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Abstract

This note explains the basics of stochastic calculus and control. More
details can be found in Chang (2004), Shreve (2004), and references
therein. The formal theory of stochastic calculus is hard, but its intu-
itive understanding and applications are manageable.

1 Brownian motion

Let (Ω,F , P ) be a probability space. The discrete-time stochastic process
{X(t)}∞t=0 is called a random walk if X(0) = 0 and X(t) = X(t− 1) + εt, where
{εt}∞t=1 is i.i.d. with mean 0 and variance σ2. Let 0 = t0 < t1 < t2 < · · · < tN .

We can easily show that the random variables {X(tn)−X(tn−1)}Nn=1 are inde-
pendent, mean zero, and

Var[X(tn)−X(tn−1)] = σ2(tn − tn−1).

Now divide the time interval [t, t + 1) into subintervals with equal length ∆t,
where 1/∆t is the number of subintervals. In order to define X(t) on the bound-
ary points of these intervals, it is natural to define

X(t) =

t/∆t∑
k=1

uk,

where {uk}∞k=0 is i.i.d. with mean zero. Since σ2t = Var[X(t)] = (t/∆t) Var[uk]
at integer t, we must have Var[uk] = σ2∆t. In this case, for 0 = t0 < t1 <

· · · < tN , it is still true that the random variables {X(tn)−X(tn−1)}Nn=1 are
independent, mean zero, and

Var[X(tn)−X(tn−1)] = σ2(tn − tn−1).

Furthermore, by letting ∆t→ 0, since there will be more and more uk’s between
time t > s, by the central limit theorem we have

X(t)−X(s) ∼ N(0, σ2(t− s)).

Formally, the continuous-time stochastic process {X(t)}t≥0 is a Brownian
motion if
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1. X(0) = 0,

2. the sample path t 7→ X(t) is continuous almost surely, and

3. for 0 < t1 < · · · < tN , the random variables {X(tn)−X(tn−1)}Nn=1 are
independent, and X(t)−X(s) ∼ N(0, σ2(t− s)) for t > s.

When σ2 = 1 we say that X(t) is standard Brownian motion, which is often
denoted by B(t), Bt, W (t), or Wt.

1

We can also consider the multidimensional Brownian motion. X : [0,∞) ×
Ω→ Rd is a d-dimensional Brownian motion if X(0) = 0, t 7→ X(t) has contin-
uous sample paths, and X has independent increments with

X(t)−X(s) ∼ N(0, (t− s)Σ),

where Σ is a positive semidefinite instantaneous variance matrix.

2 Stochastic calculus

2.1 Stochastic integral

Now that we defined the Brownian motion, we want to do calculus (integration
and differentiation) of functions of the Brownian motion. Let {Ft}t≥0 be a
filtration, that is, an increasing sequence of σ-algebra. Assume a : [0,∞) × Ω
and B is adapted to {Ft}, so a(t, ·) and B(t, ·) are Ft-measurable. First, we
make sense of the integral ∫ T

0

a(t, ω) dB(t).

If a is constant in time, so a(t, ω) = a(ω), it is natural to define∫ T

0

a(ω) dB(t) = a(ω)B(T ).

If a is a step function in time, so there exist 0 = t0 < t1 < · · · < tN = T such
that a(t, ω) is constant on each interval [tn−1, tn), by carrying out the integral
over each subinterval, it is natural to define∫ T

0

a(t, ω) dB(t) =

N∑
n=1

a(tn−1, ω)(B(tn)−B(tn−1)).

In general, assume that t 7→ a(t, ω) has sample paths that are continuous
from the right (so lims↓t a(s, ω) = a(t, ω)) and have limits from the left (so
lims↑t a(s, ω) exists). Such functions are called càdlàg, which is the abbreviation
of the French sentence “continue à droite, limite à gauche” (meaning “continuous
at right, limit at left”). If a is càdlàg, it is natural to define∫ T

0

a(t, ω) dB(t) = lim

N∑
n=1

a(tn−1, ω)(B(tn)−B(tn−1)), (1)

1Since Norbert Wiener developed the mathematical theory of the Brownian motion, it is
also called the Wiener process, hence the notation W (t). In economics and finance, the letter
W is often reserved for wealth, so B is more common.
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where the limit is taken over all partitions 0 = t0 < t1 < · · · < tN = T
that become finer and finer. Using a similar argument to the definition of the
Riemann integral, we can show that this definition makes sense for functions
that are square integrable with finite variance,

E

[∫ T

0

|a(t, ω)|2 dt

]
<∞.

The definition of the stochastic integral (also known as the Itô integral) (1)
is very much similar to the definition of the Riemann-Stieltjes integral∫ b

a

f(x) dg(x) = lim

N∑
n=1

f(ξn)(g(xn)− g(xn−1)), (2)

where a = x0 < x1 < · · · < xN = b and ξn is a point in the interval [xn−1, xn].
The only difference is that in the definition of the stochastic integral (1), the
integrand a(t, ω) is evaluated at the left of the interval, tn−1. On the other
hand, in the definition of the Riemann-Stieltjes integral (2), the integrand f(x)
is evaluated at an arbitrary point ξn ∈ [xn−1, xn]. The reason is that the limit
(1) will depend on the choice of the evaluation point.2 In economics and finance,
since agents act upon current information, it is natural to use the left point, for
otherwise the agent must know the future in order to calculate the stochastic
integral.

For example, let us compute
∫ T

0
B dB. Divide [0, T ] into N equally spaced

intervals, so the boundary points are tn = nT/N for n = 0, 1, . . . , N . For
notational simplicity let B(tn) = Bn. Then∫ T

0

B dB ≈
N∑
n=1

B(tn−1)(B(tn)−B(tn−1))

=

N∑
n=1

Bn−1(Bn −Bn−1)

=

N∑
n=1

1

2

(
B2
n −B2

n−1 − (Bn −Bn−1)2
)

=
1

2
B(T )2 − 1

2

1

N

N∑
n=1

(
√
N(Bn −Bn−1))2.

By the definition of the Brownian motion, the random variables
{√

N(Bn −Bn−1)
}N
n=1

are independent, zero mean, and have variance N(tn − tn−1) = NT/N = T .
Therefore by the law of large numbers, as N →∞ we have

1

N

N∑
n=1

(
√
N(Bn −Bn−1))2 a.s.−−→ T.

2The integral using the mid point (tn + tn−1)/2 is called the Stratonovich integral, but we
will never use it.
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Therefore letting N →∞, we get∫ T

0

B dB =
1

2
B(T )2 − 1

2
T.

In stochastic calculus, it makes our life easy to work with differentials like dt
and dB instead of integrals. The rules to remember are (dt)2 = 0, dtdB = 0,
and (dB)2 = dt. The justifications are

N∑
n=1

(tn − tn−1)2 → 0, (3a)

N∑
n=1

(tn − tn−1)(B(tn)−B(tn−1))
a.s.−−→ 0, (3b)

N∑
n=1

(B(tn)−B(tn−1))2 a.s.−−→ T =

∫ T

0

dt, (3c)

respectively.
We can define stochastic integrals with respect to other stochastic processes.

For example, suppose that X(t) satisfies

X(t) = X(0) +

∫ t

0

g(s, ω) ds+

∫ t

0

v(s, ω) dB(s)

for all t ≥ 0, where g, v are adapted processes. Such a process is called a diffusion
(or an Itô process), and is compactly written as

dX(t) = g(t, ω) dt+ v(t, ω) dB(t).

g, v are called the drift and the diffusion coefficients. Intuitively, g, v are the
instantaneous growth and volatility (hence the letters g, v)). Using differentials
for the Brownian motion, we can justify the notations dtdX = 0 and (dX)2 =
v2 dt, for example.

Then we can define the stochastic integral with respect to X by∫ T

0

a(t, ω) dX(t) =

∫ T

0

a(t, ω)g(t, ω) dt+

∫ T

0

a(t, ω)v(t, ω) dB(t).

If X is multidimensional, then the stochastic integral is defined element-by-
element.

2.2 Itô’s formula

In ordinary calculus, we almost never use the definition of the Riemann integral
for computation. Instead, we use the fundamental theorem of calculus,∫ b

a

f ′(x) dx = f(b)− f(a),

which holds if f is C1 (or more generally, absolutely continuous: see Folland
(1999)). We can symbolically write df(x) = f ′(x) dx. Itô’s formula is just the
stochastic version of this.
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Let {X(t)}t≥0 be a stochastic process with continuous sample paths, for

example Brownian motion. Let f be a C2 function. Let 0 < t1 < t2 < · · · <
tN = t and X(tn) = Xn. Then by Taylor’s theorem,

f(X(t))− f(X(0)) =

N∑
n=1

(f(X(tn))− f(X(tn−1)))

=

N∑
n=1

[
f ′(Xn−1)(Xn −Xn−1) +

1

2
f ′′((1− θn)Xn−1 + θnXn)(Xn −Xn−1)2

]
,

where θn ∈ [0, 1]. If X(t) = B(t) is Brownian motion, letting N → ∞ the first
term converges to the stochastic integral∫ T

0

f ′(B) dB.

By the continuity of f ′′ and a similar argument as in the calculation of
∫ T

0
B dB

above, the second term converges to the Riemann integral∫ T

0

1

2
f ′′(B) dt.

Therefore

f(B(t))− f(B(0)) =

∫ T

0

f ′(B) dB +

∫ T

0

1

2
f ′′(B) dt,

which we write symbolically as

df(B) = f ′(B) dB +
1

2
f ′′(B) dt. (4)

(4) is known as Itô’s formula, or Itô’s lemma.3

If f = f(t, x) also depends on time directly, by a similar argument we get

f(B(t))− f(B(0)) =

∫ T

0

ft(t, B) dt+

∫ T

0

fx(t, B) dB +

∫ T

0

1

2
fxx(t, B) dt,

which we write as

df(t, B) = ft dt+ fx dB +
1

2
fxx dt.

An easier way to remember might be

df(t, B) = ft dt+ fx dB +
1

2
fxx(dB)2,

since (dB)2 = dt.
If f = f(t, x) and X(t) is a general diffusion satisfying

dX = g dt+ v dB,

3There is a mathematical joke that all important theorems are called lemmas. Examples
are Itô’s lemma and Zorn’s lemma.
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then by a similar argument we can show

df(t,X) = ft dt+ fx dX +
1

2
fxx(dX)2

= ft dt+ fx(g dt+ v dB) +
1

2
fxxv

2 dt

=

(
ft + gfx +

1

2
v2fxx

)
dt+ vfx dB.

Therefore if X is a diffusion and f is a C2 function, then f(t,X) is also a
diffusion.

We can also consider the multidimensional Itô’s formula. If

dX = g dt+ V dB,

where g is dx×1, V is dx×db, and B is a db-dimensional Brownian motion with
instantaneous variance Σ, then by analogy we get

df(t,X) = ft dt+ fx dX +
1

2
(dX)′fxx(dX)

= ft dt+ fx(g dt+ V dB) +
1

2
(V dB)′fxx(V dB)

= ft dt+ fx(g dt+ V dB) +
1

2
(dB)′V ′fxxV (dB)

= ft dt+ fx(g dt+ V dB) +
1

2
tr[(dB)′(V ′fxxV )(dB)]

= ft dt+ fx(g dt+ V dB) +
1

2
tr[fxxV (dB)(dB)′V ′]

= ft dt+ fx(g dt+ V dB) +
1

2
tr[fxx(V ΣV ′)] dt

=

(
ft + fxg +

1

2
tr[fxx(V ΣV ′)]

)
dt+ fxV dB.

Don’t try to remember these formulas. The only things you need to do to recover
these formulas are

1. Taylor expand the function f(t, x) to the second order, and

2. use the rules (dt)2 = 0, dtdB = 0, and (dB)(dB)′ = Σ dt.

3 Stochastic control

3.1 Hamilton-Jacobi-Bellman equation

In basic calculus, after learning differentiation, we apply it to optimization. The
same holds for stochastic calculus. Consider the problem

maximize E0

[∫ ∞
0

f(s,X(s), Y (s)) ds

]
subject to dX(t) = g(t,X(t), Y (t)) dt+ V (t,X(t), Y (t)) dB,

X(0) given,
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where f is continuous, C1 in t, and C2 in x, X(t) is the state variable, Y (t)
is the control variable, and B is a multidimensional Brownian motion with
instantaneous variance Σ.

In discrete-time, we solve such dynamic programming problems by deriving
the Bellman equation. The same is true for continuous-time. Let

J(t, x) = sup
{Y (s)}s≥t

Et

[∫ ∞
t

f(s,X(s), Y (s)) ds

]
be the value function from time t on, i.e., the maximum continuation value at
time t when the state is X(t) = x. If ∆t is small, by the Bellman equation for
the discrete-time, we get

J(t, x) ≈ sup
y
{f(t, x, y)∆t+ Et[J(t+ ∆t, x+ ∆x)]}

⇐⇒ 0 ≈ sup
y
{f(t, x, y)∆t+ Et[∆J ]} ,

where ∆J = J(t + ∆t, x + ∆x) − J(t, x). Dividing both sides by ∆t > 0 and
letting ∆t→ 0, we get

0 = sup
y
{f(t, x, y) + Et[dJ ]/ dt} .

Of course, we need to make sense of Et[dJ ]/dt. By Itô’s formula, we get

dJ =

(
Jt + Jxg +

1

2
tr[Jxx(V ΣV ′)]

)
dt+ JxV dB.

Taking expectations and noting that the increment of Brownian motion is nor-
mal (hence zero mean), we get

Et[dJ ] =

(
Jt + Jxg +

1

2
tr[Jxx(V ΣV ′)]

)
dt.

Therefore the Bellman equation reduces to

0 = sup
y

{
f(t, x, y) + Jt + Jxg +

1

2
tr[Jxx(V ΣV ′)]

}
. (5)

(5) is known as the Hamilton-Jacobi-Bellman (HJB) equation.
(5) is particularly useful for finding the solution. The plan {(X(t), Y (t))}t≥0

is called feasible if it satisfies the constraint. We can prove the following theorem.

Theorem 1. Let J(t, x) be C1 in t and C2 in x, {(X(t), Y (t))}t≥0 be feasible,

and E0

[∫∞
0
|f(s,X(s), Y (s))|ds

]
<∞. If (i) J(t, x) satisfies the HJB equation

(5), and (ii) the transversality condition

lim
T→∞

Et[J(T,X(T ))] = 0

holds, then

Et

[∫ ∞
t

f(s,X(s), Y (s)) ds

]
≤ Jt(X(t)).

Equality holds if y = Y (t) is the arg max of the HJB equation at x = X(t).
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Proof. By the Bellman equation, we get

f(s,X(s), Y (s)) ≤ −
(
Jt + Jxg +

1

2
tr[Jxx(V ΣV ′)]

)
.

Integrating from s = t to s = T , we get∫ T

t

f(s,X(s), Y (s)) ds ≤ −
∫ T

t

(
Jt + Jxg +

1

2
tr[Jxx(V ΣV ′)]

)
ds.

Taking conditional expectations, noting that the Brownian motion has zero
mean increments (i.e., it is a martingale), and using Itô’s formula, we get

Et

[∫ T

t

f(s,X(s), Y (s)) ds

]

≤ −Et

[∫ T

t

(
Jt + Jxg +

1

2
tr[Jxx(V ΣV ′)]

)
ds

]

= −Et

[∫ T

t

(
Jt + Jxg +

1

2
tr[Jxx(V ΣV ′)]

)
ds+ Jxg dB

]
= J(t,X(t))− Et[J(T,X(T ))].

Letting T → ∞ and invoking the Dominated Convergence Theorem and the
transversality condition, we get

Et

[∫ ∞
t

f(s,X(s), Y (s)) ds

]
≤ Jt(X(t)).

In summary, if the value function is smooth, the HJB equation is neces-
sary. Conversely, HJB equation and transversality condition are sufficient for
optimality.

Remark. In many applications, utilities are discounted, so f(t, x, y) = e−βtu(x, y).
In this case, letting J̃(x) = eβtJ(t, x) be the undiscounted value function, the
HJB equation (5) reduces to

0 = max
y

{
u(x, y)− βJ̃ + J̃xg +

1

2
tr[J̃xx(V ΣV ′)]

}
. (6)

3.2 Merton (1971)

As an application of stochastic control, consider the classic Merton (1971) opti-
mal consumption-portfolio problem. In this model, the investor has flow utility
u(ct) from consumption and can invest in a risk-free asset (with interest rate r)
and risky assets indexed by k = 1, . . . ,K. The price of asset k evolves according
to the diffusion

dPk/Pk = µk dt+ σk dBk,

where µk is the expected return, σk is the volatility, and Bk is a standard
Brownian motion (it may be correlated across assets). Letting wt be the wealth
of agent at time t and θt be the portfolio, the budget constraint is

dwt = ((r + (µ− r1)′θt)wt − ct) dt+

J∑
k=1

θkwtσk dBk.
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The state variable is wealth w and the control variables are consumption c and
portfolio θ. The HJB equation in undiscounted form is

0 = max
c,θ

{
u(c)− βJ + J ′(w)[(r + (µ− r1)′θ)w − c] +

1

2
w2J ′′(w)θ′Σθ

}
,

where Σ is the instantaneous variance of the Brownian motion. The first-order
condition with respect to c is

u′(c) = J ′(w).

The first-order condition with respect to θ is

wJ ′(w)(µ− r1) + w2J ′′(w)Σθ = 0 ⇐⇒ θ = − J ′(w)

wJ ′′(w)
Σ−1(µ− r1).

If u(c) = c1−γ

1−γ , by homotheticity we can guess J(w) = Aw1−γ

1−γ for some A > 0,
and the optimal portfolio is

θ =
1

γ
Σ−1(µ− r1).

Substituting the optimal portfolio into the HJB equation, we can also solve for
the optimal consumption rule, which is ct = mwt with

m = βε+ (1− ε)
(
r +

1

2γ
(µ− r1)′Σ−1(µ− r1)

)
, (7)

where ε = 1/γ is the elasticity of intertemporal substitution. See Merton (1969,
1971) for more details and Svensson (1989) for the case with Epstein-Zin pref-
erence (the formula is the same). For recursive utility in continuous-time, see
Duffie and Epstein (1992a,b).

3.3 Saito (1998)

A useful trick to obtain heterogeneous-agent general equilibrium models that
are analytically tractable is to use the optimal portfolio problem as the building
block. The simplest of such models is Saito (1998).4

There are two technologies indexed by j = 1, 2. Capital invested in technol-
ogy 1 (stock market) evolves according to the geometric Brownian motion

dKt/Kt = µ1 dt+ σ1 dB1t.

Capital invested in technology 2 (private equity, human capital, etc.) is subject
to aggregate and idiosyncratic risks and evolves according to

dKt/Kt = µ2 dt+ σ2 dB2t + σi dBit.

4Other interesting papers of this type are Angeletos and Panousi (2011), Benhabib et al.
(2011); ? (continuous-time) and Constantinides and Duffie (1996), Krebs (2003a,b, 2006,
2007), Toda (2014, 2015) (discrete-time), which use the CRRA preference with multiplicative
shocks. It is also possible to use the CARA preference with additive shocks. See Calvet
(2001), Angeletos and Calvet (2005, 2006), and Wang (2007).
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Here B1t, B2t are standard Brownian motions satisfying dB1 dB2 = ρdt, where
−1 ≤ ρ ≤ 1 is the correlation coefficient, and Bit is a standard Brownian motion
for agent i, which is i.i.d. across agents and independent from aggregate shocks
B1, B2. Each agent maximizes the the CRRA utility

E0

[∫ ∞
0

e−βt
c1−γt

1− γ
dt

]
.

subject to the budget constraint

dwt = (1− θ1 − θ2)rwt dt+ θ1(µ1 dt+ σ1 dB1t)wt

+ θ2(µ2 dt+ σ2 dB2t + σi dBit)wt − ct dt,

where r is the (equilibrium) risk-free rate and θ = (θ1, θ2) is the portfolio of tech-
nologies. This problem is a standard Merton (1971) type optimal consumption-
portfolio problem except that I use recursive utility, which has been solved by
Svensson (1989). Letting

µ =

[
µ1

µ2

]
and Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2 + σ2

i

]
,

the optimal portfolio is

θ =
1

γ
Σ−1(µ− r1)

and the optimal consumption rule is ct = mwt, where the marginal propensity
to consume out of wealth is

m = βε+ (1− ε)
(
r +

1

2γ
(µ− r1)′Σ−1(µ− r1)

)
,

where ε = 1/γ is EIS.
So far, it’s just a straightforward partial equilibrium application of Merton.

To make it general equilibrium, note that the portfolio choice is the same for
every agent. Since the risk-free asset is in zero net supply, in equilibrium nobody
holds the risk-free asset. The market clearing condition is therefore

1− θ1 − θ2 = 0 ⇐⇒ 1′
1

γ
Σ−1(µ− r1) = 1

⇐⇒ r =
1′Σ−1µ− γ
1′Σ−11

.

You can see that the idiosyncratic shock generically affects the risk-free rate and
the risk premia (which I discuss in detail in Toda (2015)). For example, assume
µ1 = µ2 = µ, so the expected return on the stock market and the private equity
is the same. Then the risk-free rate becomes (after some algebra)

r = µ− γ

1Σ−11
= µ− γ((1− ρ2)σ2

1σ
2
2 + σ2

1σ
2
i )(σ2

1 − 2ρσ1σ2 + σ2
2 + σ2

i ).

The equity premium is

γ((1− ρ2)σ2
1σ

2
2 + σ2

1σ
2
i )(σ2

1 − 2ρσ1σ2 + σ2
2 + σ2

i ) > 0

for both assets, and it is increasing in the idiosyncratic volatility σi.
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Exercises

1. Prove (3a) and (3b). ((3c) is already proved in the text.)

2. Prove (6).

3. Derive (7).

References

George-Marios Angeletos and Laurent-Emmanuel Calvet. Incomplete-market
dynamics in a neoclassical production economy. Journal of Mathematical Eco-
nomics, 41(4-5):407–438, August 2005. doi:10.1016/j.jmateco.2004.09.005.

George-Marios Angeletos and Laurent-Emmanuel Calvet. Idiosyncratic produc-
tion risk, growth and the business cycle. Journal of Monetary Economics, 53:
1095–1115, 2006. doi:10.1016/j.jmoneco.2005.05.016.

George-Marios Angeletos and Vasia Panousi. Financial integration, en-
trepreneurial risk and global dynamics. Journal of Economic Theory, 146
(3):863–896, May 2011. doi:10.1016/j.jet.2011.02.001.

Jess Benhabib, Alberto Bisin, and Shenghao Zhu. The distribution of wealth
and fiscal policy in economies with finitely lived agents. Econometrica, 79(1):
123–157, January 2011. doi:10.3982/ECTA8416.

Laurent-Emmanuel Calvet. Incomplete markets and volatility. Journal of Eco-
nomic Theory, 98(2):295–338, June 2001. doi:10.1006/jeth.2000.2720.

Fwu-Ranq Chang. Stochastic Optimization in Continuous Time. Cambridge
University Press, 2004.

George M. Constantinides and Darrell Duffie. Asset pricing with heteroge-
neous consumers. Journal of Political Economy, 104(2):219–240, April 1996.
doi:10.1086/262023.

Darrell Duffie and Larry G. Epstein. Stochastic differential utility. Economet-
rica, 60(2):353–394, March 1992a. doi:10.2307/2951600.

Darrell Duffie and Larry G. Epstein. Asset pricing with stochastic dif-
ferential utility. Review of Financial Studies, 5(3):411–436, 1992b.
doi:10.1093/rfs/5.3.411.

Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications.
John Wiley & Sons, Hoboken, NJ, second edition, 1999.

Tom Krebs. Human capital risk and economic growth. Quarterly Journal of
Economics, 118(2):709–744, 2003a. doi:10.1162/003355303321675491.

Tom Krebs. Growth and welfare effects of business cycles in economies with
idiosyncratic human capital risk. Review of Economic Dynamics, 6(4):846–
868, October 2003b. doi:10.1016/S1094-2025(03)00030-9.

http://dx.doi.org/10.1016/j.jmateco.2004.09.005
http://dx.doi.org/10.1016/j.jmoneco.2005.05.016
http://dx.doi.org/10.1016/j.jet.2011.02.001
http://dx.doi.org/10.3982/ECTA8416
http://dx.doi.org/10.1006/jeth.2000.2720
http://dx.doi.org/10.1086/262023
http://dx.doi.org/10.2307/2951600
http://dx.doi.org/10.1093/rfs/5.3.411
http://dx.doi.org/10.1162/003355303321675491
http://dx.doi.org/10.1016/S1094-2025(03)00030-9


Fall 2014 Econ 272 Intertemporal Asset Pricing Alexis Akira Toda

Tom Krebs. Recursive equilibrium in endogenous growth models with incom-
plete markets. Economic Theory, 29(3):505–523, 2006. doi:10.1016/S0165-
1889(03)00062-9.

Tom Krebs. Job displacement risk and the cost of business cycles. American
Economic Review, 97(3):664–686, June 2007. doi:10.1257/aer.97.3.664.

Robert C. Merton. Lifetime portfolio selection under uncertainty: The
continuous-time case. Review of Economics and Statistics, 51(3):247–257,
August 1969. doi:10.2307/1926560.

Robert C. Merton. Optimum consumption and portfolio rules in a continuous-
time model. Journal of Economic Theory, 3(4):373–413, December 1971.
doi:10.1016/0022-0531(71)90038-X.

Makoto Saito. A simple model of incomplete insurance: The case of permanent
shocks. Journal of Economic Dynamics and Control, 22(5):763–777, May
1998. doi:10.1016/S0165-1889(97)00077-8.

Steven E. Shreve. Stochastic Calculus for Finance II—Continuous-Time Models.
Springer Finance. Springer, New York, 2004.

Lars E. O. Svensson. Portfolio choice with non-expected utility in continuous
time. Economics Letters, 30(4):313–317, October 1989. doi:10.1016/0165-
1765(89)90084-0.

Alexis Akira Toda. Incomplete market dynamics and cross-sectional dis-
tributions. Journal of Economic Theory, 154:310–348, November 2014.
doi:10.1016/j.jet.2014.09.015.

Alexis Akira Toda. Asset prices and efficiency in a Krebs econ-
omy. Review of Economic Dynamics, 18(4):957–978, October 2015.
doi:10.1016/j.red.2014.11.003.

Neng Wang. An equilibrium model of wealth distribution. Jour-
nal of Monetary Economics, 54(7):1882–1904, October 2007.
doi:10.1016/j.jmoneco.2006.11.005.

http://dx.doi.org/10.1016/S0165-1889(03)00062-9
http://dx.doi.org/10.1016/S0165-1889(03)00062-9
http://dx.doi.org/10.1257/aer.97.3.664
http://dx.doi.org/10.2307/1926560
http://dx.doi.org/10.1016/0022-0531(71)90038-X
http://dx.doi.org/10.1016/S0165-1889(97)00077-8
http://dx.doi.org/10.1016/0165-1765(89)90084-0
http://dx.doi.org/10.1016/0165-1765(89)90084-0
http://dx.doi.org/10.1016/j.jet.2014.09.015
http://dx.doi.org/10.1016/j.red.2014.11.003
http://dx.doi.org/10.1016/j.jmoneco.2006.11.005

	Brownian motion
	Stochastic calculus
	Stochastic integral
	Itô's formula

	Stochastic control
	Hamilton-Jacobi-Bellman equation
	merton1971
	saito1998


