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Abstract

This note explains how to study cross-sectional distributions in incomplete-

market dynamic general equilibrium models.

1 Introduction

Consider the Saito (1998) model explained in the previous lecture note. For
simplicity, assume that there is no stock market and no aggregate shock (only
private equity with idiosyncratic shock). Then the equilibrium risk-free rate is

r = µ− γσ2,

where µ is the expected return on private equity, γ > 0 is the relative risk
aversion, and σ > 0 is the idiosyncratic volatility. The optimal consumption
rate is then

m = βε+ (1− ε)

(

µ− γσ2

2

)

,

where ε is the elasticity of intertemporal substitution. Substituting into the
budget constraint, we get

dwit/wit = gdt+ vdBit,

where g = µ−βε− (1− ε)
(

µ− γσ2

2

)

and v = σ. Therefore, in the Saito (1998)

model, individual wealth satisfies Gibrat (1931)’s law of proportionate growth.
We can characterize the cross-sectional wealth distribution as follows. Ap-

plying Itô’s formula to f(x) = log x, we get

d(logwit) =
1

wit
dwit +

1

2

(

− 1

w2
it

)

(dwit)
2

= (gdt+ vdBit)−
1

2

1

w2
it

(vwit)
2dt

=

(

g − 1

2
v2
)

dt+ vdBit.
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Therefore log wealth follows the Brownian motion with drift g− 1
2v

2 and volatil-
ity v. Assuming every agent starts with initial wealth w0, the cross-sectional
wealth distribution at time t is log normal, with

logwit ∼ N
(

logw0 + (g − v2/2)t, v2t
)

.

Thus both the log mean and variance increases linearly over time. In this model,
consumption is proportional to wealth, so the same holds for consumption. This
model is consistent with the empirical findings of Deaton and Paxson (1994).

2 Fokker-Planck equation

In the above example, we were lucky because we were able to show that the log
wealth follows the Brownian motion with drift, and therefore the calculation of
the cross-sectional distribution was straightforward. In general, we cannot use
such tricks. The Fokker-Planck equation, also known as the Kolmogorov forward
equation, lets us calculate the cross-sectional distribution in general settings.

2.1 Derivation of Fokker-Planck equation

Consider the diffusion

dXt = g(t,Xt)dt+ v(t,Xt)dBt, (1)

where Bt is standard Brownian motion. Let p(x, t) be the density of X(t) at
time t. To derive a partial differential equation that p(x, t) satisfies, we do the
following (unintuitive) calculation.

First, fix t1 < t2 and let F (t, x) be a smooth function such that F (t1, x) =
F (t2, x) = 0 and F (t, x), Fx(t, x) → 0 as x → ±∞. There are plenty of such
functions, for example

F (t, x) = (t− t1)(t− t2)f(x)

with f(x) > 0 and f(x), f ′(x) → 0 as x → ±∞.
By Itô’s formula, we get

dF (t,X(t)) = Ftdt+ FxdXt +
1

2
Fxx(dXt)

2

= Ftdt+ Fx(gdt+ vdB) +
1

2
Fxxv

2dt

=

(

Ft + Fxg +
1

2
Fxxv

2

)

dt+ FxvdB.

Taking expectations and using the martingale property of the Brownian motion,
we get

E[dF (t,X(t))] = E

[(

Ft + Fxg +
1

2
Fxxv

2

)

dt

]

=

∫ ∞

−∞

(

Ft + Fxg +
1

2
Fxxv

2

)

p(x, t)dtdx.
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Integrating from t = t1 to t2 and using F (t1, x) = F (t2, x) = 0, we get

0 = E[F (t2, X(t2))− F (t1, X(t1))]

=

∫ ∞

−∞

∫ t2

t1

(

Ft + Fxg +
1

2
Fxxv

2

)

p(x, t)dtdx =: I1 + I2 + I3.

Integrating by parts, we get

I1 =

∫ ∞

−∞

∫ t2

t1

∂F

∂t
p(x, t)dtdx

=

∫ ∞

−∞

(

F (t2, x)− F (t1, x)−
∫ t2

t1

F
∂

∂t
p(x, t)dt

)

dx

= −
∫ t2

t1

∫ ∞

−∞

F
∂

∂t
p(x, t)dxdt,

where I have used F (t1, x) = F (t2, x) = 0 and Fubini’s theorem. By similar
calculations, we get

I2 = −
∫ t2

t1

∫ ∞

−∞

F
∂

∂x
(gp(x, t))dxdt,

I3 =

∫ t2

t1

∫ ∞

−∞

F
∂2

∂x2

(

1

2
v2p(x, t)

)

dxdt.

Putting all the pieces together, we get

0 = I1 + I2 + I3 =

∫ t2

t1

∫ ∞

−∞

F

[

−∂p

∂t
− ∂

∂x
(gp) +

∂2

∂x2

(

1

2
v2p

)]

dxdt.

Since F is (nearly) arbitrary, the integrand must be zero.1 Therefore we obtain
the (parabolic) partial differential equation (PDE)

∂p

∂t
= − ∂

∂x
(gp) +

1

2

∂2

∂x2
(v2p), (2)

which is known as the Fokker-Planck (Kolmogorov forward) equation.
The Fokker-Planck equation (2) holds if the diffusion (1) holds at all times.

However, we can consider situations in which the process is occasionally reset.
For example, if X(t) in (1) describe individual wealth, since the individual will
die eventually, we need to specify what happens when an individual dies. If
there is influx j+(x, t) and outflux j−(x, t) per unit of time at location x at time
t, then the Fokker-Planck equation (2) must be modified as

∂p

∂t
= − ∂

∂x
(gp) +

1

2

∂2

∂x2
(v2p) + j+ − j−.

For example, if the unit dies at constant probability d per unit of time (Poisson
rate d) and is reborn at location x0, then the FPE becomes

∂p

∂t
= − ∂

∂x
(gp) +

1

2

∂2

∂x2
(v2p) + dδ(x − x0)− dp,

where δ(x− x0) is the Dirac delta function located at x0.

1To see this more rigorously, set

F = (t− t1)(t − t2)

[

−

∂p

∂t
−

∂

∂x
(gp) +

∂2

∂x2

(

1

2
v2p

)]

.
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2.2 Stationary density

If the diffusion has time-independent drift g(x) and variance v(x) and admits a
stationary distribution p(x), then we get

0 = − d

dx
(gp) +

1

2

d2

dx2
(v2p).

Integrating with respect to x and using the boundary condition p(x), p′(x) → 0
as x → ±∞, we get

0 = −g(x)p(x) +
1

2
(v(x)2p(x))′.

Letting q(x) = v(x)2p(x) and solving the ODE, we get

q′ =
2g

v2
q ⇐⇒ q′

q
=

2g

v2

⇐⇒ log q(x) =

∫

q′(x)

q(x)
dx =

∫

2g(x)

v(x)2
dx

⇐⇒ q(x) = exp

(
∫

2g(x)

v(x)2
dx

)

.

Therefore the stationary density is

p(x) =
q(x)

v(x)2
=

1

v(x)2
exp

(
∫

2g(x)

v(x)2
dx

)

, (3)

where the constant of integration is determined by the condition
∫∞

−∞ p(x)dx = 1
since p(x) is a density.

If there is a constant probability of death d, the stationary density is the
solution of the second-order ODE

0 = − d

dx
(gp) +

1

2

d2

dx2
(v2p)− dp,

which holds at every point except x0.
A natural question is, does p(x, t) always converge to the stationary density?

The answer is yes, under some assumptions. For a proof, see pp. 61–62 of
Gardiner (2009).

3 Examples

Let us compute the stationary density for typical diffusion processes.

Example 1 (Ornstein-Uhlenbeck process). X(t) is called the Ornstein-Uhlenbeck
process if it satisfies the stochastic differential equation

dX(t) = −κ(X(t)− µ)dt+ vdBt,

where κ > 0. This process is the continuous-time analogue of the AR(1) process
in discrete time. Using the formula (3) with g(x) = −κ(x − µ) and v(x) = v,
the stationary density is proportional to

exp

(
∫

−2κ(x− µ)

v2
dx

)

= exp

(

−κ(x− µ)2

v2

)

,

so the stationary distribution is N(µ, v2

2κ ).
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Example 2. Consider the stochastic differential equation

dX(t) = −κ sgn(X(t)− µ)dt+ vdBt,

where sgn(x) is the sign function, i.e., sgn(x) = −1, 0, 1 according as x < 0,
x = 0, and x > 0. This process has been applied in Alfarano et al. (2012) and
Toda (2012). The stationary density is proportional to

exp

(
∫

−2κ sgn(x− µ)

v2
dx

)

= exp

(

−2κ |x− µ|
v2

)

,

which is the (symmetric) Laplace distribution, explained in the Appendix. Toda
(2012) explicitly solves the Fokker-Planck equation.

Example 3 (Brownian motion evaluated at exponential time). Consider the
diffusion

dX(t) = gdt+ vdBt,

which is just the Brownian motion with constant drift g and volatility v. Assume
that units die at Poisson rate δ > 0 and are reborn at x0. The FPE at steady
state is

0 = −gp′ +
1

2
v2p′′ − δp

except at x0, where I used the fact that g, v are constant. Since this is a linear
second-order ODE with constant coefficients, the general solution is

p(x) = C1e
λ1x + C2e

λ2x,

where λ1, λ2 are solutions to the quadratic equation

1

2
v2ξ2 − gξ − δ = 0. (4)

After some algebra, we can show that the stationary density is asymmetric
Laplace with model x0 and exponents α, β, where −α, β > 0 are solutions to
the above quadratic equation.

Example 4 (geometric Brorwnian motion with drift). Consider the diffusion

dX(t) = (gX(t) + q)dt+ vX(t)dBt,

which is the geometric Brownian motion with drift q > 0. The FPE at steady
state is

0 = − d

dx
[(gx+ q)p(x)] +

1

2

d2

dx2
[v2x2p(x)].

Solving this second-order ODE with boundary conditions p(x), p′(x) → 0 as
x → ∞ and

∫

p(x) = 1, we can show that the stationary density is the inverse
gamma distribution2 with density

p(x) =
βα

Γ(α)
x−α−1e−

β
x ,

where α = 1− 2g/v2 and β = 2q/v2 > 0.

2If X is gamma distributed, then the distribution of 1/X is inverse gamma.
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The economic interpretation of this example is as follows. If agents have
infinite lives, earn a constant labor income, and invest wealth into private equity
(which is subject to idiosyncratic multiplicative shocks), then the stationary
wealth distribution is inverse gamma. Furthermore, since β/x → 0 as x → ∞,
we have

P (X > x) ∼
∫ ∞

x

y−α−1dy ∼ x−α

as x → ∞, so the cross-sectional wealth distribution obeys the power law with
exponent α = 1 − 2g/v2. Benhabib et al. (2011) study a discrete-time version
of this model with optimizing agents.

4 Power law and the Laplace distribution

In this section I introduce the notion of the double power law and present
parametric distributions that satisfy it.

4.1 Power law

A nonnegative random variable X obeys the power law (in the upper tail) with
exponent α > 0 if

lim
x→∞

xαP (X > x) > 0

exists (Pareto, 1896, 1897; Mandelbrot, 1960, 1961).3 Recently, many economic
variables have been shown to obey the power law also in the lower tail, meaning
that

lim
x→0

x−βP (X < x) > 0

exists for some exponent β > 0. A random variable obeys the double power law
if the power law holds in both the upper and the lower tails. The double power
law has been documented in city size (Reed, 2002; Giesen et al., 2010), income
(Reed and Wu, 2008; Toda, 2011, 2012), and consumption and consumption
growth (Toda and Walsh, 2014). If X obeys the double power law with expo-
nents (α, β), then Xη obeys the double power law with exponents (α/η, β/η) if
η > 0 and (−β/η,−α/η) if η < 0. To see this, for example if η > 0 we have

P (Xη > x) = P (X > x
1

η ) ∼ x−α
η

as x → ∞, and other cases are similar. An important implication of this fact
is that the η-th moment E[Xη] exists if and only if −β < η < α. Since many
econometric techniques rely on the existence of some moments, recognizing a
power law is important.4

3See Gabaix (1999, 2009) for reviews of mechanisms generating the power law.
4For instance, Kocherlakota (1997) tests the representative agent, consumption-based cap-

ital asset pricing model (CAPM) by considering the possibility that the time series of aggre-
gate consumption growth may have fat tails. Toda and Walsh (2014) documents that cross-
sectional distributions of consumption and its growth rate have fat tails and the standard
GMM estimation of heterogeneous-agent CAPM models is susceptible to type II errors.
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4.2 Double Pareto and double Pareto-lognormal distribu-

tions

A canonical distribution that obeys the double power law is the double Pareto
distribution (Reed, 2001), which has the probability density function (PDF)

fdP(x) =

{

αβ
α+βM

αx−α−1, (x ≥ M)
αβ
α+βM

−βxβ−1, (0 ≤ x < M)
(5)

where M > 0 is a scale parameter (the mode if β > 1), and α, β > 0 are
shape parameters (power law exponents). The classical Pareto distribution with
minimum size M is a special case of the double Pareto distribution by letting
β → ∞ in (5).

The density of the double Pareto distribution has a cusp at M . An example
of a distribution with a smooth density that obeys the double power law is
the double Pareto-lognormal distribution (Reed, 2003), abbreviated as dPlN. A
dPlN random variable is defined as the product of independent double Pareto
and lognormal random variables. Its density is

fdPlN(x) =
αβ

α+ β

[

e
α2σ2

2
+αµΦ

(

log x−µ
σ − ασ

)

x−α−1

+e
β2σ2

2
−βµΦ

(

− log x−µ
σ − βσ

)

xβ−1

]

,

where α, β are the power law exponents of the double Pareto variable (with
M = 1), µ, σ are the mean and the standard deviation of the logarithm of
the lognormal variable, and Φ(·) denotes the cumulative distribution function
(CDF) of the standard normal distribution. As is clear from the above den-
sity, the double Pareto-lognormal distribution obeys the double power law with
exponents α, β.

The double Pareto distribution and the lognormal distribution are special
cases of the double Pareto-lognormal distribution by letting σ → 0 and α = β →
∞, respectively. This is an important point because it means the lognormal
distribution, which is nested within dPlN, can be tested against dPlN by the
likelihood ratio test.

4.3 Laplace and normal-Laplace distributions

Instead of working with double Pareto and dPlN random variables, it is often
more convenient to work with their logarithms. The logarithm of a double
Pareto random variable is called Laplace.5 By changing variables in (5) and
setting m = logM , the density of the Laplace distribution is given by

fL(x) =

{

αβ
α+β e

−α|x−m|, (x ≥ m)
αβ
α+β e

−β|x−m|, (x < m)
(6)

5Hence the Laplace and the double Pareto distributions have the same relation as the nor-
mal and the lognormal distributions. As an interesting historical remark, Laplace discovered
the Laplace distribution in 1774, which predates by a quarter of century the discovery of the
normal distribution by himself and Gauss in the early 1800s. For more historical background,
see Kotz et al. (2001).
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where m is the mode and α, β > 0 are scale parameters. A Laplace distribution
is said to be asymmetric if α 6= β. A comprehensive review of the Laplace
distribution can be found in Kotz et al. (2001).

The logarithm of a double Pareto-lognormal variable is called normal-Laplace
(Reed and Jorgensen, 2004), which is simply the convolution of independent
normal and Laplace random variables. The normal-Laplace distribution has
four parameters, a location parameter µ and three scale parameters σ, α, β > 0,
with probability density function

fNL(x)

=
αβ

α+ β

[

e
α2σ2

2
−α(x−µ)Φ

(

x−µ
σ − ασ

)

+ e
β2σ2

2
+β(x−µ)Φ

(

−x−µ
σ − βσ

)

]

(7)

and cumulative distribution function

FNL(x) = Φ

(

x− µ

σ

)

− 1

α+ β

[

βe
α2σ2

2
−α(x−µ)Φ

(

x−µ
σ − ασ

)

−αe
β2σ2

2
+β(x−µ)Φ

(

−x−µ
σ − βσ

)

]

. (8)

Again the Laplace and the normal distributions are special cases of the normal-
Laplace distribution by letting σ → 0 and α = β → ∞, respectively, and
therefore can be tested against the normal-Laplace distribution by the likelihood
ratio test.

Using (6), the characteristic function of a Laplace random variable X is

φX(t) =

∫ m

−∞

eitx
αβ

α+ β
e−β|x−m|dx+

∫ ∞

m

eitx
αβ

α+ β
e−α|x−m|dx

=
eimt

1− i( 1
α − 1

β )t+
t2

αβ

, (9)

from which we obtain the mean m+ 1
α − 1

β and the variance 1
α2 +

1
β2 . It is often

useful to parameterize the Laplace distribution in terms of its characteristic

function. Letting a = 1
α − 1

β be an asymmetry parameter and σ =
√

2
αβ be a

scale parameter in (9), we write X ∼ AL(m, a, σ) if

φX(t) =
eimt

1− iat+ σ2t2

2

. (10)

The mean, mode, and variance of AL(m, a, σ) are m + a, m, and a2 + σ2,
respectively. Comparing (9) and (10), we obtain 1/α−1/β = a and αβ = 2/σ2,
so −α and β are the solutions to the quadratic equation

σ2

2
ζ2 − aζ − 1 = 0. (11)

Perhaps the most important property of the Laplace distribution is that
it is the only limit distribution of geometric sums. Theorem 1 below (which
generalizes the i.i.d. case reviewed in Kotz et al. (2001)) shows that it is a robust
property that the limit of a geometric sum is a Laplace distribution.
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Theorem 1. Let {Xn}∞n=1 be a sequence of zero mean random variables such

that the central limit theorem holds, N−1/2
∑N

n=1 Xn
d−→ N(0, σ2); {an}∞n=1 be a

sequence such that N−1
∑N

n=1 an → a; and νp be a geometric random variable
with mean 1/p independent from {Xn}∞n=1. Then as p → 0 we have

p
1

2

νp
∑

n=1

(Xn + p
1

2 an)
d−→ AL(0, a, σ).

Proof. For w > 0 and 0 < p < 1, define Np(w) = ⌈−w/ log(1− p)⌉, the integer
obtained by rounding up −w/ log(1 − p) > 0. If W is standard exponential,
then νp = Np(W ) (in distribution). In fact,

Pr[Np(W ) = n] = Pr[n− 1 < −W/ log(1− p) ≤ n]

=

∫ −n log(1−p)

−(n−1) log(1−p)

e−wdw = (1− p)n−1 − (1− p)n = (1− p)n−1p.

Since − log(1− p) ≈ p for small p, it follows that Np(w) → ∞ and pNp(w) → w
as p → 0. Conditioning on W = w, since by assumption the central limit
theorem holds, as p → 0 we obtain

p
1

2

Np(w)
∑

n=1

(Xn + p
1

2 an) =

√

pNp(w)
√

Np(w)

Np(w)
∑

n=1

Xn +
pNp(w)

Np(w)

Np(w)
∑

n=1

an
d−→

√
wσZ +wa,

where Z is a standard normal variable. Therefore

p
1

2

νp
∑

n=1

(Xn + p
1

2 an) = p
1

2

Np(W )
∑

n=1

(Xn + p
1

2 an)
d−→

√
WσZ + aW,

where W is standard exponential that is independent of Z. The claim follows
since its characteristic function is

E
[

exp(it(
√
WσZ + aW ))

]

= E
[

E
[

exp(it(
√
WσZ + aW ))

∣

∣

∣
W

]]

=

∫ ∞

0

eiatw− 1

2
σ2t2we−wdw =

1

1− iat+ σ2t2

2

,

which is the characteristic function of AL(0, a, σ) in (10).

4.4 Literature

Gabaix (2009) is a nice literature review of the power law. The definition of
the double Pareto distribution and its generative mechanism (geometric Brow-
nian motion evaluated at exponential time) are due to Reed (2001). The dou-
ble Pareto distribution has been obtained in a general equilibrium model in
Benhabib et al. (2014) and Toda (2014). Theorem 1 is due to Toda (2014).

Exercises

1. Following the hints below, show that the stationary distribution of the Brow-
nian motion evaluated at exponential time (Example 3) is asymmetric Laplace.
Let −α, β > 0 be the solution to the quadratic equation (4).
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1. Using the general solution and the fact that p(x) → 0 as x → ∞, show
that p(x) = C+e

−αx for some C+ > 0 when x > x0.

2. Using the general solution and the fact that p(x) → 0 as x → −∞, show
that p(x) = C−e

βx for some C− > 0 when x < x0.

3. Using the continuity of p(x) at x = x0, show that p(x) is asymmetric
Laplace with model x0 and exponents α, β.

2. Fill in the details of the derivation of the stationary density in Example 4
(inverse gamma).
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