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Models of wealth inequality

I Studying wealth inequality has become quite popular recently.

I Wealth inequality arises in heterogeneous-agent models.

I Literature has considered two types of uninsurable
idiosyncratic income risks:

Endowment risk Bewley (ECMA 1983), Huggett (JEDC
1993), Aiyagari (QJE 1994), Krusell & Smith
(JPE 1998), Calvet (JET 2001), Angeletos &
Calvet (JMathE 2005, JME 2006), Wang (JME
2007), . . .

Investment risk Krebs (QJE 2003), Cagetti & De Nardi (JPE
2006), Angeletos (RED 2007), Luttmer (QJE
2007, REStud 2011), Benhabib, Bisin, & Zhu
(ECMA 2011, JET 2015, MD 2016), Toda (JET
2014), Toda & Walsh (JPE 2015), Aoki & Nirei
(AEJ:Mac 2016), Gabaix, Lasry, Lions, & Moll
(ECMA 2016), . . .



Endowment risk alone is insufficient

I It has been known (numerically) at least since late 90’s that
endowment risk alone is insufficient to generate fat-tailed
(Pareto) wealth distribution observed in data.

I Intuition: since labor income risk is transitory, there is no
incentive to accumulate a lot of wealth.

I To get realistic wealth distribution, Krusell & Smith (1998)
assume that discount factor is stochastic, and so is saving
rate.



Random growth generates Pareto tails

I Incidentally, since late 90’s random growth models have been
used to explain Pareto tails (many papers by Gabaix, Reed,
Benhabib, Bisin, & Zhu, Toda)

I Summary of some results:
I Random growth (St = GtSt−1) with a lower reflective

boundary generates power law (Gabaix, 1999)
I Geometric Brownian motion with birth/death generates double

Pareto distribution (Reed, 2001)
I Also true in discrete time with arbitrary shocks (Toda, 2014)
I In micro-founded OLG model with inheritance, investment risk

generates power law (Benhabib, Bisin, & Zhu, 2011), using
Kesten (1973) process



Simple model with investment risk

I Heterogeneous agents with log utility E0
∑∞

t=0 β
t log ct

I Linear investment technology with idiosyncratic stochastic
return Rt+1

I Budget constraint: wt+1 = Rt+1(wt − ct)

I Optimal consumption rule is ct = (1− β)wt , hence
wt+1 = βRt+1wt : random growth

I logwt+1 = logwt + Xt+1, where Xt = log βRt . Can show that
when agents die and are born with constant probability
(perpetual youth model), then logwt has exponential tails
(Beare & Toda, WP), so wt has Pareto tails

I Note: random discount factor β plays same role as random
returns
=⇒ explains why Krusell & Smith (1998) needed random β



How about labor income risk?

I In general, hard to (analytically) solve models with labor
income risk

I For tail behavior, only decision rule for large wealth is
important, so assume an affine consumption rule c = aw + b

I Then wealth accumulation is of the form

wt+1 = At+1wt + Bt+1,

which is known as Kesten (1973) process
I Authors show that in this case, stationary wealth distribution

has a Pareto upper tail, which is the fatter tail of either

1. labor income process itself, or
2. an exponent determined solely by capital income risk

I Implication: labor income risk does not help to generate a
fatter tail in wealth



Comments

I Nice negative result

I It would be even better if authors have a truly micro-founded
model

I Suggestion: use CARA, because it goes well along with
additive shocks (Calvet, 2001; Wang, 2007)



Bewley-Aiyagari economy with CARA utilities

I Agents maximize E0
∑∞

t=0 β
tu(ct), where u(c) = e−γc/γ is

CARA

I Constant gross risk-free rate R (no capital risk), i.i.d. income
y

I Only state variable is wealth w ; can guess
V (w) = − 1

γae
−γ(aw+b) for some a, b

I By guess-and-verify, it turns out that consumption rule is
c = aw + b, a = 1− 1/R, and

b =
1

γ(1− R)
log βR E[e−γ(1−1/R)y ]



Wealth distribution in Bewley-Aiyagari economies

I Wealth accumulation is wt+1 = wt − bR + yt+1, so wealth is
random walk in levels (not logs)!

I No stationary distribution if agents infinitely lived; with
constant birth/death, wealth distribution is Laplace (thin
tailed)

I Obtain similar results if income is AR(1) with arbitrary shocks

I Theoretically explains why Bewley-Aiyagari models cannot
generate fat-tailed wealth distribution


