
Numerical Methods in Economics

Alexis Akira Toda∗

November 15, 2017

1 Polynomial interpolation

Polynomials are great because we can differentiate and integrate them very
easily. Since a degree n − 1 polynomial is determined by n coefficients, once
we specify n points on the xy plane, there exists (at most) one polynomial that
passes through these points.

1.1 Lagrange interpolation

The Lagrange interpolation gives an explicit formula.

Proposition 1. Let x1 < · · · < xn and define the k-th Lagrange polynomial

Lk(x) =

∏
l 6=k(x− xl)∏
l 6=k(xk − xl)

for k = 1, . . . , n. Then

p(x) =

n∑
k=1

ykLk(x)

is the unique polynomial of degree up to n − 1 satisfying p(xk) = yk for k =
1, . . . , n.

Proof. By the definition of Lk(x), we have Lk(xl) = δkl (Kronecker’s delta1).
Therefore for all l, we have

p(xl) =

n∑
k=1

ykLk(xl) =

n∑
k=1

ykδkl = yl.

Clearly Lk(x) is a polynomial of degree n− 1, so p(x) is a polynomial of degree
up to n− 1.

If we interpolate a function f(x) at the points x1 < · · · < xn by a degree
n − 1 polynomial, what is the error? The following proposition gives an error
bound if f is sufficiently smooth.

∗atoda@ucsd.edu
1https://en.wikipedia.org/wiki/Kronecker_delta

1

mailto:atoda@ucsd.edu
https://en.wikipedia.org/wiki/Kronecker_delta

Proposition 2. Let f be Cn and pn−1 be the interpolating polynomial of f at
x1, . . . , xn. Then for any x, there exists ξ in the convex hull of {x, x1, . . . , xn}
such that

f(x)− pn−1(x) =
f (n)(ξ)

n!

n∏
k=1

(x− xk).

Proof. Let I = co {x, x1, . . . , xn}. For any t ∈ I, let R(t) = f(t) − pn−1(t) be
the error term and define

g(t) = R(t)S(x)−R(x)S(t),

where S(t) =
∏n
k=1(t − xk). Clearly g(x) = 0. Furthermore, since R(xk) =

S(xk) = 0, we have g(xk) = 0 for k = 1, . . . , n. In general, if g is differentiable
and g(a) = g(b) = 0, then there exists c ∈ (a, b) such that g′(c) = 0 (Rolle’s
theorem2). Therefore there exist n points y1, . . . , yn between x, x1, . . . , xn such
that g′(yk) = 0 for k = 1, . . . , n. Continuing this argument, there exists ξ ∈ I
such that g(n)(ξ) = 0. But since S is a degree n polynomial with leading
coefficient 1, we have S(n) = n!, so

0 = g(n)(ξ) = R(n)(ξ)S(x)−R(x)n!.

Since R(t) = f(t)− pn−1(t) and deg pn−1 ≤ n− 1, we obtain R(n)(ξ) = f (n)(ξ).
Therefore

f(x)− pn−1(x) = R(x) =
1

n!
f (n)(ξ)S(x) =

f (n)(ξ)

n!

n∏
k=1

(x− xk).

1.2 Chebyshev polynomials

If we want to interpolate a function on an interval by a polynomial, how should
we choose the interpolation nodes x1, . . . , xn? First, without loss of generality
we may assume that the interval is [−1, 1]. Since f (n)(ξ) depends on the par-
ticular function f but

∏n
k=1(x− xk) does not, it makes sense to find x1, . . . , xn

so as to minimize

max
x∈[−1,1]

∣∣∣∣∣
n∏
k=1

(x− xk)

∣∣∣∣∣ .
Chebyshev3 has solved this problem a long time ago.

The degree n Chebyshev polynomial Tn(x) is obtained by expanding cosnθ
as a degree n polynomial of cos θ and setting x = cos θ. For instance,

cos 0θ = 1 =⇒ T0(x) = 1,

cos θ = cos θ =⇒ T1(x) = x,

cos 2θ = 2 cos2 θ − 1 =⇒ T2(x) = 2x2 − 1,

and so on. In general, adding

cos(n+ 1)θ = cosnθ cos θ − sinnθ sin θ,

cos(n− 1)θ = cosnθ cos θ + sinnθ sin θ,

2https://en.wikipedia.org/wiki/Rolle’s_theorem
3https://en.wikipedia.org/wiki/Pafnuty_Chebyshev

2

https://en.wikipedia.org/wiki/Rolle's_theorem
https://en.wikipedia.org/wiki/Pafnuty_Chebyshev

and setting x = cosnθ, we obtain

Tn+1(x) = 2xTn(x)− Tn−1(x).

Theorem 3. The solution of

min
x1,...,xn

max
x∈[−1,1]

∣∣∣∣∣
n∏
k=1

(x− xk)

∣∣∣∣∣
is given by xk = cos 2k−1

2n π, in which case
∏n
k=1(x− xk) = 21−nTn(x).

Proof. Let p(x) = 21−nTn(x). By the above recursive formula, the leading
coefficient of Tn(x) is 2n−1. Therefore the leading coefficient of p(x) is 1.
Since p(cos θ) = 21−n cosnθ, clearly supx∈[−1,1] |p(x)| = 21−n. Suppose that
there exists a degree n polynomial q(x) with leading coefficient 1 such that
supx∈[−1,1] |q(x)| < 21−n. Again since p(cos θ) = 21−n cosnθ, we have p(x) =

(−1)k21−n at x = yk = cos kπ/n, where k = 0, 1, . . . , n. Since |q(x)| < 21−n for
all x ∈ [−1, 1], by the intermediate value theorem there exits z1, . . . , zn between
y0, . . . , yn such that p(zk)− q(zk) = 0. But since p, q are polynomials of degree
n with leading coefficient 1, r(x) := p(x)− q(x) is a polynomial of degree up to
n − 1. Since r(zk) = 0 for k = 1, . . . , n, it must be r(x) ≡ 0 or p ≡ q, which is
a contradiction. Therefore

∏n
k=1(x − xk) = 21−nTn(x), so xk = cos 2k−1

2n π for
k = 1, . . . , n.

2 Quadrature

Many economic problems involve maximizing the expected value. For example,
a typical optimal portfolio problem looks like

max
θ

E[u(R(θ)w)],

where w is initial wealth, u is a Bernoulli utility function, and R(θ) denotes the
portfolio return. Since expectations are integrals, and many integrals cannot
be computed explicitly, we need methods to numerically evaluate the integrals,
which are called quadrature (or numerical integration).

A typical quadrature looks like∫ b

a

f(x) dx ≈
N∑
n=1

wnf(xn),

where f is a general integrand and {xn}Nn=1 are nodes and {wn}Nn=1 are weights
of the quadrature rule. See Davis and Rabinowitz (1984) for a standard textbook
treatment.

2.1 Newton-Cotes quadrature

The simplest quadrature rule is to divide the interval [a, b] into N − 1 even-
spaced subintervals (so xn = a + n−1

N−1 (b − a) for n = 1, . . . , N) and choose the

weights {wn}Nn=1 so that one can integrate all polynomials of degree N − 1 or

3

less exactly. This quadrature rule is known as the N -point Newton-Cotes rule.
Since we can map the interval [0, 1] to [a, b] through the linear transformation
x 7→ a+ (b− a)x, without loss of generality let us assume a = 0 and b = 1. Let
us consider several cases.

2.1.1 N = 2 (trapezoidal rule)

The 2-point Newton-Cotes rule is known as the trapezoidal rule. In this case
we have xn = 0, 1, and we choose w1, w2 to integrate a linear function exactly.
Therefore

1 =

∫ 1

0

1 dx = w1 + w2,

1

2
=

∫ 1

0

xdx = w2,

so solving these equations we obtain w1 = w2 = 1
2 . Therefore∫ b

a

f(x) dx ≈ b− a
2

(f(a) + f(b)).

Let us estimate the error of this approximation. Let p(x) be the degree 1
interpolating polynomial of f at x = a, b. Since p agrees with f at a, b, clearly∫ b

a

p(x) dx =
b− a

2
(f(a) + f(b)).

Therefore by Proposition 2, we obtain∫ b

a

f(x) dx− b− a
2

(f(a) + f(b)) =

∫ b

a

(f(x)− p(x)) dx

=

∫ b

a

f ′′(ξ(x))

2
(x− a)(x− b) dx,

where ξ(x) ∈ (a, b). Since (x−a)(x−b) < 0 on (a, b), by the mean value theorem
for Rieman-Stieltjes integrals, there exists c ∈ (a, b) such that∫ b

a

f ′′(ξ(x))

2
(x− a)(x− b) dx =

f ′′(c)

2

∫ b

a

(x− a)(x− b) dx = −f
′′(c)

12
(b− a)3.

Therefore we can estimate the error as∣∣∣∣∣
∫ b

a

f(x) dx− b− a
2

(f(a) + f(b))

∣∣∣∣∣ ≤ ‖f ′′‖12
(b− a)3.

2.1.2 N = 3 (Simpson’s rule)

The 3-point Newton-Cotes rule is known as Simpson’s rule. In this case we
have xn = 0, 1/2, 1, and we choose w1, w2, w3 to integrate a quadratic function

4

exactly. Therefore

1 =

∫ 1

0

1 dx = w1 + w2 + w3,

1

2
=

∫ 1

0

xdx =
1

2
w2 + w3,

1

3
=

∫ 1

0

x2 dx =
1

4
w2 + w3,

so solving these equations we obtain w1 = w3 = 1
6 and w2 = 2

3 . Therefore∫ b

a

f(x) dx ≈ b− a
6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
.

Interestingly, since
1

4
=

∫ 1

0

x3 dx =
1

8
w2 + w3,

Simpson’s rule actually integrates polynomials of degree 3 exactly (even though
it is not designed to do so).

To estimate the error of Simpson’s rule, take any point d ∈ (a, b) and let p(x)
be a degree 3 interpolating polynomial of f at x = a, a+b

2 , b, d. Since Simpson’s
rule integrates degree 3 polynomials exactly, by Proposition 2 we have∫ b

a

f(x) dx− b− a
6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
=

∫ b

a

(f(x)− p(x)) dx =

∫ b

a

f (4)(ξ(x))

4!
(x− a)

(
x− a+ b

2

)
(x− b)(x− d) dx.

Since d ∈ (a, b) is arbitrary, we can take d = a+b
2 . Since

(x− a)

(
x− a+ b

2

)2

(x− b) < 0

on (a, b) almost everywhere, as before we can apply the mean value theorem.
Using the change of variable x = a+b

2 + b−a
2 t, we can compute∫ b

a

(x− a)

(
x− a+ b

2

)2

(x− b) dx

=

(
b− a

2

)5 ∫ 1

−1

(t+ 1)t2(t− 1) dt = − 1

120
(b− a)5.

Since 4! = 24 and 24× 120 = 2880, the integration error is∣∣∣∣∣
∫ b

a

f(x) dx− b− a
6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)∣∣∣∣∣ ≤
∥∥f (4)

∥∥
2880

(b− a)5.

5

2.2 Compound rule

Newton-Cotes rule with N ≥ 4 are almost never used because beyond some
order some of the weights {wn}Nn=1 become negative, which introduces rounding
errors. One way to avoid this problem is to divide the interval [a, b] into N even-
spaced subintervals and apply the trapezoidal rule or the Simpson’s rule to each
subinterval. This method is known as the compound (or composite) rule.

If you use the trapezoidal rule, then there areN+1 points. Letting xn = n/N
for n = 0, 1, . . . , N , the formula for [0, 1] is∫ 1

0

f(x) dx ≈
N∑
n=1

1

2N
(f(xn−1) + f(xn))

=
1

2N
(f(x0) + 2f(x1) + · · ·+ 2f(xN−1) + f(xN)) .

(Just remember that the relative weights are 1 at endpoints and 2 in between.)
Since b− a = 1/N and there are N subintervals, the error of the (N + 1)-point

trapezoidal rule is
‖f ′′‖

12 N−2.
If you use Simpson’s rule, then there are 3 points on each subinterval, of

which there are N , and N − 1 endpoints are counted twice. Therefore the
total number of points is 3N − (N − 1) = 2N + 1. Letting xn = n/(2N) for
n = 0, 1, . . . , N , the formula for [0, 1] is∫ 1

0

f(x) dx ≈
N∑
n=1

1

6N
(f(x2n−2) + 4f(x2n−1) + f(x2n))

=
1

6N
(f(x0) + 4f(x1) + 2f(x2) + · · ·+ 4f(x2N−1) + f(x2N)) .

(Just remember that the relative weights are 1 at endpoints, and they alter-
nate like 4, 2, 4, 2, . . . , 4, 2, 4 in between.) Since b − a = 1/N and there are N

subintervals, the error of the (2N + 1)-point Simpson’s rule is
‖f(4)‖
2880 N−4.

Since the quadrature weights are given explicitly for trapezoidal and Simp-
son’s rule, it is straightforward to write programs that compute numerical in-
tegrals. The tables below show the log10 relative errors of integrals over the

interval [0, 1] (log10

∣∣∣Î/I − 1
∣∣∣, where I is the true integral and Î is the numerical

one) for several functions when we use the N -point compound trapezoidal and
Simpson’s rule. As the above error analysis suggests, errors tend to be smaller
when the integrand is smoother (has higher order derivatives). Furthermore,
Simpson’s rule is more accurate than the trapezoidal rule.

Table 1. log10 relative errors of compound trapezoidal rule.

points x1/2 x3/2 x5/2 x7/2 x9/2 ex

3 -1.0238 -1.1743 -0.7343 -0.4896 -0.3041 -1.6830
5 -1.4550 -1.7558 -1.3394 -1.0875 -0.8937 -2.2838
9 -1.8926 -2.3438 -1.9427 -1.6885 -1.4928 -2.8855
17 -2.3346 -2.9361 -2.5452 -2.2902 -2.0941 -3.4874
33 -2.7795 -3.5314 -3.1474 -2.8922 -2.6960 -4.0895
65 -3.2264 -4.1287 -3.7495 -3.4943 -3.2980 -4.6915

6

Table 2. log10 relative errors of compound Simpson’s rule.

points x1/2 x3/2 x5/2 x7/2 x9/2 ex

3 -1.3676 -2.2275 -2.3780 -1.8192 -1.1040 -3.4722
5 -1.8179 -2.9667 -3.3705 -2.9823 -2.3199 -4.6667
9 -2.2691 -3.7142 -4.3841 -4.1584 -3.5289 -5.8684
17 -2.7206 -4.4649 -5.4112 -5.3435 -4.7350 -7.0720
33 -3.1722 -5.2168 -6.4470 -6.5346 -5.9399 -8.2759
65 -3.6237 -5.9692 -7.4884 -7.7297 -7.1443 -9.4800

2.3 Gaussian quadrature

In the Newton-Cotes quadrature, we assume that the nodes are even-spaced, but
of course this is not necessary. Can we do better by choosing the quadrature
nodes optimally? In general, consider the integral∫ b

a

w(x)f(x) dx,

where −∞ ≤ a < b ≤ ∞ are endpoints of integration, w(x) > 0 is some (fixed)
weighting function, and f is a general integrand. A typical example is a = −∞,
b = ∞, and w(x) = 1√

2πσ2
e−(x−µ)2/2σ2

, in which case we want to compute the

expectation E[f(X)] when X ∼ N(µ, σ2).

In the discussion below, let us omit a, b (so
∫

means
∫ b
a

) and assume that∫
w(x)xn dx exists for all n ≥ 0. For functions f, g, let us define the inner

product (f, g) by

(f, g) =

∫ b

a

w(x)f(x)g(x) dx.

Let p∗n(x) be the orthogonal polynomial of degree n corresponding to the weight-
ing function w(x). This means that (p∗m, p

∗
n) = δmn, where δmn is Kronecker’s

delta. Orthogonal polynomials (with positive leading coefficients) uniquely exist
and can be constructed using the Gram-Schmidt orthonormalization.4 In fact,
we can recursively compute the orthogonal polynomials using the three-term
recurrence relation (TTRR) as follows.

Proposition 4 (TTRR). Let p∗−1(x) = 0, p0(x) = 1, and for n ≥ 0 define

p∗n(x) = pn(x)/(pn, pn)1/2,

pn+1(x) = xp∗n(x)− (xp∗n, p
∗
n)p∗n(x)− (pn, pn)1/2p∗n−1(x).

Then p∗n(x) is the n-degree orthogonal polynomial.

Proof. Clearly (p∗n, p
∗
n) = 1 for all n. Therefore it suffices to show that (p∗m, p

∗
n) =

0 whenever m < n. Let us prove this by induction on n ≥ 0. If n = 0, there is
nothing to prove. If n = 1, since

p1(x) = xp∗0(x)− (xp∗0, p
∗
0)p∗0(x),

taking the inner product with p∗0(x), we obtain

(p1, p
∗
0) = (xp∗0, p

∗
0)− (xp∗0, p

∗
0) = 0.

4https://en.wikipedia.org/wiki/Gram-Schmidt_process

7

https://en.wikipedia.org/wiki/Gram-Schmidt_process

Therefore by rescaling p1 to p∗1, we obtain (p∗0, p
∗
1) = 0. Suppose the claim holds

up to n. Then for n+ 1, since

pn+1(x) = xp∗n(x)− (xp∗n, p
∗
n)p∗n(x)− (pn, pn)1/2p∗n−1(x),

taking the inner product with p∗n, we obtain

(pn+1, p
∗
n) = (xp∗n, p

∗
n)− (xp∗n, p

∗
n) = 0.

Similarly, taking the inner product with p∗n−1, we obtain

(pn+1, p
∗
n−1) = (xp∗n, p

∗
n−1)− (pn, pn)1/2 = (p∗n, xp

∗
n−1)− (pn, pn)1/2.

Let kn > 0 be the leading coefficient of p∗n. By the recursive definition and the
normalization, we have

kn = kn−1/(pn, pn)1/2.

Since xp∗n−1 is an n-degree polynomial with leading coefficient kn−1, it can be
expanded as

xp∗n−1(x) =
kn−1

kn
p∗n(x) + low order polynomials.

Therefore

(pn+1, p
∗
n−1) =

kn−1

kn
− (pn, pn)1/2 = 0.

The following lemma shows that an n-degree orthogonal polynomial has
exactly n real roots (so they are all simple).

Lemma 5. p∗n(x) has exactly n real roots on (a, b).

Proof. By the fundamental theorem of algebra, p∗n(x) has exactly n roots in C.
Suppose on the contrary that p∗n(x) has less than n real roots on (a, b). Let
x1, . . . , xk (k < n) those roots at which pn(x) changes its sign. Let p(x) =
(x− x1) · · · (x− xk). Since p∗n(x)p(x) > 0 (or < 0) almost everywhere on (a, b),
we have

(p∗n, p) =

∫
w(x)p∗n(x)p(x) dx 6= 0.

On the other hand, since deg p = k < n and orthogonal polynomials are linearly
independent, we can express p as a weighted sum of p∗m’s, where m ≤ k. By the
definition of the orthogonal polynomials, it follows that (p∗n, p) = 0, which is a
contradiction.

The following theorem shows that using the n roots of the degree n or-
thogonal polynomial as quadrature nodes and choosing specific weights, we can
integrate all polynomials of degree up to 2n − 1 exactly. This is known as
Gaussian quadrature.

Theorem 6 (Gaussian quadrature). Let a < x1 < · · · < xn < b be the n roots
of p∗n and define

wk =

∫
w(x)Lk(x) dx

8

for k = 1, . . . , n, where Lk(x) is as in Proposition 1. Then∫
w(x)p(x) dx =

n∑
k=1

wkp(xk)

for all polynomials p(x) of degree up to 2n− 1.

Proof. Since deg p ≤ 2n− 1 and deg p∗n = n, we can write

p(x) = p∗n(x)q(x) + r(x),

where deg q,deg r ≤ n− 1. Since q can be expressed as a linear combination of
orthogonal polynomials of degree up to n− 1, we have (p∗n, q) = 0. Hence∫

w(x)p(x) dx = (p∗n, q) +

∫
w(x)r(x) dx =

∫
w(x)r(x) dx.

On the other hand, since {xk}nk=1 are roots of p∗n, we have

p(xk) = p∗n(xk)q(xk) + r(xk) = r(xk)

for all k, so in particular

n∑
k=1

wkp(xk) =

n∑
k=1

wkr(xk).

Therefore it suffices to show the claim for polynomials r of degree up to n− 1.
Since by Proposition 1 any such polynomial can be represented as a linear
combination of Lk’s, it suffices to show the claim for all Lk’s. But since by
definition ∫

w(x)Lk(x) dx = wk =

n∑
l=1

wlLk(xl),

the claim is true.

In practice, how can we compute the nodes {xn}Nn=1 and weights {wn}Nn=1

of the N -point Gaussian quadrature? The solution is given by the following
Golub-Welsch algorithm.

Theorem 7 (Golub-Welsch). Let kn > 0 be the leading coefficient of p∗n, αn =
kn−1/kn > 0, and βn = (xp∗n, p

∗
n). Define the N ×N symmetric matrix JN by

JN =



β0 α1 0 · · · 0

α1 β1 α2
. . .

...

0 α2 β2
. . . 0

...
. . .

. . .
. . . αN−1

0 · · · 0 αN−1 βN−1


.

Then the Gaussian quadrature nodes {xn}Nn=1 are eigenvalues of JN , and the

weights {wn}Nn=1 are given by

1

wn
=

N−1∑
k=0

p∗k(xn)2 > 0.

9

Proof. By the proof of Proposition 4, we have (pn, pn)1/2 = kn−1/kn = αn.
Therefore TTRR becomes

pn+1(x) = xp∗n(x)− βnp∗n(x)− αnp∗n−1(x).

Since p∗n+1(x) = pn+1(x)/(pn+1, pn+1)1/2 = pn+1(x)/αn+1, TTRR becomes

αnp
∗
n−1(x) + βnp

∗
n(x) + αn+1p

∗
n+1(x) = xp∗n(x).

In particular, setting x = xk (where xk is a root of p∗N), we obtain

αnp
∗
n−1(xk) + βnp

∗
n(xk) + αn+1p

∗
n+1(xk) = xp∗n(xk)

for all n and k = 1, . . . , N . Since p∗−1 = 0 by definition and p∗N (xk) = 0, letting
P (x) = (p∗0(x), . . . , p∗N−1(x))′ and collecting the above equation into a vector
we obtain

JNP (xk) = xkP (xk)

for k = 1, . . . , N . Define the N×N matrix P by P = (P (x1), . . . , P (xN)). Since

δmn = (p∗m, p
∗
n) =

∫
w(x)p∗m(x)p∗n(x) dx =

N∑
k=1

wkp
∗
m(xk)p∗n(xk)

for m,n ≤ N − 1 because the Gaussian quadrature integrates all polynomials of
degree up to 2n− 1 exactly, letting W = diag(w1, . . . , wN) we have

PWP ′ = I.

Therefore P,W are invertible. Solving for W and taking the inverse, we obtain

W−1 = P ′P ⇐⇒ 1

wn
=

N−1∑
k=0

p∗k(xn)2 > 0

for all n. Since JNP (xn) = xnP (xn) for n = 1, . . . , N , collecting into a matrix
we obtain

JNP = XP ⇐⇒ P−1JNP = X,

where X = diag(x1, . . . , xN). Therefore {xn}Nn=1 are eigenvalues of JN .

Below are some examples. By googling you can find subroutines in Matlab
or whatever language that compute the nodes and weights of these quadratures.

Example 1. The case (a, b) = (−1, 1), w(x) = 1 is known as the Gauss-
Legendre quadrature.

Example 2. The case (a, b) = (−1, 1), w(x) = 1/
√

1− x2 is known as the
Gauss-Chebyshev quadrature. It is useful for computing Fourier coefficients
(through the change of variable x = cos θ).

Example 3. The case (a, b) = (−∞,∞), w(x) = e−x
2

is known as the Gauss-
Hermite quadrature, which is useful for computing the expectation with respect
to the normal distribution.

Example 4. The case (a, b) = (0,∞), w(x) = e−x is known as the Gauss-
Laguerre quadrature, which is useful for computing the expectation with respect
to the exponential distribution.

The table below shows the log10 relative errors when using the N -point
Gauss-Legendre quadrature. You can see that Gaussian quadrature is over-
whelmingly more accurate than Newton-Cotes.

10

Table 3. log10 relative errors of compound trapezoidal rule.

points x1/2 x3/2 x5/2 x7/2 x9/2 ex

3 -2.4237 -3.3289 -3.8570 -4.0525 -3.8824 -6.3191
5 -3.0245 -4.3578 -5.3560 -6.0948 -6.6082 -12.4194
9 -3.7418 -5.5649 -7.0688 -8.3362 -9.4106 -15.9546
17 -4.5396 -6.8986 -8.9436 -10.7592 -12.3913 -15.9546
33 -5.3862 -8.3108 -10.9229 -13.3092 -15.3525 −∞

3 Discretization

If the goal is to solve a single optimization problem that involves expectations
(e.g., static optimal portfolio problem), a highly accurate Gaussian quadrature
is a natural choice. However, many economic problems are dynamic, in which
case one needs to compute conditional expectations. Furthermore, to reduce the
computational complexity of the problem, it is desirable that the quadrature
nodes are preassigned instead of being dependent on the particular state of the
model. Discretization is a useful tool for solving such problems.

3.1 Earlier methods

For concreteness, consider the Gaussian AR(1) process

xt = ρxt−1 + εt, εt ∼ N(0, σ2).

Then the conditional distribution of xt given xt−1 is N(ρxt−1, σ
2). How can

we discretize (find a finite-state Markov chain approximation) of this stochastic
process?

A classic method is Tauchen (1986) but you should never use it because it
is not accurate (so I won’t explain further). Similarly, the quantile method in
Adda and Cooper (2003) is poor. For Gaussian AR(1) process, the Rouwenhorst
(1995) is good because the conditional moments are exact up to order 2 and the
method is constructive (does not involve optimization). It is especially useful
when ρ ≥ 0.99.

The Tauchen and Hussey (1991) method, which I explain now, uses the

Gaussian quadrature. First consider discretizing N(0, σ2). Letting {xn}Nn=1 and

{wn}Nn=1 be the nodes and weights of the N -point Gauss-Hermite quadrature,
since for any integrand g we have

E[g(X)] =

∫ ∞
−∞

g(x)
1√

2πσ2
e−

x2

2σ2 dx

=

∫ ∞
−∞

g(
√

2σy)
1√
π

e−y
2

dy

≈
N∑
n=1

wn√
π
g(
√

2σxn),

we can use the nodes x′n =
√

2σxn and weights w′n = wn/
√
π to discretize

N(0, σ2).
The same idea can be used to discretize the Gaussian AR(1) process. Let us

fix the nodes {x′n}
N
n=1 as constructed above. Since for any integrand g, letting

11

µ = ρx′m we have

E [g(xt) |xt−1 = x′m] =

∫ ∞
−∞

g(x)
1√

2πσ2
e−

(x−µ)2

2σ2 dx

=

∫ ∞
−∞

g(x)e−
µ2−2xµ

2σ2
1√

2πσ2
e−

x2

2σ2 dx

≈
N∑
n=1

w′ne−
µ2−2x′nµ

2σ2 g(x′n),

so we can construct the transition probability matrix P = (pmn) by

pmn ∝ w′ne−
µ2−2x′nµ

2σ2 ,

where µ = ρx′m and the constant of proportionality is determined by
∑N
n=1 pmn =

1. The Tauchen-Hussey method is pretty good if ρ ≤ 0.5, although a drawback
is that it assumes Gaussian shocks. Furthermore, the performance deteriorates
when ρ becomes larger.

3.2 Farmer-Tanaka-Toda maximum entropy method

Several papers by me and my coauthors (Tanaka and Toda, 2013, 2015; Farmer
and Toda, 2017) provide a more accurate and generally applicable discretization
method (so it should be the first choice!). Below I briefly explain the method,
but see Farmer and Toda (2017) for more details.

3.2.1 Discretizing probability distributions

Suppose that we are given a continuous probability density function f : RK →
R, which we want to discretize. Let X be a random vector with density f , and
g : RK → R be any bounded continuous function. The first step is to pick a
quadrature formula

E[g(X)] =

∫
RK

g(x)f(x) dx ≈
N∑
n=1

wng(xn)f(xn), (1)

where N is the number of integration points, {xn}Nn=1, and wn > 0 is the weight
on the integration point xn.

For now, we do not take a stance on the choice of the initial quadrature
formula, but take it as given. Given the quadrature formula (1), a coarse but
valid discrete approximation of the density f would be to assign probability qn
to the point xn proportional to wnf(xn), so

qn =
wnf(xn)∑N
n=1 wnf(xn)

. (2)

However, this is not necessarily a good approximation because the moments of
the discrete distribution {qn} do not generally match those of f .

Tanaka and Toda (2013) propose exactly matching a finite set of moments
by updating the probabilities {qn} in a particular way. Let T : RK → RL

12

be a function that defines the moments that we wish to match and let T̄ =∫
RK T (x)f(x) dx be the vector of exact moments. For example, if we want to

match the first and second moments in the one dimensional case (K = 1), then
T (x) = (x, x2)′. Tanaka and Toda (2013) update the probabilities {qn} by
solving the optimization problem

minimize
{pn}

N∑
n=1

pn log
pn
qn

subject to

N∑
n=1

pnT (xn) = T̄ ,

N∑
n=1

pn = 1, pn ≥ 0. (P)

The objective function in the primal problem (P) is the Kullback and Leibler
(1951) information of {pn} relative to {qn}, which is also known as the relative
entropy. This method matches the given moments exactly while keeping the
probabilities {pn} as close to the initial approximation {qn} as possible in the
sense of the Kullback-Leibler information. Note that since (P) is a convex
minimization problem, the solution (if one exists) is unique.

The optimization problem (P) is a constrained minimization problem with
a large number (N) of unknowns ({pn}) with L+ 1 equality constraints and N
inequality constraints, which is in general computationally intensive to solve.
However, it is well-known that entropy-like minimization problems are compu-
tationally tractable by using duality theory (Borwein and Lewis, 1991). Tanaka
and Toda (2013) convert the primal problem (P) to the dual problem

max
λ∈RL

[
λ′T̄ − log

(
N∑
n=1

qneλ
′T (xn)

)]
, (D)

which is a low dimensional (L unknowns) unconstrained concave maximization
problem and hence computationally tractable. The following theorem shows
how the solutions to the two problems (P) and (D) are related. Below, the
symbols “int” and “co” denote the interior and the convex hull of sets.

Theorem 8. 1. The primal problem (P) has a solution if and only if T̄ ∈
coT (DN). If a solution exists, it is unique.

2. The dual problem (D) has a solution if and only if T̄ ∈ int coT (DN). If a
solution exists, it is unique.

3. If the dual problem (D) has a (unique) solution λN , then the (unique)
solution to the primal problem (P) is given by

pn =
qneλ

′
NT (xn)∑N

n=1 qneλ
′
NT (xn)

=
qneλ

′
N (T (xn)−T̄)∑N

n=1 qneλ
′
N (T (xn)−T̄)

. (3)

Theorem 8 provides a practical way to implement the Tanaka-Toda method.
After choosing the initial discretization Q = {qn} and the moment defining
function T , one can numerically solve the unconstrained optimization problem
(D). To this end, we can instead solve

min
λ∈RL

N∑
n=1

qneλ
′(T (xn)−T̄) (D′)

13

because the objective function in (D′) is a monotonic transformation (−1 times
the exponential) of that in (D). Since (D′) is an unconstrained convex mini-
mization problem with a (relatively) small number (L) of unknowns (λ), solving
it is computationally simple. Letting JN (λ) be the objective function in (D′),
its gradient and Hessian can be analytically computed as

∇JN (λ) =

N∑
n=1

qneλ
′(T (xn)−T̄)(T (xn)− T̄), (4a)

∇2JN (λ) =

N∑
n=1

qneλ
′(T (xn)−T̄)(T (xn)− T̄)(T (xn)− T̄)′, (4b)

respectively. In practice, we can quickly solve (D′) numerically using optimiza-
tion routines by supplying the analytical gradient and Hessian.5

If a solution to (D′) exists, it is unique, and we can compute the updated
discretization P = {pn} by (3). If a solution does not exist, it means that
the regularity condition T̄ ∈ int coT (DN) does not hold and we cannot match
moments. Then one needs to select a smaller set of moments. Numerically
checking whether moments are matched is straightforward: by (3), (D′), and
(4a), the error is

N∑
n=1

pnT (xn)− T̄ =

∑N
n=1 qneλ

′
N (T (xn)−T̄)(T (xn)− T̄)∑N

n=1 qneλ
′
N (T (xn)−T̄)

=
∇JN (λN)

JN (λN)
. (5)

3.2.2 Discretizing general Markov processes

Next we show how to extend the Tanaka-Toda method to the case of time-
homogeneous Markov processes.

Consider the time-homogeneous first-order Markov process

P (xt ≤ x′|xt−1 = x) = F (x′, x),

where xt is the vector of state variables and F (·, x) is a cumulative distribution
function (CDF) that determines the distribution of xt = x′ given xt−1 = x. The
dynamics of any Markov process are completely characterized by its Markov
transition kernel. In the case of a discrete state space, this transition kernel
is simply a matrix of transition probabilities, where each row corresponds to a
conditional distribution. We can discretize the continuous process x by applying
the Tanaka-Toda method to each conditional distribution separately.

More concretely, suppose that we have a set of grid points DN = {xn}Nn=1

and an initial coarse approximation Q = (qnn′), which is an N ×N probability
transition matrix. Suppose we want to match some conditional moments of
x, represented by the moment defining function T (x). The exact conditional
moments when the current state is xt−1 = xn are

T̄n = E [T (xt) |xn] =

∫
T (x) dF (x, xn),

5Since the dual problem (D) is a concave maximization problem, one may also solve it
directly. However, according to our experience, solving (D′) is numerically more stable. This
is because the objective function in (D) is close to linear when ‖λ‖ is large, so the Hessian
is close to singular and not well-behaved. On the other hand, since the objective function in
(D′) is the sum of exponential functions, it is well-behaved.

14

where the integral is over x, fixing xn. (If these moments do not have explicit
expressions, we can use highly accurate quadrature formulas to compute them.)
By Theorem 8, we can match these moments exactly by solving the optimization
problem

minimize
{pnn′}Nn′=1

N∑
n′=1

pnn′ log
pnn′

qnn′

subject to

N∑
n′=1

pnn′T (xn′) = T̄n,

N∑
n′=1

pnn′ = 1, pnn′ ≥ 0 (Pn)

for each n = 1, 2, . . . , N , or equivalently the dual problem

min
λ∈RL

N∑
n′=1

qnn′e
λ′(T (xn′)−T̄n). (D′n)

(D′n) has a unique solution if and only if the regularity condition

T̄n ∈ int coT (DN) (6)

holds. We summarize our procedure in Algorithm 1 below.

Algorithm 1 (Discretization of Markov processes).

1. Select a discrete set of points DN = {xn}Nn=1 and an initial approximation
Q = (qnn′).

2. Select a moment defining function T (x) and corresponding exact condi-

tional moments
{
T̄n
}N
n=1

. If necessary, approximate the exact conditional
moments with a highly accurate numerical integral.

3. For each n = 1, . . . , N , solve minimization problem (D′n) for λn. Check
whether moments are matched using formula (5), and if not, select a
smaller set of moments. Compute the conditional probabilities corre-
sponding to row n of P = (pnn′) using (3).

The resulting discretization of the process is given by the transition probabil-
ity matrix P = (pnn′). Since the dual problem (D′n) is an unconstrained convex
minimization problem with a typically small number of variables, standard New-
ton type algorithms can be applied. Furthermore, since the probabilities (3) are
strictly positive by construction, the transition probability matrix P = (pnn′)
is a strictly positive matrix, so the resulting Markov chain is stationary and
ergodic.

4 Projection

In economics we often need to solve functional equations. For instance, in an
income fluctuation problem, we need to characterize the optimal consumption
rule c(w, y) given wealth w and income y. The projection method (a standard
reference is Judd, 1992) approximates the policy function (what you want to

15

solve for, like c(w, y)) on some compact set by a polynomial. See Pohl et al.
(2017) for a nice application of the projection method.

By Theorem 3 if you want to approximate a smooth function f on [−1, 1]
by a degree N − 1 polynomial, it is “optimal” to interpolate f at the roots
of the degree N Chebyshev polynomial. The idea of the projection method
is to approximate the policy function f by a linear combination of Chebyshev
polynomials,

f(x) ≈ f̂(x) =

N−1∑
n=0

anTn(x),

and determine the coefficients {an}N−1
n=0 to make the functional equation (that

you want to solve) true at the Chebyshev nodes.
It is easier to see how things work by looking at an example. Suppose you

want to solve the differential equation

y′(t) = y(t),

with initial condition y(0) = 1. Of course the solution is y(t) = et, but let’s
pretend that we don’t know the solution and solve it numerically. Suppose we
want to compute a numerical solution for t ∈ [0, T]. We can do as follows.

1. Map [0, T] to [−1, 1] by the affine transformation t 7→ 2t−T
T .

2. Approximate y(t) by ŷ(t) =
∑N−1
n=0 anTn(2t−T

T)

3. Determine {an}N−1
n=0 by setting ŷ′(t) = ŷ(t) at t corresponding to Cheby-

shev nodes for degree N (find tn by solving 2tn−T
T = cos

(
2n−1
2N π

)
for

n = 1, . . . , N).

4. In this case, must also impose initial condition ŷ(0) = 1, so for example
can minimize sum of squared residuals at Chebyshev nodes:

minimize
{an}N−1

n=0

N−1∑
n=0

(ŷ′(tn)− ŷ(tn))2

subject to ŷ(0) = 1.

The figure below shows the log10 relative errors when T = 4 and N − 1 =
3, 4, You can see that the relative errors become smaller as we increase the
degree of polynomial approximation.

References

Jérôme Adda and Russel W. Cooper. Dynamic Economics: Quantitative Meth-
ods and Applications. MIT Press, Cambridge, MA, 2003.

Jonathan M. Borwein and Adrian S. Lewis. Duality relationships for entropy-
like minimization problems. SIAM Journal on Control and Optimization, 29
(2):325–338, March 1991. doi:10.1137/0329017.

Philip J. Davis and Philip Rabinowitz. Methods of Numerical Integration. Aca-
demic Press, Orlando, FL, second edition, 1984.

16

http://dx.doi.org/10.1137/0329017

t
0 0.5 1 1.5 2 2.5 3 3.5 4

lo
g 10

 r
el

at
iv

e
er

ro
rs

-10

-8

-6

-4

-2

0

3rd order
4th order
5th order
6th order
7th order
8th order

Leland E. Farmer and Alexis Akira Toda. Discretizing nonlinear, non-Gaussian
Markov processes with exact conditional moments. Quantitative Economics,
8(2):651–683, July 2017. doi:10.3982/QE737.

Kenneth L. Judd. Projection methods for solving aggregate growth
models. Journal of Economic Theory, 58(2):410–452, December 1992.
doi:10.1016/0022-0531(92)90061-L.

Solomon Kullback and Richard A. Leibler. On information and suffi-
ciency. Annals of Mathematical Statistics, 22(1):79–86, March 1951.
doi:10.1214/aoms/1177729694.

Walter Pohl, Karl Schmedders, and Ole Wilms. Higher-order effects in asset-
pricing models with long-run risk. Journal of Finance, 2017. URL https:

//ssrn.com/abstract=2540586. Forthcoming.

K. Geert Rouwenhorst. Asset pricing implications of equilibrium business cycle
models. In Thomas F. Cooley, editor, Frontiers of Business Cycle Research,
chapter 10, pages 294–330. Princeton University Press, 1995.

Ken’ichiro Tanaka and Alexis Akira Toda. Discrete approximations of contin-
uous distributions by maximum entropy. Economics Letters, 118(3):445–450,
March 2013. doi:10.1016/j.econlet.2012.12.020.

Ken’ichiro Tanaka and Alexis Akira Toda. Discretizing distributions with ex-
act moments: Error estimate and convergence analysis. SIAM Journal on
Numerical Analysis, 53(5):2158–2177, 2015. doi:10.1137/140971269.

George Tauchen. Finite state Markov-chain approximations to univari-
ate and vector autoregressions. Economics Letters, 20(2):177–181, 1986.
doi:10.1016/0165-1765(86)90168-0.

George Tauchen and Robert Hussey. Quadrature-based methods for obtaining
approximate solutions to nonlinear asset pricing models. Econometrica, 59
(2):371–396, March 1991. doi:10.2307/2938261.

17

http://dx.doi.org/10.3982/QE737
http://dx.doi.org/10.1016/0022-0531(92)90061-L
http://dx.doi.org/10.1214/aoms/1177729694
https://ssrn.com/abstract=2540586
https://ssrn.com/abstract=2540586
http://dx.doi.org/10.1016/j.econlet.2012.12.020
http://dx.doi.org/10.1137/140971269
http://dx.doi.org/10.1016/0165-1765(86)90168-0
http://dx.doi.org/10.2307/2938261

	Polynomial interpolation
	Lagrange interpolation
	Chebyshev polynomials

	Quadrature
	Newton-Cotes quadrature
	N=2 (trapezoidal rule)
	N=3 (Simpson's rule)

	Compound rule
	Gaussian quadrature

	Discretization
	Earlier methods
	Farmer-Tanaka-Toda maximum entropy method
	Discretizing probability distributions
	Discretizing general Markov processes

	Projection

