explain the
binomial option pricing model of Cox et al. (1979).

Consider a T period economy, and time is indexed by t = 0, 1, . . . , T . Sup-
pose that there are two assets, a stock and a bond. The gross risk-free rate is
constant at R, and the stock price at time t is denoted by St, which is a random
variable. Assume that the stock can go up or down, so

St+1 =

{
USt, (if stock goes up)

DSt, (if stock goes down)
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where U > R > D. Question: what is the price of a call option with strike K?
This question seems hopeless to answer since we have not even specified the

probabilities of up and down. It turns out that the answer does not depend on
the probability, so an optimist and a pessimist will still agree on the price of
the option.

Recall that a call (put) option with strike price K and maturity T is a
contract such that the holder has the right (but not the obligation) to buy (sell)
the stock at price K until the maturity. The act of buying/selling the stock at
the specified price is called exercising. If the investor can exercise the option
at any time on or before maturity, it is called American. If the option can be
exercised only at maturity, it is called European. For more details see textbooks
such as Shreve (2004).

3.1 European options

Let us compute the price of a European call option. First, consider the simplest
case where there is no time, so T = 0. Let C be the call price. If the investor
exercises the option, he gets S0 −K by buying the stock at strike price K and
selling at the market value S0. If the investor does not exercise the option, it
expires, and he gets 0. A rational investor will choose the better alternative, so

C = max {S0 −K, 0} .

Next, consider the case with one period to go. If the stock price goes up at
t = 1, by the above argument the option price becomes Cu = max {US0 −K, 0}.
Similarly, in the down state at t = 1, the option price is Cd = max {DS0 −K, 0}.
Letting ps be the state price of state s = u, d, by no-arbitrage we have

C = puCu + pdCd.

Therefore it remains to compute pu, pd. To this end we use the no-arbitrage
condition for the stock and bond. Since the stock price is S0 at t = 0, and it is
US0 in the up state and DS0 in the down state, we have

S0 = puUS0 + pdDS0 ⇐⇒ 1 = puU + pdD.

Since the risk-free asset pays R in all states for one unit of money invested, we
have

1 = puR+ pdR.

Solving the system of two linear equations in two unknowns, we get[
pu
pd

]
=

1

R

[
p

1− p

]
,

where p = R−D
U−D . Therefore the call price is

C =
1

R
(pCu + (1− p)Cd) =

1

1 + r
Ẽ[Cs],

where r is the net risk-free rate and Ẽ denotes the expectation under the risk-
neutral probability p.
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The general case is completely analogous. If there are T periods to go, payoffs
must be discounted by RT . Since there are two states (up or down) following
any state, the the risk-neutral probability is (p, 1 − p) each, the risk-neutral
probability at T is a binomial distribution with probability p. The probability
that there are n up states is

(
T
n

)
pn(1 − p)T−n, and in this case the final stock

price is ST = UnDT−n. Thus the price of a European call option must be

C =
1

RT

T∑
n=0

(
T

n

)
pn(1− p)T−n max

{
UnDT−nS0 −K, 0

}
.

The pricing of European put option is also analogous. Recalling that the payoff
of a put when the stock price is S and the strike is K is P = max {K − S, 0},
by the same argument the price of a European put is

P =
1

RT

T∑
n=0

(
T

n

)
pn(1− p)T−n max

{
K − UnDT−nS0, 0

}
.

An important property of the European options is the put-call parity:

C − P = S0 −KR−T

always. Therefore if we know the call price, we can compute the put price by
P = C − S0 + KR−T , so we do not need to repeat the calculation. To prove
the put-call parity, note that the payoff of a call is max {ST −K, 0}, and that
of the put is max {K − ST , 0}. But since

max {ST −K, 0} −max {K − ST , 0} = max {ST −K, 0}+ min {S −KT , 0}
= ST −K,

if someone buys one call and short one put, the terminal payoff is equal to that
of holding the stock and paying K at the terminal date. The present value of
this portfolio is exactly S0 −KR−T , so the put-call parity holds.

3.2 American options

Next, consider the pricing of American options. Since American options can
be exercised early, the price of an American option must be at least that of a
European option, which cannot be exercised early. We can still use the same
idea to price American options.

If T = 0, American and European options are identical because the current
date is the maturity date.

If T = 1, the investor must choose whether to exercise the option at t = 0.
If he exercises, he gets S0−K. If he does not exercise, it is the same as holding
a European option. Therefore the price of an American option must be

C = max

{
S0 −K,

1

R
(pCu + (1− p)Cd)

}
.

In general, letting C(S, T ) be the price of an American option when the stock
price is S and maturity is T (I suppress the dependency on K,R), then we have

C(S, T ) = max

{
S −K, 1

R
(pC(US, T − 1) + (1− p)C(DS, T − 1))

}
. (2)
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The following proposition, due to Merton (1973), says that the price of American
and European options coincide if R ≥ 1.

Proposition 2. Suppose that R ≥ 1. Then it is never optimal to exercise the
call option prematurely. Consequently, the American and European calls have
identical prices.

Proof. Let us show that C(S, T ) is convex in S. We show by induction. If
T = 0, then C(S, 0) = max {S −K, 0} is clearly convex in S. Suppose that
C(S, T−1) is convex. Since S 7→ US is linear, C(US, T−1) is convex. Similarly,
C(DS, T −1) is convex. Since the (positively) weighted sum of convex functions
is convex,

1

R
(pC(US, T − 1) + (1− p)C(DS, T − 1))

is convex. Since the maximum of two convex functions is convex, C(S, T ) in (2)
is convex.

Using the convexity of C, if R ≥ 1, it follows that

1

R
(pC(US, T − 1) + (1− p)C(DS, T − 1))

≥ 1

R
C((pU + (1− p)D)S, T − 1)

=
1

R
C(RS, T − 1)

≥ 1

R
max {RS −K, 0}

= max {S −K/R, 0}
≥ S −K/R ≥ S −K,

where the last inequality is due to R ≥ 1. Therefore the first term in the right-
hand side of (2) is always less than the second term, so rational agents will not
exercise the option prematurely.

Since the payoff of a put option is also convex, you might guess that the
above proof also works for put options by changing S −K to K − S. However,
if R > 1, the very last inequality does not hold. (It will hold if R ≤ 1, so in this
case an early exercise of put options is not optimal.) In general, American puts
have higher value than European puts, and premature exercise may be optimal.
Numerically computing the American put price is straightforward by using the
binomial tree and iterating (2) with C(S, T ) and S − K replaced by P (S, T )
and K − S, respectively.

3.3 Continuous-time limit and Black-Scholes formula

By taking a clever continuous-time limit, Cox et al. (1979) derives the celebrated
Black and Scholes (1973) option pricing formula. I omit the details, but let us
derive the formula directly using no-arbitrage pricing.

Using the risk-neutral pricing formula, the call option price must be

C = e−rT Ẽ[max {ST −K, 0}],
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where r is the risk-free rate, T is maturity, ST is the stock price at maturity, K
is the strike price, and Ẽ is the expectation under the risk-neutral probability.

Suppose that the stock price St obeys a geometric Brownian motion, so

dSt = µSt dt+ σSt dBt,

where µ is the expected return and σ > 0 is volatility. Think of the risk-
neutral probability as the subjective probability of a risk-neutral agent. From
this agent’s perspective, the stock price must follow the geometric Brownian
motion

dSt = rSt dt+ σSt dBt,

for otherwise there will be an arbitrage opportunity.
Using Itô’s formula (I will come back to that later), we obtain

d(logSt) =

(
r − σ2

2

)
dt+ σ dBt,

so
logSt ∼ N((r − σ2/2)t, σ2t).

Therefore we can write the logarithm of the terminal stock price as

logST = (r − σ2/2)T + σ
√
Tz,

where z ∼ N(0, 1). The call price is then

C = e−rT
∫ ∞
−∞

max
{
S0e(r−σ2/2)T+σ

√
Tz −K, 0

} 1√
2π

e−z
2/2 dz

=

∫ ∞
−∞

max
{
S0e−σ

2T/2+σ
√
Tz −Ke−rT , 0

} 1√
2π

e−z
2/2 dz.

The expression inside the max is strictly increasing in z, and it is zero if and
only if

S0e−σ
2T/2+σ

√
Tz −Ke−rT = 0 ⇐⇒ z =

σ
√
T

2
− 1

σ
√
T

log

(
S0

Ke−rT

)
.

Call this z as z̄. Letting Φ be the cumulative distribution function of the
standard normal, it follows that

C =

∫ ∞
z̄

(
S0e−σ

2T/2+σ
√
Tz −Ke−rT

) 1√
2π

e−z
2/2 dz.

The second term (omitting the minus sign) is

Ke−rT (1− Φ(z̄)) = Ke−rTΦ(−z̄).

The first term is ∫ ∞
z̄

S0e−σ
2T/2+σ

√
Tz 1√

2π
e−z

2/2 dz

= S0

∫ ∞
z̄

1√
2π

e−(z−σ
√
T )2/2 dz

= S0

∫ ∞
z̄−σ
√
T

1√
2π

e−y
2/2 dy

= S0(1− Φ(z̄ − σ
√
T )) = S0Φ(−z̄ + σ

√
T ).
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Putting all the pieces together, we obtain

C = S0Φ(−z̄ + σ
√
T )−Ke−rTΦ(−z̄)

= S0Φ(x)−Ke−rTΦ(x− σ
√
T ),

where

x = −z̄ + σ
√
T =

1

σ
√
T

log

(
S0

Ke−rT

)
+
σ
√
T

2
.

This is the Black-Scholes formula.

Exercises

1. 1. Let {Ci}i∈I ⊂ RN be a collection of convex sets. Prove that
⋂
i∈I Ci

is convex.

2. Let A be any set. Prove that there exists a smallest convex set that
includes A (convex hull of A).

2. Prove Lemma 3.

3. 1. Let 0 6= a ∈ RN and c ∈ R. Show that the hyperplane

H =
{
x ∈ RN

∣∣ 〈a, x〉 = c
}

and the half space

H+ =
{
x ∈ RN

∣∣ 〈a, x〉 ≥ c}
are convex sets.

2. Let A be an M ×N matrix and b ∈ RM . The set of the form

P =
{
x ∈ RN

∣∣Ax ≤ b}
is called a polytope. Show that a polytope is convex.

4. 1. Let a, b ∈ RN . Prove the following parallelogram law :

‖a+ b‖2 + ‖a− b‖2 = 2 ‖a‖2 + 2 ‖b‖2 .

2. Using the parallelogram law, prove (3).

5. Let A =
{

(x, y) ∈ R2
∣∣ y > x3

}
and B =

{
(x, y) ∈ R2

∣∣x ≥ 1, y ≤ 1
}

.

1. Draw a picture of the sets A,B on the xy plane.

2. Can A,B be separated? If so, provide an equation of a straight line that
separates them. If not, explain why.

6. Let C =
{

(x, y) ∈ R2
∣∣ y > ex

}
and D =

{
(x, y) ∈ R2

∣∣ y ≤ 0
}

.

1. Draw a picture of the sets C,D on the xy plane.

2. Provide an equation of a straight line that separates C,D.
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3. Can C,D be strictly separated? Answer yes or no, then explain why.

7. Prove the following Stiemke’s Lemma. Let A be an M × N matrix. Then
one and only one of the following statements is true:

1. There exists x ∈ RN++ such that Ax = 0.

2. There exists y ∈ RM such that A′y > 0.

8. A typical linear programming problem is

minimize 〈c, x〉
subject to Ax ≥ b,

where x ∈ RN , 0 6= c ∈ RN , b ∈ RM , and A is an M ×N matrix with M ≥ N .
A standard algorithm for solving a linear programming problem is the simplex
method, which you should have already learned. The idea is that you keep
moving from one vertex of the polytope

P =
{
x ∈ RN

∣∣Ax ≥ b}
to a neighboring vertex as long as the function value decreases, and if there are
no neighboring vertex with smaller function value, you stop.

1. Prove that the simplex method terminates in finite steps.

2. Prove that when the algorithm stops, you are at a solution of the original
problem.

A Convex sets

A set C ⊂ RN is said to be convex if the line segment generated by any two
points in C is entirely contained in C. Formally, C is convex if x, y ∈ C implies
(1− α)x+ αy ∈ C for all α ∈ [0, 1] (Figure 1). So a circle, triangle, and square
are convex but a star-shape is not (Figure 2). One of my favorite mathematical
jokes is that the Chinese character for “convex” is not convex (Figure 3).

x

y

(1− α)x+ αy

Figure 1. Definition of a convex set.

Let A be any set. The smallest convex set that includes A is called the
convex hull of A and is denoted by coA. (Its existence is left as an exercise.)
For example, in Figure 4, the convex hull of the set A consisting of two circles
is the entire region in between.
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Rectangle Circle Ellipse Convex

Convex

Non-convex

Figure 2. Examples of convex and non-convex sets.

Figure 3. Chinese character for “convex” is not convex.

AA coA

Figure 4. Convex hull.

Let {xk}Kk=1 ⊂ RN be any points. A point of the form

x =

K∑
k=1

αkxk,

where αk ≥ 0 and
∑K
k=1 αk = 1, is called a convex combination of the points

{xk}Kk=1. The following lemma provides a constructive way to obtain the convex
hull of a set.

Lemma 3. Let A ⊂ RN be any set. Then coA consists of all convex combina-
tions of points of A.

Proof. Exercise.

B Hyperplanes and half spaces

You should know from high school that the equation of a line in R2 is

a1x1 + a2x2 = c
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for some real numbers a1, a2, c, and that the equation of a plane in R3 is

a1x1 + a2x2 + a3x3 = c.

Letting a = (a1, . . . , aN ) and x = (x1, . . . , xN ) be vectors in RN , the equation
〈a, x〉 = c is a line if N = 2 and a plane if N = 3, where

〈a, x〉 = a1x1 + · · ·+ aNxN

is the inner product of the vectors a and x.1 In general, we say that the set{
x ∈ RN

∣∣ 〈a, x〉 = c
}

is a hyperplane if a 6= 0. The vector a is orthogonal to this hyperplane (is
a normal vector). To see this, let x0 be a point in the hyperplane. Since
〈a, x0〉 = c, by subtraction and linearity of inner product we get 〈a, x− x0〉 = 0.
This means that the vector a is orthogonal to the vector x−x0, which can point
to any direction in the plane by moving x. So it makes sense to say that a is
orthogonal to the hyperplane 〈a, x〉 = c. The sets

H+ =
{
x ∈ RN

∣∣ 〈a, x〉 ≥ c} ,
H− =

{
x ∈ RN

∣∣ 〈a, x〉 ≤ c}
are called half spaces, since H+ (H−) is the portion of RN separated by the
hyperplane 〈a, x〉 = c towards the direction of a (−a). Hyperplanes and half
spaces are convex sets (exercise).

C Separation of convex sets

Let A,B be two sets. We say that the hyperplane 〈a, x〉 = c separates A,B if
A ⊂ H− and B ⊂ H+ (Figure 5), that is,

x ∈ A =⇒ 〈a, x〉 ≤ c,
x ∈ B =⇒ 〈a, x〉 ≥ c.

(The inequalities may be reversed.)
Clearly A,B can be separated if and only if

sup
x∈A
〈a, x〉 ≤ inf

x∈B
〈a, x〉 ,

since we can take c between these two numbers. We say that A,B can be strictly
separated if the inequality is strict, so

sup
x∈A
〈a, x〉 < inf

x∈B
〈a, x〉 .

The remarkable property of convex sets is the following separation property.

Theorem 4 (Separating Hyperplane Theorem). Let C,D ⊂ RN be nonempty
and convex. If C ∩D = ∅, then there exists a hyperplane that separates C,D. If
C,D are closed and one of them is compact, then they can be strictly separated.

1The inner product is sometimes called the vector product or the dot product. Common
notations for the inner product are 〈a, x〉, (a, x), a · x, etc.
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A

B

H−

H+

〈a, x〉 = c

a

Figure 5. Separation of convex sets.

We need the following lemma to prove Theorem 4.

Lemma 5. Let C be nonempty and convex. Then any x ∈ RN has a unique
closest point PC(x) ∈ clC, called the projection of x on clC. Furthermore, for
any z ∈ C we have

〈x− PC(x), z − PC(x)〉 ≤ 0.

Proof. Let δ = inf {‖x− y‖ | y ∈ C} ≥ 0 be the distance from x to C (Figure
6).

δ

x

y = PC(x)

z

C

Figure 6. Projection on a convex set.

Take a sequence {yk} ⊂ C such that ‖x− yk‖ → δ. Then by simple algebra
we get

‖yk − yl‖2 = 2 ‖x− yk‖2 + 2 ‖x− yl‖2 − 4

∥∥∥∥x− 1

2
(yk + yl)

∥∥∥∥2

. (3)

Since C is convex, we have 1
2 (yk + yl) ∈ C, so by the definition of δ we get

‖yk − yl‖2 ≤ 2 ‖x− yk‖2 + 2 ‖x− yl‖2 − 4δ2 → 2δ2 + 2δ2 − 4δ2 = 0

as k, l → ∞. Since {yk} ⊂ C is Cauchy, it converges to some point y ∈ clC.
Then

‖x− y‖ ≤ ‖x− yk‖+ ‖yk − y‖ → δ + 0 = δ,

13



so y is the closest point to x in clC. If y1, y2 are two closest points, then by the
same argument we get

‖y1 − y2‖2 ≤ 2 ‖x− y1‖2 + 2 ‖x− y2‖2 − 4δ2 ≤ 0,

so y1 = y2. Thus y = PC(x) is unique.
Finally, let z ∈ C be any point. Take {yk} ⊂ C such that yk → y = PC(x).

Since C is convex, for any 0 < α ≤ 1 we have (1− α)yk + αz ∈ C. Therefore

δ2 = ‖x− y‖2 ≤ ‖x− (1− α)yk − αz‖2 .

Letting k →∞ we get ‖x− y‖2 ≤ ‖x− y − α(z − y)‖2. Expanding both sides,
dividing by α > 0, and letting α → 0, we get 〈x− y, z − y〉 ≤ 0, which is the
desired inequality.

The following proposition shows that a point that is not an interior point of
a convex C can be separated from C.

Proposition 6. Let C ⊂ RN be nonempty and convex and x̄ /∈ intC. Then
there exists a hyperplane 〈a, x〉 = c that separates x̄ and C, i.e.,

〈a, x̄〉 ≥ c ≥ 〈a, z〉

for any z ∈ C. If x̄ /∈ clC, then the above inequalities can be made strict.

Proof. Suppose that x̄ /∈ clC. Let y = PC(x̄) be the projection of x̄ on clC.

Then x̄ 6= y. Let a = x̄− y 6= 0 and c = 〈a, y〉+ 1
2 ‖a‖

2
. Then for any z ∈ C we

have

〈x̄− y, z − y〉 ≤ 0 =⇒ 〈a, z〉 ≤ 〈a, y〉 < 〈a, y〉+
1

2
‖a‖2 = c,

〈a, x̄〉 − c = 〈x̄− y, x̄− y〉 − 1

2
‖a‖2 =

1

2
‖a‖2 > 0 ⇐⇒ 〈a, x̄〉 > c.

Therefore the hyperplane 〈a, x〉 = c strictly separates x̄ and C.
If x̄ ∈ clC, since x̄ /∈ intC we can take a sequence {xk} such that xk /∈ clC

and xk → x̄. Then we can find a vector ak 6= 0 and a number ck ∈ R such that

〈ak, xk〉 ≥ ck ≥ 〈ak, z〉

for all z ∈ C. By dividing both sides by ‖ak‖ 6= 0, without loss of generality we
may assume ‖ak‖ = 1. Since xk → x̄, the sequence {ck} is bounded. Therefore
we can find a convergent subsequence (akl , ckl)→ (a, c). Letting l→∞, we get

〈a, x̄〉 ≥ c ≥ 〈a, z〉

for any z ∈ C.

Proof of Theorem 4. Let E = C − D = {x− y |x ∈ C, y ∈ D}. Since C,D
are nonempty and convex, so is E. Since C ∩ D = ∅, we have 0 /∈ E. In
particular, 0 /∈ intE. By Proposition 6, there exists a 6= 0 such that 〈a, 0〉 =
0 ≥ 〈a, z〉 for all z ∈ E. By the definition of E, we have

〈a, x− y〉 ≤ 0 ⇐⇒ 〈a, x〉 ≤ 〈a, y〉

14



for any x ∈ C and y ∈ D. Letting supx∈C 〈a, x〉 ≤ c ≤ infy∈D 〈a, y〉, it follows
that the hyperplane 〈a, x〉 = c separates C and D.

Suppose that C is closed and D is compact. Let us show that E = C −D
is closed. For this purpose, suppose that {zk} ⊂ E and zk → z. Then we can
take {xk} ⊂ C, {yk} ⊂ D such that zk = xk − yk. Since D is compact, there is
a subsequence such that ykl → y ∈ D. Then xkl = ykl + zkl → y + z, but since
C is closed, x = y + z ∈ C. Therefore z = x− y ∈ E, so E is closed.

Since E = C −D is closed and 0 /∈ E, by Proposition 6 there exists a 6= 0
such that 〈a, 0〉 = 0 > 〈a, z〉 for all z ∈ E. The rest of the proof is similar.
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