Discussion of "Earnings Inequality and Other Determinants of Wealth Inequality" by Benhabib, Bisin, and Luo

Alexis Akira Toda

University of California, San Diego

2017 ASSA Meeting January 7, 2017

Models of wealth inequality

- Studying wealth inequality has become quite popular recently.
- Wealth inequality arises in heterogeneous-agent models.
- Literature has considered two types of uninsurable idiosyncratic income risks:

Endowment risk Bewley (ECMA 1983), Huggett (JEDC 1993), Aiyagari (QJE 1994), Krusell & Smith (JPE 1998), Calvet (JET 2001), Angeletos & Calvet (JMathE 2005, JME 2006), Wang (JME 2007), ...

Investment risk Krebs (QJE 2003), Cagetti & De Nardi (JPE 2006), Angeletos (RED 2007), Luttmer (QJE 2007, REStud 2011), Benhabib, Bisin, & Zhu (ECMA 2011, JET 2015, MD 2016), Toda (JET 2014), Toda & Walsh (JPE 2015), Aoki & Nirei (AEJ:Mac 2016), Gabaix, Lasry, Lions, & Moll (ECMA 2016), ...

Endowment risk alone is insufficient

- It has been known (numerically) at least since late 90's that endowment risk alone is insufficient to generate fat-tailed (Pareto) wealth distribution observed in data.
- Intuition: since labor income risk is transitory, there is no incentive to accumulate a lot of wealth.
- To get realistic wealth distribution, Krusell & Smith (1998) assume that discount factor is stochastic, and so is saving rate.

Random growth generates Pareto tails

- Incidentally, since late 90's random growth models have been used to explain Pareto tails (many papers by Gabaix, Reed, Benhabib, Bisin, & Zhu, Toda)
- Summary of some results:
 - ► Random growth (S_t = G_tS_{t-1}) with a lower reflective boundary generates power law (Gabaix, 1999)
 - Geometric Brownian motion with birth/death generates double Pareto distribution (Reed, 2001)
 - Also true in discrete time with arbitrary shocks (Toda, 2014)
 - In micro-founded OLG model with inheritance, investment risk generates power law (Benhabib, Bisin, & Zhu, 2011), using Kesten (1973) process

Simple model with investment risk

- Heterogeneous agents with log utility $E_0 \sum_{t=0}^{\infty} \beta^t \log c_t$
- Linear investment technology with idiosyncratic stochastic return R_{t+1}
- Budget constraint: $w_{t+1} = R_{t+1}(w_t c_t)$
- Optimal consumption rule is c_t = (1 − β)w_t, hence w_{t+1} = βR_{t+1}w_t: random growth
- log w_{t+1} = log w_t + X_{t+1}, where X_t = log βR_t. Can show that when agents die and are born with constant probability (perpetual youth model), then log w_t has exponential tails (Beare & Toda, WP), so w_t has Pareto tails
- Note: random discount factor β plays same role as random returns

 \implies explains why Krusell & Smith (1998) needed random β

How about labor income risk?

- In general, hard to (analytically) solve models with labor income risk
- For tail behavior, only decision rule for large wealth is important, so assume an affine consumption rule c = aw + b
- Then wealth accumulation is of the form

$$w_{t+1} = A_{t+1}w_t + B_{t+1},$$

which is known as Kesten (1973) process

- Authors show that in this case, stationary wealth distribution has a Pareto upper tail, which is the fatter tail of either
 - 1. labor income process itself, or
 - 2. an exponent determined solely by capital income risk
- Implication: labor income risk does not help to generate a fatter tail in wealth

Comments

- Nice negative result
- It would be even better if authors have a truly micro-founded model

 Suggestion: use CARA, because it goes well along with additive shocks (Calvet, 2001; Wang, 2007)

Bewley-Aiyagari economy with CARA utilities

- ► Agents maximize $E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$, where $u(c) = e^{-\gamma c} / \gamma$ is CARA
- Constant gross risk-free rate R (no capital risk), i.i.d. income y
- Only state variable is wealth w; can guess $V(w) = -\frac{1}{\gamma a} e^{-\gamma(aw+b)}$ for some a, b
- By guess-and-verify, it turns out that consumption rule is c = aw + b, a = 1 − 1/R, and

$$b = \frac{1}{\gamma(1-R)} \log \beta R \operatorname{E}[e^{-\gamma(1-1/R)y}]$$

Wealth distribution in Bewley-Aiyagari economies

- ► Wealth accumulation is w_{t+1} = w_t bR + y_{t+1}, so wealth is random walk in levels (not logs)!
- No stationary distribution if agents infinitely lived; with constant birth/death, wealth distribution is Laplace (thin tailed)
- ▶ Obtain similar results if income is AR(1) with arbitrary shocks

 Theoretically explains why Bewley-Aiyagari models cannot generate fat-tailed wealth distribution