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1 Lucas (1978) model

Unlike financial practitioners, whose goal is to profit from arbitrage, economists
are interested in why asset prices are what they are. Lucas (1978) has provided
a framework to compute asset prices given the fundamentals of the economy,
which is now called consumption-based (capital) asset pricing model, or cCAPM.

Consider an economy with multiple periods denoted by t = 0, 1, . . . . Con-
sider an asset that pays dividend Dt at time t, which is a random variable
(adapted stochastic process). Let Pt be the ex-dividend price of this asset. Let-
ting mt be the stochastic discount factor at time t, by no-arbitrage we know
that it must be

Pt = Et[mt+1(Pt+1 +Dt+1)].

Let us define the marginal utility process {Λt}∞t=0 as follows. Take any Λ0 and

define Λt = Λ0

∏t
s=1ms = Λt−1mt. From the above equation, we obtain

ΛtPt = Et[Λt+1(Pt+1 +Dt+1)].

Iterating this equation, using the law of iterated expectations, and assuming
the no bubble condition limT→∞ Et[ΛTPT ] = 0, it follows that

ΛtPt =

∞∑
n=1

Et[Λt+nDt+n]

⇐⇒ Pt =
1

Λt

∞∑
n=1

Et[Λt+nDt+n].

Thus, if we know the data generating process of {Λt, Dt}∞t=0, in principle we can
compute the asset price.

Now suppose that an investor has an additive utility function

E0

∞∑
t=0

βtu(ct),

where β > 0 is the discount factor and ct is consumption. What is the stochastic
discount factor in this case? For simplicity, suppose that there are only two time
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periods, t = 0, 1. Letting πs be the (objective) probability of state s and ps be
the price of the state-s Arrow security, the investor’s problem is

maximize u(c0) +

S∑
s=1

πsβu(cs)

subject to c0 +

S∑
s=1

pscs ≤ w,

where w is initial wealth and the price of consumption at t = 0 is normalized
to 1. The Lagrangian of this optimization problem is

L = u(c0) +

S∑
s=1

πsβu(cs) + λ

(
w − c0 −

S∑
s=1

pscs

)
.

The first-order condition with respect to c0 and cs are

0 = u′(c0)− λ,
0 = πsβu

′(cs)− λps,

respectively. Eliminating λ and using the definition of the stochastic discount
factor, we obtain

ms =
ps
πs

= β
u′(cs)

u′(c0)
.

Therefore if we choose Λ0 = u′(c0), then Λt = βnu′(ct), so the asset price
becomes

Pt = Et

∞∑
n=1

βn
u′(ct+n)

u′(ct)
Dt+n.

If u(c) = c1−γ

1−γ (CRRA), letting Xt = (log ct, logDt)
′, and α = (−γ, 1)′, we

obtain

Pt
Dt

= Et

∞∑
n=1

βn
(
ct+n
ct

)−γ
Dt+n

Dt

= Et

∞∑
n=1

βneα
′(Xt+n−Xt)

=

∞∑
n=1

βnMXt+n−Xt(α), (1)

where MXt+n−Xt is the moment generating function (MGF) of Xt+n − Xt.
Therefore, given the discount factor β, risk aversion γ, and the stochastic process
of log consumption and dividend, in principle we can compute the price-dividend
ratio of the asset.

Of course, in order for this approach to be operational, one has to know the
individual consumption. Some researchers have adopted (heroic) assumptions to
get around this issue. First, assume that all agents have identical CRRA utility
functions and markets are complete. In this case we can treat the economy
as if a representative agent consumes the aggregate endowment, so we can use
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aggregate consumption Ct instead of individual consumption ct. Second, for
simplicity assume that dividend equals aggregate consumption, so Ct = Dt.
Letting Mt,n be the moment generating function of log consumption growth
log(Ct+n/Ct), it follows that

Pt
Ct

=

∞∑
n=1

βnMt,n(1− γ). (2)

As an example, suppose that log consumption growth ∆ct+1 = log(Ct+1/Ct)
is i.i.d. over time. Letting M(s) = E[es∆c] be the moment generating function,
we obtain

Pt
Ct

=

∞∑
n=1

βn(M(1− γ))n =
βM(1− γ)

1− βM(1− γ)
,

assuming βM(1− γ) < 1. (Otherwise the price-dividend ratio is infinite.)

2 Closed-form solutions to asset pricing models

Recall the general formulas for the price-dividend or price-consumption ratios
(1), (2). In these formulas, the price-dividend ratio is the discounted sums of
moment generating functions of log consumption/dividend growth. For specific
consumption/dividend growth processes, we may be able to obtain closed-form
solutions to asset pricing models. For example, since the moment generating
function of N(µ, σ2) is M(s) = eµs+

1
2σ

2s2 , we can solve for the price-dividend
ratio in closed form if consumption growth is lognormal. However, there are
many more examples.

Burnside (1998) obtained a solution when log consumption/dividend growth
follows a Gaussian VAR(1) process. This model is useful for evaluating the
accuracy of discretization of VARs (see Farmer and Toda (2017)). Tsionas
(2003) generalized to the case with non-Gaussian shocks, and de Groot (2015)
to the case with stochastic volatility.

Yet another example is when the log consumption/dividend growth follows
a finite-state Markov chain. Suppose that there are S states indexed by s =
1, . . . , S, and let P = (pss′) be the transition probability matrix. Let Xt =
(log(Ct/Ct−1), log(Dt/Dt−1))′ be the vector of log consumption and dividend
growth.

Using this notation, we can obtain closed-form solutions as follows. By the
Euler equation, we have

Pt = Et[β(Ct+1/Ct)
−γ(Pt+1 +Dt+1)]. (3)

Dividing (3) by Dt, we obtain

Vt = β Et[exp(α′Xt+1)(Vt+1 + 1)], (4)

where α = (−γ, 1)′. Since the process for consumption and dividend growth is
a Markov chain, letting xs be the vector of log consumption/dividend growth
in state s, (4) becomes

vs = β

S∑
s′=1

pss′e
α′xs′ (vs′ + 1), (5)
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where vs is the price-dividend ratio in state s. Let v = (v1, . . . , vS)′ (S× 1) and
X = (x1, . . . , xS)′ (S×2) be the matrices of those values. Then (5) is equivalent
to the linear equation

v = βP diag(eXα)(v + 1) ⇐⇒ v = (I − βP diag(eXα))−1βP eXα,

so we obtain a closed-form solution. Such a solution has been used by many au-
thors, for example Mehra and Prescott (1985), Cecchetti et al. (1993), Bonomo
et al. (2011), among others.

3 Asset pricing puzzles

Let us compute the risk-free rate, expected stock returns, and equity premium
under the assumptions of CRRA representative agent and i.i.d. consumption
growth. Since the stochastic discount factor is β(Ct+1/Ct)

−γ , the gross risk-
free rate Rf satisfies

1

Rf
= E[β(Ct+1/Ct)

−γ ] = βM(−γ) ⇐⇒ Rf =
1

βM(−γ)
.

Since the gross stock return is

Rt+1 =
Pt+1 + Ct+1

Pt
=
Ct+1

Ct

Pt+1/Ct+1 + 1

Pt/Ct
=
Ct+1

Ct

1

βM(1− γ)
,

taking expectations, the expected stock return is

E[R] =
M(1)

βM(1− γ)
.

Therefore the log equity premium is

log E[R]− logRf = log
M(1)M(−γ)

M(1− γ)
.

Intuitively, the equity premium should be nonnegative. Indeed, we can prove
that that is the case.

Proposition 1. Let M be a moment generating function. Then

logM(1) + logM(−γ) ≥ logM(1− γ).

Proof. Let X be log consumption growth and take any s1, s2 and t ∈ (0, 1).
Letting p = 1

1−t and q = 1
t , we have 1/p+ 1/q = 1. By Hölder’s inequality, we

obtain

M((1− t)s1 + ts2) = E[e((1−t)s1+ts2)X ] = E[e(1−t)s1Xets2X ]

≤ E[(e(1−t)s1X)p]
1
p E[(ets2X)q]

1
q

= E[es1X ]1−t E[es2X ]t

= M(s1)1−tM(s2)t.
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Taking the logarithm, we obtain

logM((1− t)s1 + ts2) ≤ (1− t) logM(s1) + t logM(s2),

so logM is convex (M is log-convex). For notational simplicity, let f(s) =
logM(s). Since γ > 0 we have −γ < 0, 1− γ < 1. Since

0 = (1− t)(−γ) + t ⇐⇒ t =
γ

γ + 1
,

1− γ = (1− t)(−γ) + t ⇐⇒ t =
1

γ + 1
,

By the convexity of f we obtain

f(0) ≤ 1

γ + 1
f(−γ) +

γ

γ + 1
f(1),

f(1− γ) ≤ γ

γ + 1
f(−γ) +

1

γ + 1
f(1).

Adding these two inequalities and noting that f(0) = logM(0) = 0 because
M(0) = 1, it follows that f(1− γ) ≤ f(−γ) + f(1), which is the conclusion.

As a concrete example, assume that consumption growth is lognormal, so
∆ct+1 ∼ N(µ, σ2). The moment generating function is

M(s) = eµs+
1
2σ

2s2 .

Therefore the log risk-free rate is

logRf = − log β + µγ − 1

2
σ2γ2, (6)

and the log equity premium is

log E[R]− logRf

=

(
µ+

1

2
σ2

)
+

(
−µγ +

1

2
σ2γ2

)
−
(
µ(1− γ) +

1

2
σ2(1− γ)2

)
= γσ2.

As a numerical illustration, using the data from Mehra and Prescott (1985), let
us assume that log consumption growth volatility is 3.57% per year, and the
equity premium is 6.18% per year. Then it must be the case that

0.0618 = γ × 0.03572 ⇐⇒ γ = 48.49,

which is quite high. This is the equity premium puzzle: Mehra and Prescott
(1985) argue that a reasonable upper bound for the relative risk aversion is 10,
and with this bound the model cannot generate a realistic equity premium.

Why is an upper bound of γ ≤ 10 reasonable? What is wrong with turning
up γ beyond 10? According to the risk-free rate formula (6), we have

logRf = − log β +
µ2

2σ2
− 1

2
σ2
(
γ − µ

σ2

)2

,

which is a quadratic function in γ and attains maximum at γ = µ/σ2. Thus if
we increase γ in order to make the equity premium larger, we will also make the
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risk-free rate larger (up to some point). However, historically the risk-free rate
has been low, say 1%. Therefore turning up risk aversion cannot explain the
low risk-free rate, which is known as the risk-free rate puzzle (Weil, 1989). Then
how about turning up the risk aversion even further? Since the log risk-free rate
(6) is quadratic, logRf will eventually be decreasing in γ. The issue now is that
the log risk-free rate will be extremely sensitive to economic growth. By (6), we
have

∂ logRf
∂µ

= γ.

If, for example, γ = 100, then a 1% change in economic growth (µ) will translate
into 100% change in the risk-free rate. However, historically the risk-free rate is
quite stable. See Kocherlakota (1996) for an early review of the equity premium
puzzle.

Of course, in order for the equity premium puzzle to be a puzzle, one has to
maintain many assumptions, such as CRRA utility, representative agent, con-
sumption equals dividend, complete markets, i.i.d. consumption growth, log-
normal consumption growth, etc. The literature has naturally relaxed some of
these assumptions to explain asset pricing puzzles.1 Below are such examples.

4 Some explanations of asset pricing puzzles

4.1 Rare disasters

Perhaps the puzzle arises from the Gaussian assumption. One of the earliest
explanations of the equity premium puzzle is the rare disasters model (Rietz,
1988). Initially this model was dismissed as unrealistic, but it was revived by
Barro (2006), who collected international data to calibrate parameters, and has
become quite popular recently.

For simplicity, suppose that aggregate consumption grows at a constant rate
µ when there is no disaster, and decreases a lot when hit by a disaster. Formally,
we have

Ct+1

Ct
= eµ ×

{
1, (no disaster, with probability 1− p)
b, (disaster, with probability p)

where 0 < b < 1 is the size of downward jump after disaster. The moment
generating function of log consumption growth is

M(s) = E[es∆c] = E[(Ct+1/Ct)
s] = eµs(1− p+ pbs).

Therefore the log equity premium is

log
E[R]

Rf
= log(1− p+ pb) + log(1− p+ pb−γ)− log(1− p+ pb1−γ)

≈ p(−1 + b+ (−1 + b−γ)− (−1 + b1−γ))

= p(1− b)(b−γ − 1),

1Economists will never agree on the explanation of asset pricing puzzles (at least in the
near future), because if they agree on the explanation, they can no longer write papers on the
topic. Thus puzzles must remain as puzzles until they retire.
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where I have used the approximation log(1 + pa) ≈ pa when p � 1. (This
approximation is exact in continuous-time models.) To make a fair compar-
ison with the Gaussian model, let us compute the variance of log consump-
tion growth. Under rare disasters, since ∆c = µ with probability 1 − p and
∆c = µ− log b with probability p, the variance is σ2 = p(1− p)(log b)2. Noting
that 0 < b < 1, the volatility is then σ = −

√
p(1− p) log b.

Collecting international data, Barro (2006) argues that p = 0.017. Assuming
σ = 0.0357, it must be b = 0.759, or 100(1 − b) = 24% output loss after the
disaster. With this number, setting γ = 10, the log equity premium becomes
0.0608, or 6.08%, which is very close to the data. So, moving away from the
Gaussian assumption goes a long way towards explaining the equity premium.
Rare disasters model have become quite popular these days: see, for example,
Gourio (2012), Gabaix (2012), and Wachter (2013). See Barro and Ursúa (2012)
for some introduction.

4.2 Incomplete markets

Perhaps the puzzle arises from the complete market assumption. In reality,
markets are incomplete: existing assets do not span all states of the world. To
convince you that markets are incomplete, suppose that markets were indeed
complete. Then you would be able to sell off all your future labor income. If
you were able to do that, you might lose the incentive to work.

Constantinides and Duffie (1996) is a typical example of an asset pricing
model with incomplete markets. They show that, given any set of assets with
no arbitrage and a stochastic process for the aggregate consumption growth,
you can construct individual endowment processes that are consistent with the
asset prices. The model is as follows.

Let Ct be aggregate consumption growth, and Λt be the marginal utility
process that is consistent with the asset prices. (By no-arbitrage asset pricing,
such Λt always exists.) Suppose that there are a continuum of agents indexed by
i ∈ [0, 1], all having additive utility function with discount factor β and relative
risk aversion γ > 0. Let cit be agent i’s consumption at time t. Suppose that
ci0 = C0, and define cit (t ≥ 1) by

cit
Ct

=
ci,t−1

Ct−1
eσtηit−

1
2σ

2
t ,

where σt > 0 is the standard deviation of individual consumption growth (rel-
ative to the aggregate consumption growth), to be specified later, and ηit is a
standard normal variable that is i.i.d. across agents and over time. Note that
Et[e

σtηit− 1
2σ

2
t ] = 1 using the property of the normal distribution, so we obtain

Et[cit]

Ct
=

Et−1[ci,t−1]

Ct−1
.

Since ci0 = C0, by induction we have Et[cit] = Ct, so the cross-sectional average
consumption is indeed the aggregate consumption.

Now we specify σt to support no-arbitrage pricing. The individual stochastic
discount factor from time t− 1 to t is

Mit = β

(
cit
ci,t−1

)−γ
= β

(
Ct
Ct−1

)−γ
e−γσtηit+

1
2γσ

2
t .
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Since consumption growth has an idiosyncratic component which is independent
of all asset payoffs, we can take expectations with respect to the idiosyncratic
shock to obtain a new SDF:

Λt
Λt−1

= Et[Mit] = β

(
Ct
Ct−1

)−γ
e

1
2γ(γ+1)σ2

t .

Solving for σt, we can make this equation true if

σt =

√
2

γ(γ + 1)

(
− log β + γ log

Ct
Ct−1

+ log
Λt

Λt−1

) 1
2

.

The result of Constantinides and Duffie (1996) is a possibility theorem, and
whether the idiosyncratic shock in individual consumption growth can explain
asset prices or not is an empirical/quantitative question. The main papers in
this literature are Brav et al. (2002), Cogley (2002), Balduzzi and Yao (2007),
Storesletten et al. (2007), and Krueger and Lustig (2010). See Toda and Walsh
(2015, 2017) for related issues.

4.3 Habit formation

Perhaps the puzzle arises from the CRRA assumption. Campbell and Cochrane
(1999) consider a representative agent model with utility function

E0

∞∑
t=0

βt
(Ct −Xt)

1−γ

1− γ
,

where Ct is aggregate consumption and Xt is the “habit” level (reference point).
Let St = Ct−Xt

Ct
be the “surplus consumption ratio”. The stochastic discount

factor is then

Mt+1 = β

(
Ct+1 −Xt+1

Ct −Xt

)−γ
= β

(
St+1

St

)−γ (
Ct+1

Ct

)−γ
.

As in the case with Constantinides and Duffie (1996), it is obvious that by
playing around with St, the model can replicate any stochastic discount factor
(Pohl (2016) formally proves this). A weakness of this model is that St is not
observable and therefore the model is not falsifiable.

4.4 Long-run risk

Perhaps the puzzle arises from the i.i.d. assumption. The long-run risk model of
Bansal and Yaron (2004) and Bansal et al. (2012) combine small but persistent
risk (long-run risk) and the preference for the early resolution of uncertainty to
generate large equity premia. We will consider such models later.

4.5 Heterogeneous preferences

Perhaps the puzzle arises from the representative agent assumption (or iden-
tical preferences). Gârleanu and Panageas (2015) consider a model with i.i.d.
consumption growth, but with two types of agents (one risk tolerant, the other
risk averse). We will consider such models later.
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