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Preface

This is a textbook on mathematics used for economic analysis. The book
evolved from my lecture notes for teaching this material to the first year
economics PhD students at UC San Diego for about a decade.

There already exist many books on “mathematics for economics”, so there
must be some reason to add another. My goal is to present mathematical
results that are essential for economic analysis concisely but rigorously. PhD
students are busy. If they have not already studied most of the material in this
book, they have to master it in a matter of a few weeks or months to keep up
with other coursework and research. Reading existing textbooks in mathemat-
ics is not necessarily efficient for this purpose because they often include topics
that are not so essential for economic applications. For instance, vector calcu-
lus is rarely used in economics (unlike in physics). On the other hand, general
textbooks in mathematics often do not cover in sufficient depth some special
topics that are highly relevant for economic applications. These topics include
constrained optimization, nonnegative matrices, convex analysis, and dynamic
programming. Although textbooks on “mathematics for economics” do cover
some of these topics, the treatment is often not sufficiently rigorous, leaving
students (at least those mathematically inclined) frustrated. For instance, I
have not seen in textbooks a satisfactory proof of the Karush-Kuhn-Tucker
theorem or a discussion of constrained qualifications in a general setting. Stu-
dents who wish to learn these topics need to refer to monographs or research
papers, which tend to be technical.

This book covers mathematical topics that are essential for economic anal-
ysis concisely but rigorously. By “concisely”, I mean that I cover selected topics
such as linear algebra, real analysis, convex analysis, constrained optimiza-
tion, dynamic programming, and numerical analysis in a single volume. To
keep the book at a manageable length, topics that are deemed not “essential”
are omitted. For example, neither Riemann nor Lebesgue integration appear.
This choice was made not because these topics are not important (they are)
but because they are treated elsewhere (for example Rudin (1976) and Fol-
land (1999)), and remembering basic rules of integration seems to be enough
for solving economic problems. Similarly, I omit the theory of probability and
stochastic processes. Whenever I use a Markov process, I only consider the
finite-space case, which can be easily understood using matrices. Finally, by
“rigorously”, I mean that the book is (mostly) self-contained and almost all
propositions are proved.

ix



x ■ Preface

Given that the book covers many topics that are usually treated in mul-
tiple volumes, I put significant effort in making the book readable. Some of
my efforts can be listed as follows. (i) To motivate the reader, I organized
the chapters within each part by the economic problem one wishes to solve
and not necessarily by mathematical topics. For instance, the chapters in the
first part are geared towards solving a constrained optimization problem with
linear constraints such as the utility maximization problem under a budget
constraint. (ii) If a topic is introduced in chapter m and applied in chapter n,
I tried to satisfy m ≤ n to be logically consistent but to minimize n −m so
that the reader has a fresh memory. (iii) I tried to strike an appropriate bal-
ance between obtaining the most interesting and useful results with the fewest
number of pages and doing so at the highest level of generality. For instance, I
tried to avoid general topology as much as possible and do not go much more
abstract than metric spaces (for which the intuition from Euclidean spaces
carry over), but many propositions are stated in a way that remains valid
in general spaces. (iv) Results on linear algebra are scattered across a few
chapters (1, 5, 6, 9). This is because linear algebra is already a collection of
a variety of topics, and presenting them in one chapter (usually at the very
beginning) is unappealing to readers interested in applications. (v) The book
contains many figures (almost all of them drawn using TikZ) to help develop
mathematical intuition. (vi) Examples, counterexamples, and straightforward
propositions are often left as end-of-chapter problems with lots of hints, which
makes the book concise and incentivizes students to work.

The prerequisites to this book are basic linear algebra and real analysis,
for example at the level of Jänich (1994) or Axler (2024) for linear algebra and
Rudin (1976) for real analysis. Every author of a “mathematics for economics”
textbook would say basic linear algebra and real analysis are sufficient. That
claim is usually false because some results such as the Karush-Kuhn-Tucker
theorem are rarely proved rigorously. However, in this book the claim that
basic linear algebra and real analysis are sufficient is true, as I prove almost
all results. Needless to say, certain “mathematical maturity” (for example, the
ability to follow a logical argument or to come up with (counter)examples that
(do not) satisfy the assumptions of a proposition) is essential, though I do not
know how to teach this valuable skill.

As there are already many “mathematics for economics” textbooks, I dis-
cuss similarities and differences. In my opinion, the following three points
make this book stand out:

(i) high degree of self-containedness,

(ii) emphasis on matrix analysis, and

(iii) modern treatment of dynamic programming.

I have already mentioned that (i) the book is mostly self-contained. Through
my research in mathematical economics, I came to appreciate (ii) the impor-
tance of matrix analysis such as the spectral radius and nonnegative matrices,
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which is rarely covered in standard textbooks. I have had the privilege of
contributing to (iii) the theory of dynamic programming, and this book cov-
ers some modern topics. The structure of this book is similar to Sundaram
(1996) in that its main objective is the discussion of optimization techniques.
Relative to Sundaram (1996), the present text is more self-contained, treats
topics in linear algebra and nonlinear programming more systematically, and
reflects the more recent developments in the theory of dynamic programming.
Simon and Blume (1994) is less technical than the present text but contains
many examples and problems, so it could be useful for undergraduate students.
Furthermore, Simon and Blume (1994) cover differential equations but omit
dynamic programming. Vohra (2005) is even more concise than the present
text and covers some fixed point and lattice theory but does not cover lin-
ear algebra or dynamic programming, so it is complementary. None of these
texts discuss numerical analysis, which is an important topic to have some
knowledge for applied researchers.

I would like to express my sincere gratitude to those who have supported
me over the past years. Takao Kumo taught me mathematics at the tutoring
(cram) school SEG in Tokyo when I was at high school. His lectures on real
analysis, differential equations, calculus of variations, and complex analysis
inspired my curiosity. Ken’ichiro Tanaka, then my classmate, became an ap-
plied mathematician and a coauthor, from whom I learned numerical analysis.
Yasuki Kobayashi and Hiroshi Yoshikawa at University of Tokyo ignited my
interest in economics and supported me during the transition from medicine to
economics. Truman Bewley and John Geanakoplos taught me general equilib-
rium theory at Yale, and together with Donald Brown and Larry Samuelson,
supported me during the difficult time of transitioning from a student to an
independent researcher. I learned dynamic programming from John Stachurski
and the theory of nonnegative matrices through the collaboration with Bren-
dan Beare. Generations of PhD students at UCSD have suffered from my
incomplete teaching material and corrected many typographical, grammati-
cal, as well as a few mathematical errors. My children Minerva and Julius and
my wife Junko have supported me and tolerated my absentmindedness.

Supplementary materials such as Matlab codes, teaching slides, and list
of known typos and errors are posted at the book website https://github.
com/alexisakira/EME.
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CHAPTER 0

Roadmap

A typical problem studied in economics is a constrained optimization problem.
Consider the following example. There are N goods (commodities) indexed by
n = 1, . . . , N , which can be consumed in any nonnegative quantities. When
an economic agent consumes xn ≥ 0 units of good n, where n = 1, . . . , N , the
agent derives utility

u(x1, . . . , xN ). (0.1)

The price of one unit of good n is pn > 0. If the agent consumes xn units
of good n, the expenditure on good n is pnxn, so the total expenditure is
p1x1 + · · · + pN xN , which cannot exceed the disposable income of the agent
denoted by w > 0. Therefore the objective of the agent is to maximize utility
(0.1) subject to the budget and nonnegativity constraints

p1x1 + · · ·+ pN xN ≤ w, (0.2a)
xn ≥ 0 for all n. (0.2b)

This problem is called a utility maximization problem, which is one of the
most basic constrained optimization problems studied in economics.

We can ask many questions regarding the utility maximization problem or
constrained optimization problems in general, such as:

(i) How do we define a solution?

(ii) Does a solution exist?

(iii) What are necessary or sufficient conditions that characterize the solu-
tion?

(iv) Is the solution unique?

(v) How do we compute the solution?

(vi) How does the solution change if we change the parameters pn or w?

1
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Part I introduces fundamental results in optimization. In Chapter 1, we (i)
define what we mean by a solution and (ii) prove its existence. The main result
of this chapter is the extreme value theorem (Theorem 1.11), which guarantees
that continuous functions achieve minima and maxima on closed and bounded
sets (bounded sets that include their boundaries, like the set defined by the
constraints (0.2)). To get to this important result, we cannot avoid discussing
the topological properties of the Euclidean space, so the material is somewhat
technical.

In the next three chapters, we study (iii) conditions that characterize the
solution. To make the book readable, instead of starting from the most gen-
eral setting, we gradually increase the level of generality. In Chapter 2, we
study the optimization of a function with only one variable. We discuss the
first-order necessary condition and the second-order sufficient condition. In
Chapter 3, we study the optimization of a function with multiple variables
and focus on the case when constraints do not bind. At this point, we only
discuss the first-order necessary condition because the second-order sufficient
condition requires substantial knowledge of symmetric matrices. Chapter 4 is
an introduction to constrained optimization problems with multiple variables.
The main result of this chapter is the Karush-Kuhn-Tucker (KKT) theorem
with linear constraints (Theorem 4.3). Because a rigorous proof of the KKT
theorem is quite technical, the discussion in Chapter 4 is mostly based on ge-
ometric intuition and the complete proof is deferred to subsequent chapters.

Part II introduces miscellaneous tools in matrix analysis and nonlinear
analysis that are required to study problems with multiple variables. Chapter
5 introduces vector spaces and matrices and discusses necessary and sufficient
conditions for solving a system of linear equations. Chapter 6 introduces the
notion of eigenvalues and eigenvectors of matrices and explains how these ob-
jects can be used to simplify matrices. Using these results, we provide (iii)
second-order sufficient condition for the unconstrained optimization of a func-
tion with multiple variables. We also prove the Gelfand spectral radius formula
(Theorem 6.15), which characterizes the behavior of the matrix power Ak as
k →∞ and has many applications.

In Chapter 7, we depart from Euclidean spaces and introduce the more
abstract notion of metric spaces, which are spaces on which we can define a
distance. The main result in this chapter is the contraction mapping theorem
(Theorem 7.3), which has many applications. However, the applications come
much later, so it could be skipped until necessary. As an application of the
contraction mapping theorem, in Chapter 8 we prove the implicit function
theorem (Theorem 8.3), which allows us to (vi) study how a solution to an
optimization problem depends on its parameters. This chapter also discusses
the local stable manifold theorem (Theorem 8.9), which is useful for analyzing
nonlinear dynamics.

Chapter 9 studies the properties of nonnegative matrices, which are real
matrices with nonnegative entries. A typical example of such matrices is the
transition probability matrix describing a Markov chain. We prove the im-
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portant Perron-Frobenius theorem (Theorems 9.3, 9.7) by applying the con-
traction mapping theorem. I believe this proof is more concise and intuitive
than existing proofs. Although nonnegative matrices play an important role
in economic analysis, this book presents no applications other than stochastic
matrices, so this chapter could be skipped.

Part III studies constrained optimization problems with full generality and
rigor. Chapter 10 introduces the notion of convex sets and prove the impor-
tant separating hyperplane theorem (Theorem 10.2). It also studies cones and
dual cones, which play an important role in optimization. Chapter 11 intro-
duces convex and quasi-convex functions and explains their importance for
establishing (iii) sufficient conditions for optimality and (iv) uniqueness of
a solution. Chapter 12 considers general nonlinear programming problems.
We prove the Karush-Kuhn-Tucker theorem (Theorem 12.4), discuss vari-
ous constraint qualifications, and introduce the duality principle for convex
programming problems. Furthermore, by introducing second-order sufficient
conditions, we prove the parametric continuity and differentiability of the so-
lution and the envelope theorem, which answer (vi) how the solution changes
with parameters.

Part IV studies dynamic programming problems, which are optimization
problems under a sequential structure such as the passage of time. Chapter
13 provides many examples and formulates a dynamic program in an abstract
setting. Chapter 14 studies infinite-horizon dynamic programs under additive
and Markov assumptions using the contraction approach and discusses some
techniques to numerically solve dynamic programs. Chapter 15 briefly presents
the classic optimal control theory, which complements the more modern dy-
namic programming theory.

Appendix A provides an introduction to numerical analysis, which can be
used to (v) compute solutions.

Table 0.1 summarizes the mutual dependence among chapters.
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Part Chapter Prerequisites
I 2 1

3 1, 2
4 1–3

II 5 3
6 1–3, 5
7 1, 6
8 1–3, 5–7
9 5–7

III 10 1
11 1–3, 6, 10
12 1–6, 10, 11

IV 13 1
14 1, 7, 11–13
15 1–3, 11–14

TABLE 0.1: Chapter dependence.
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CHAPTER 1

Existence of Solutions

1.1 INTRODUCTION

Suppose we would like to solve the problem

minimize f(x)
subject to x ∈ C, (1.1)

where C is some set (called the constraint set) and f is a real-valued function
defined on C. To fix ideas, suppose C is a subset of the real line R = (−∞,∞).
We say that a point x̄ ∈ C is a solution to the minimization problem (1.1)
if f(x̄) ≤ f(x) for all x ∈ C. We also call x̄ the minimizer or simply the
minimum. In that case we write

f(x̄) = min
x∈C

f(x)

and call f(x̄) the minimum value or simply the minimum of the problem (1.1).
(We use “minimum” in two different ways but the meaning should be clear
from the context.) We also write

x̄ ∈ arg min
x∈C

f(x),

where “arg min” refers to the set of minimizers (argument of the minimum).
For developing the theory of optimization, we mostly focus on minimization

problems because maximization problems can be turned into minimization
problems. For example, consider the maximization problem

maximize g(x)
subject to x ∈ C. (1.2)

Then x̄ is a solution (or maximizer/maximum) if g(x̄) ≥ g(x) for all x ∈ C.
This condition is equivalent to −g(x̄) ≤ −g(x) for all x ∈ C, so x̄ is a solution
to the minimization problem (1.1) with f = −g. We use the symbols “max”
and “arg max” analogously.

7
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Obviously, not all minimization problems of the form (1.1) have a solution.
Figure 1.1 presents several examples. In the top left diagram, the constraint
set is the entire real line (−∞,∞) (which is unbounded) and the function
value f(x) approaches a constant as x tends to plus or minus infinity, like
f(x) = 1/(1 + x2). In this example, we have f(x) > 0 for all x, f(x) → 0 as
x → ±∞, but the value 0 is never achieved, so there is no minimum. In the
top right diagram, the constraint set has a “hole”, like C = [−1, 0) ∪ (0, 1].
The function f(x) = x2 has a unique minimum over the entire real line at
x = 0 but 0 /∈ C, so f has no minimum over C. In the bottom left diagram,
the graph of the function f has “gaps”, for example f(x) = x2 for x < 0 and
f(x) = (x2 + 1)/2 for x ≥ 0. Although f(x) approaches 0 as x ↑ 0, the value
0 is never achieved. In the bottom right diagram, the function does achieve
a minimum. Note that the function is continuous and the constraint set C is
bounded and has no holes.

C C

C C

FIGURE 1.1: Minimum may not exist.

The goal of this chapter is to provide a simple sufficient condition for the
existence of a solution to a minimization problem. The essence is that f will
achieve a minimum on C if f is continuous and C is a bounded set that
includes its boundary (has no holes). For now these terms are vague but we
will be more precise as we proceed.

1.2 THE REAL NUMBER SYSTEM

The set of natural numbers is denoted by N = {1, 2, . . .}. The set of integers
is denoted by Z = {0,±1,±2, . . .}. The set of rational numbers is denoted
by Q = {m/n : m ∈ Z, n ∈ N}. The set of real numbers is denoted by R. We
leave the construction of R to standard textbooks of real analysis, for instance
Rudin (1976, Chapter 1).

We introduce some notation and terminology used throughout the book.
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The absolute value of x ∈ R is denoted by

|x| =
{

x if x ≥ 0,
−x if x < 0.

Let A ⊂ R be a set. A is bounded above if there exists b ∈ R such that
x ≤ b for all x ∈ A, in which case b is called an upper bound. Similarly, A is
bounded below if there exists b ∈ R such that x ≥ b for all x ∈ A, in which
case b is called a lower bound. A is bounded if there exists b ≥ 0 such that
|x| ≤ b for all x ∈ A.

It is often convenient to consider the set of extended real numbers that
includes plus or minus infinity, denoted by ±∞. The rules of algebra are

x±∞ = ±∞ if x ∈ R,

∞+∞ =∞,

x× (±∞) = ±∞ if x > 0,

x× (±∞) = ∓∞ if x < 0,

x/(±∞) = 0 if x ∈ R.

Note that∞−∞ and∞/∞ are undefined. However, it is convenient to define
0 × ∞ = 0, and we shall adopt this convention. The set of extended real
numbers is denoted by R̄ = R ∪ {±∞} = [−∞,∞].

If x ≤ a for all x ∈ A and a ∈ A, we call a the maximum of A. The
minimum is defined analogously. Obviously, maxima and minima may not
exist even if A is bounded, for instance consider the set

A = (−1, 1) = {x ∈ R : −1 < x < 1} .

The defining property of the real number system is the following least-
upper-bound property: if A is bounded above, there exists a least upper bound.
More precisely, suppose ∅ ̸= A ⊂ R is bounded above and let B be the set
of upper bounds of A (which is nonempty by definition). Then α = min B
exists. The least upper bound α is called the supremum of A and is denoted
by α = sup A. A symmetric argument shows that if A is bounded below,
then a greatest lower bound exists, which is called the infimum of A and is
denoted by inf A. If A is not bounded above (below), we define sup A = ∞
(inf A = −∞). By convention, we define sup ∅ = −∞ and inf ∅ =∞. It is easy
to show that A ⊂ B implies sup A ≤ sup B and inf A ≥ inf B.

1.3 CONVERGENCE OF SEQUENCES

In the discussion of Figure 1.1, we used the expression “approaches” without
being precise. We now formalize the concept of convergence. Let {xk}∞

k=1 be
a real sequence, which can be thought of as a function from N to R. We say
that {xk}∞

k=1 converges to x ∈ R if

(∀ϵ > 0)(∃K > 0)(∀k ≥ K) |xk − x| < ϵ, (1.3)



10 ■ Essential Mathematics for Economics

that is, for any small error tolerance ϵ > 0, we can find a large enough number
K such that the distance between xk and x can be made smaller than the
error tolerance ϵ, provided that the index satisfies k ≥ K. When {xk}∞

k=1
converges to x, we write limk→∞ xk = x or xk → x (k → ∞) and call x the
limit. Sometimes we are sloppy and write lim xk = x or xk → x. A sequence
{xk}∞

k=1 is convergent if it converges to some point.
We say that {xk}∞

k=1 ⊂ R converges to infinity if

(∀ϵ > 0)(∃K > 0)(∀k ≥ K) xk > ϵ. (1.4)

We denote convergence by limk→∞ xk = ∞, xk → ∞, etc. Convergence to
−∞ is defined analogously.

We say that {xk}∞
k=1 ⊂ R is increasing (decreasing) if x1 ≤ x2 ≤ · · ·

(x1 ≥ x2 ≥ · · · ), that is, xk ≤ xk+1 (xk ≥ xk+1) for all k. A sequence that is
either increasing or decreasing is simply called monotone.

An important property of monotone sequences is that they are always
convergent if we allow ±∞ as the limit.

Proposition 1.1. If {xk}∞
k=1 ⊂ R̄ is monotone, it is convergent.

Proof. Without loss of generality, assume {xk} is increasing. Let x =
sup {xk : k ∈ N}. Let us show xk → x.

By the definition of the supremum, we have xk ≤ x for all k. If x = −∞,
then −∞ ≤ xk ≤ x = −∞, so xk = −∞ for all k and convergence is trivial.
Therefore assume x > −∞ and take any R ∋ x′ < x. By the definition of the
supremum, there exists K ∈ N such that xK > x′. Since {xk} is increasing,
we have xk > x′ for all k ≥ K.

If x < ∞, for any ϵ > 0 take x′ = x − ϵ. Then x − ϵ < xk ≤ x for all
k ≥ K, so in particular |xk − x| < ϵ. By the definition of convergence, we have
xk → x. If x = ∞, for any ϵ > 0 take x′ = ϵ. Then xk > ϵ for all k ≥ K, so
by definition xk →∞.

Let {xk}∞
k=1 ⊂ R̄ be any sequence. Define

αk = sup {xk, xk+1, . . .} = sup
l≥k

xl.

Since the set {xl : l ≥ k} is decreasing with k, clearly {αk}∞
k=1 is a decreasing

sequence in R̄. Therefore by Proposition 1.1 the limit

α := lim
k→∞

αk = lim
k→∞

sup
l≥k

xl

exists, which is called the limit superior of {xk} and is denoted by

α = lim sup
k→∞

xk.

Similarly, we define the limit inferior of {xk} by

β = lim inf
k→∞

xk := lim
k→∞

inf
l≥k

xl.



Existence of Solutions ■ 11

1.4 THE SPACE RN

We are often interested in functions of several variables. Let RN denote the
set of N -tuples of real numbers x = (x1, . . . , xN ) = (xn). For x, y ∈ RN , define
the sum entrywise by x + y = (xn + yn). For α ∈ R and x ∈ RN , define the
scalar multiplication entrywise by αx = (αxn). In general, we call a set X a
(real) vector space if the sum x + y and the scalar product αx are defined and
belong to X for all x, y ∈ X and α ∈ R. Elements of a vector space are called
vectors.

If X is a vector space and f : X → R, we say that f is linear if f preserves
addition and scalar multiplication, i.e.,

f(αx + βy) = αf(x) + βf(y) (1.5)

for all x, y ∈ X and α, β ∈ R. An obvious example of a linear function f :
RN → R is

f(x) = a1x1 + · · ·+ aN xN =
N∑

n=1
anxn,

where a1, . . . , aN ∈ R. In fact we can show that all linear functions are of this
form.

Proposition 1.2. The function f : RN → R is linear if and only if f(x) =
a1x1 + · · ·+ aN xN for some a1, . . . , aN ∈ R.

Proof. Sufficiency is obvious so we prove necessity. Let en be the n-th unit
vector, i.e., the vector whose n-th entry is 1 and all other entries are 0. By
the definition of RN , we have

x = (x1, . . . , xN ) = x1e1 + · · ·+ xN eN .

If f is linear, then (1.5) holds, so

f(x) = x1f(e1) + · · ·+ xN f(eN ).

Therefore f(x) has the desired form by setting an = f(en).

The expression of the form a1x1 + · · ·+ aN xN appears so often that it de-
serves a special name and notation. Let x = (x1, . . . , xN ) and y = (y1, . . . , yN )
be two vectors in RN . Then

⟨x, y⟩ := x1y1 + · · ·+ xN yN =
N∑

n=1
xnyn

is called the inner product (also vector product) of x and y. Other common
notations for the inner product are (x, y), x · y, and ⟨x | y⟩, etc. Fixing x, the
inner product ⟨x, y⟩ is linear in y, so we have

⟨x, α1y1 + α2y2⟩ = α1 ⟨x, y1⟩+ α2 ⟨x, y2⟩ .
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The same holds for x as well, fixing y. So the inner product is a bilinear
function of x and y.

To do analysis, it is convenient to have a notion of the size of a vector or
the distance between two vectors. Motivated by the Pythagorean theorem in
elementary geometry, the (Euclidean) norm of x ∈ RN is defined by

∥x∥ :=
√
⟨x, x⟩ =

√
x2

1 + · · ·+ x2
N . (1.6)

The Euclidean norm is also called the ℓ2 norm for a reason that will become
clear later. More generally, for a real vector space X, a function ∥·∥ : X → R
is called a norm if it satisfies the following properties:

(i) (Nonnegativity) ∥x∥ ≥ 0 for all x ∈ X, with equality if and only if x = 0,

(ii) (Positive homogeneity) ∥αx∥ = |α| ∥x∥ for all α ∈ R and x ∈ X,

(iii) (Triangle inequality) ∥x + y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X.

A vector space X equipped with a norm ∥·∥ is called a normed space.
The last inequality is called the triangle inequality because it says that the

side of a triangle is shorter than the sum of the other two sides (Figure 1.2).
The nonnegativity and positive homogeneity of the Euclidean norm (1.6) are
trivial. The proof of the triangle inequality is in Problem 1.2.

x

y
x + y

FIGURE 1.2: Triangle inequality.

There are many norms on RN . Some examples are

(ℓ1 norm) ∥x∥1 :=
N∑

n=1
|xn| , (1.7a)

(ℓ∞ or sup norm) ∥x∥∞ := max
n
|xn| , (1.7b)

(ℓp norm for p ≥ 1) ∥x∥p :=
(

N∑
n=1
|xn|p

)1/p

. (1.7c)

By far these three are the most commonly used norms. The proofs that ∥·∥1
and ∥·∥∞ are norms are straightforward (Problem 1.3). The proof that ∥·∥p

is a norm uses the Minkowski inequality, proved in Chapter 11. Note that



Existence of Solutions ■ 13

if N = 1 (so RN = R), then the ℓp and ℓ∞ norms all agree and equal the
absolute value: ∥x∥p = |x| for x ∈ R.

At this point, the choice of the norm ∥·∥ to do analysis seems arbitrary.
However, a remarkable property of finite dimensional spaces is that it does
not matter which norm we use as far as we are concerned with inequalities.

Theorem 1.3 (Equivalence of norms in RN ). Let ∥·∥1, ∥·∥2 be two norms on
RN . Then there exist constants 0 < c ≤ C such that

c ∥x∥1 ≤ ∥x∥2 ≤ C ∥x∥1 (1.8)

for all x ∈ RN .

In general, two norms ∥·∥1 and ∥·∥2 are said to be equivalent if (1.8) holds.
Problem 1.11 proves Theorem 1.3 with lots of hints. Here let us show the
equivalence of the Euclidean (ℓ2) and sup (ℓ∞) norms directly. Clearly

∥x∥2 =
√∑N

n=1 x2
n ≥ |xn|

for any n, so taking the maximum over n, we get ∥x∥2 ≥ ∥x∥∞. Furthermore,
since by definition |xn| ≤ ∥x∥∞ for all n, we get

∥x∥2 =
√∑N

n=1 x2
n ≤

√
N ∥x∥2

∞ =
√

N ∥x∥∞ .

Therefore ∥x∥∞ ≤ ∥x∥2 ≤
√

N ∥x∥∞, so we can take c = 1 and C =
√

N in
(1.8). An analogous argument shows ∥x∥∞ ≤ ∥x∥1 ≤ N ∥x∥∞, so the ℓ1 and
ℓ∞ norms are also equivalent.

Theorem 1.3 allows us to define bounded sets and convergence of sequences
in RN unambiguously. We say that A ⊂ RN is bounded if there exists b ≥ 0
such that ∥x∥ ≤ b for all x ∈ A. We say that a sequence {xk}∞

k=1 ⊂ RN

converges to x ∈ RN if

(∀ϵ > 0)(∃K > 0)(∀k ≥ K) ∥xk − x∥ < ϵ, (1.9)

Note that by Theorem 1.3, in (1.9) it does not matter which norm we use,
and the definition of convergence (1.9) for R1 is consistent with (1.3) for R.

A word of caution: Theorem 1.3 is proved in Problem 1.11 using the ex-
treme value theorem (Theorem 1.11), which we have not stated yet. To avoid
tautology, in the subsequent discussion the norm ∥·∥ should be understood as
either the ℓ1 norm ∥·∥1, the ℓ2 norm ∥·∥2, or the sup norm ∥·∥∞ (which we
already know are equivalent).

1.5 TOPOLOGY OF RN

In the top right diagram of Figure 1.1, we saw that a well-behaved function
may not achieve a minimum on a set if it has holes. In this section we define
nice sets on which to do analysis.
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Let x ∈ RN and ϵ > 0. The set

Bϵ(x) :=
{

y ∈ RN : ∥y − x∥ < ϵ
}

(1.10)

is called the ball with center x and radius ϵ, or simply the ϵ-ball about x.
Figure 1.3 shows 1-balls (unit balls) about x = 0 for the ℓ1, ℓ2, and ℓ∞ norms
for the case N = 2. Note that the expression “ball” is consistent with common
usage for the ℓ2 norm, but for the ℓ1 norm the ball is diamond-shaped and for
the ℓ∞ norm it is a cube.

ℓ1 norm

x1

x2

0

1

ℓ2 norm

x1

x2

0

1

ℓ∞ norm

x1

x2

0

1

FIGURE 1.3: 1-balls for ℓ1, ℓ2, and ℓ∞ norms.

In general, let X be a normed space and A ⊂ X. We say that x is an
interior point of A if there exists ϵ > 0 such that Bϵ(x) ⊂ A, that is, we can
draw a ball with center x and radius ϵ that is entirely included in A. If every
x ∈ A is an interior point of A, we say that A is an open set. Intuitively, an
open set is a set that does not include its boundary. For instance, in Figure
1.4a, for any x ∈ A, by taking sufficiently small ϵ > 0, we have Bϵ(x) ⊂ A.
Therefore A is open. On the other hand, in Figure 1.4b, if x ∈ A is on the
boundary of A, then for any ϵ > 0, part of Bϵ(x) lies outside of A, so A is
not open. We often use the symbols U and V to denote an open set because
the French word for “open” is ouvert but the letter O is confusing due to the
resemblance to 0. By definition, the empty set ∅ and the entire space X are
open.

For A ⊂ X, let Ac := X\A = {x ∈ X : x /∈ A} denote its complement.
We say that A is a closed set if Ac is open. Intuitively, a closed set is a set
that includes its boundary. We often use the symbol F to denote a closed set
because the French word for “closed” is fermé. By definition, both ∅, X are
closed.

There are many examples of sets that are open, closed, or neither.
The interval (a, b) = {x ∈ R : a < x < b} is open. The interval [a, b] =
{x ∈ R : a ≤ x ≤ b} is closed. The interval (a, b] = {x ∈ R : a < x ≤ b} is nei-
ther open nor closed. The ϵ-ball (1.10) is open. To see this, let y ∈ Bϵ(x). By
definition, ∥y − x∥ < ϵ. Define δ := ϵ− ∥y − x∥ > 0. If z ∈ Bδ(y), then by the
triangle inequality,

∥z − x∥ ≤ ∥z − y∥+ ∥y − x∥ < δ + ∥y − x∥ = ϵ,
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A

x

ϵ

(a) Open set.

A

x

ϵ

(b) Non-open set.

FIGURE 1.4: Open and non-open sets.

so z ∈ Bϵ(x). Therefore Bδ(y) ⊂ Bϵ(x), so Bϵ(x) is open.
The following proposition and corollary allow us to construct many open

and closed sets.

Proposition 1.4. (i) Any union of open sets is open: if I is any set and for
each i ∈ I the set Ui is open, so is

⋃
i∈I Ui. (ii) Any finite intersection of open

sets is open: if for each j = 1, . . . , J the set Uj is open, so is
⋂J

j=1 Uj.

Proof. (i) Suppose that Ui is open for each i ∈ I and let U =
⋃

i∈I Ui. If
x ∈ U , then x ∈ Ui for some i. Since Ui is open, we can take some ϵ > 0 such
that Bϵ(x) ⊂ Ui ⊂ U , so U is open.

(ii) Suppose that Uj is open for each j = 1, . . . , J and let U =
⋂J

j=1 Uj .
If x ∈ U , then in particular x ∈ Uj . Therefore we can take ϵj > 0 such
that Bϵj (x) ⊂ Uj . Let ϵ = minj ϵj . Then Bϵ(x) ⊂ Bϵj (x) ⊂ Uj for all j, so
Bϵ(x) ⊂

⋂J
j=1 Uj = U . Therefore U is open.

Corollary 1.5. (i) Any intersection of closed sets is closed: if I is any set
and for each i ∈ I the set Fi is closed, so is

⋂
i∈I Fi. (ii) Any finite union of

closed sets is closed: if for each j = 1, . . . , J the set Fj is closed, so is
⋃J

j=1 Fj.

Proof. Let Ui = F c
i and apply

(⋂
i∈I Fi

)c =
⋃

i∈I F c
i etc.

Let A ⊂ X be any set and let (Ui)i∈I be the collection of all open sets with
Ui ⊂ A. There is at least one such Ui, namely the empty set ∅. By Proposition
1.4, U :=

⋃
i∈I Ui is open, and it is clearly the largest open set included in A.

This U is called the interior of A and is denoted by int A. Obviously, int A = A
if A is open.

Similarly, let (Fi)i∈I be the collection of all closed sets with A ⊂ Fi.
There is at least one such Fi, namely the entire space X. By Corollary 1.5,
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F :=
⋂

i∈I Fi is closed, and it is clearly the smallest closed set including A.
This F is called the closure of A and is denoted by cl A. Obviously, cl A = A
if A is closed.

By definition, we have int A ⊂ A ⊂ cl A. The set cl A\ int A is called the
boundary of A and is denoted by ∂A. The set (cl A)c is called the exterior of
A (Figure 1.5).

Interior

Exterior

Boundary

FIGURE 1.5: Interior, exterior, and boundary points.

A useful property is cl A = (int Ac)c and int A = (cl Ac)c, which can be
proved using the definition of interior, closure, and

(⋃
i∈I Ui

)c =
⋂

i∈I U c
i etc.

(Problem 1.7). The following proposition characterizes the closure of a set
using sequences.
Proposition 1.6. Let A ⊂ X. Then x ∈ cl A if and only if there exists a
sequence {xk}∞

k=1 ⊂ A such that xk → x.
Proof. Suppose {xk}∞

k=1 ⊂ A such that xk → x. If x /∈ cl A, then x ∈ (cl A)c.
Since this set is open, we can take ϵ > 0 such that Bϵ(x) ⊂ (cl A)c ⊂ Ac.
Since xk → x, we have xk ∈ Ac ⇐⇒ xk /∈ A for large enough k, which is a
contradiction. Therefore x ∈ cl A.

Conversely, suppose x ∈ cl A. We claim that for any ϵ > 0, we have Bϵ(x)∩
A ̸= ∅. To see this, suppose to the contrary that Bϵ(x) ∩ A = ∅ for some
ϵ > 0. Then Bϵ(x) ⊂ Ac, so by definition Bϵ(x) ⊂ int Ac. Therefore x ∈
Bϵ(x) ∩ cl A = Bϵ(x) ∩ (int Ac)c = ∅, which is a contradiction. Now for each
k ∈ N, take xk ∈ B1/k(x) ∩A. Then clearly {xk}∞

k=1 ⊂ A and xk → x.

An immediate corollary of Proposition 1.6 is that a set is closed if and only
if sequences cannot escape the set.
Corollary 1.7. Let A ⊂ X. Then A is closed if and only if {xk}∞

k=1 ⊂ A and
xk → x imply x ∈ A.

Corollary 1.7 shows that closed sets have no “holes”. The set C in the top
right diagram of Figure 1.1 has a hole and is not closed, which is one reason
why the minimum of a function does not exist.
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1.6 CONTINUOUS FUNCTIONS

The bottom left diagram of Figure 1.1 suggests that a minimization problem
may not have a solution if the graph of the function has “gaps”, even if the
constraint set is nice (closed). Continuous functions have no gaps in their
graphs, which avoids this problem.

Oftentimes, it is convenient to allow the function f to take values in the ex-
tended real numbers R̄ = R∪{±∞} = [−∞,∞] instead of just R = (−∞,∞).
For instance, instead of saying log x is defined for x > 0, it is convenient to
define log 0 = −∞. We declare open intervals of R̄ to be the sets

(a, b) =
{

x ∈ R̄ : a < x < b
}

for −∞ ≤ a < b ≤ ∞,
(a,∞] =

{
x ∈ R̄ : a < x ≤ ∞

}
for −∞ ≤ a <∞,

[−∞, b) =
{

x ∈ R̄ : −∞ ≤ x < b
}

for −∞ < b ≤ ∞.
(1.11)

We say that the sequence {xk}∞
k=1 ⊂ R̄ converges to x if

(∀open interval I ∋ x)(∃K > 0)(∀k ≥ K) xk ∈ I. (1.12)

It is easy to see that this definition generalizes both (1.3) and (1.4).
Let X be a normed space and A ⊂ X. We say that the function f : A →

[−∞,∞] is continuous at x0 ∈ A if

(∀open interval I ∋ f(x0))(∃δ > 0)(∀x ∈ A ∩Bδ(x0)) f(x) ∈ I, (1.13)

that is, if x ∈ A is sufficiently close to x0 in the sense that ∥x− x0∥ < δ, then
the function value f(x) is close to f(x0) in the sense that f(x) is contained in
a neighborhood of f(x0). (In general, if y is an interior point of the set B, we
say that B is a neighborhood of y.) We say that f is continuous on A if it is
continuous at every x ∈ A.

Just as we characterized closed sets using sequences in Corollary 1.7, we
can characterize the continuity of functions using sequences.

Proposition 1.8. f : A → [−∞,∞] is continuous at x0 ∈ A if and only if
for any sequence {xk}∞

k=1 ⊂ A with xk → x0, we have f(xk)→ f(x0).

Proof. Suppose f is continuous at x0 and take any sequence {xk}∞
k=1 ⊂ A

with xk → x0. Take any open interval I ∋ f(x0). Using (1.13), we can take
δ > 0 such that f(x) ∈ I for all x ∈ A ∩ Bδ(x0). Since xk → x0, we can take
K > 0 such that ∥xk − x0∥ < δ for all k ≥ K. Therefore xk ∈ A ∩Bδ(x0) for
such k, so f(xk) ∈ I. Hence by the definition (1.12), we have f(xk)→ f(x0).

To show the converse, suppose that f is not continuous at x0. Then (1.13)
fails, so we can take an open interval I ∋ f(x0) and xk ∈ A ∩ B1/k(x0)
such that f(xk) /∈ I for all k ∈ N. Then ∥xk − x0∥ < 1/k, so xk → x0, but
f(xk) ̸→ f(x0).

Sometimes, asking for the continuity of a function is too much. We thus
introduce the concepts of upper and lower semicontinuity.
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Let X be a normed space, A ⊂ X, and f : A → [−∞,∞]. We say that f
is upper semicontinous (usc) at x0 ∈ A if

(∀y > f(x0))(∃δ > 0)(∀x ∈ A ∩Bδ(x0)) f(x) < y. (1.14)

We say that f is usc on A if it is usc at every x ∈ A. We say that f is lower
semicontinuous (lsc) (at x) if −f is usc (at x). Analogous to (1.14), f is lsc
at x0 ∈ A if

(∀y < f(x0))(∃δ > 0)(∀x ∈ A ∩Bδ(x0)) f(x) > y. (1.15)

Intuitively, upper (lower) semicontinuous functions are those that the function
value can suddenly jump upward (downward); see Figure 1.6.

x

Upper semicontinuous (usc)

x

Lower semicontinuous (lsc)

FIGURE 1.6: Semicontinuous functions.

We can also characterize semicontinuity using sequences.

Proposition 1.9. f : A → [−∞,∞] is upper (lower) semicontinuous at
x0 ∈ A if and only if for any sequence {xk}∞

k=1 ⊂ A with xk → x0, we have
lim supk→∞ f(xk) ≤ f(x0) (lim infk→∞ f(xk) ≥ f(x0)).

Proof. Problem 1.9.

1.7 EXTREME VALUE THEOREM

Finally we get to the main result of this chapter. The top left diagram of
Figure 1.1 suggests that a continuous function f may not achieve a minimum
on a constraint set C if C is unbounded. The top right diagram suggests that
a minimum may not exist if C is not closed. The bottom left diagram suggests
that a minimum may not exist if f jumps up, or is not lower semicontinuous.
These observations suggest that f may achieve a minimum on C if f is lower
semicontinuous and C is nonempty, closed, and bounded. This statement is
indeed true. This section proves this extreme value theorem.

To this end, we introduce another concept. We say that a set S ⊂ X
is sequentially compact if every sequence in S has a convergent subsequence
converging to a point in S, that is, if {xk}∞

k=1 ⊂ S, we can take x ∈ S and
indices k1 < k2 < · · · such that xkl

→ x ∈ S as l→∞.

Theorem 1.10 (Bolzano-Weierstrass theorem). A set S ⊂ RN is sequentially
compact if and only if it is closed and bounded.
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Proof. Sequentially compact =⇒ closed and bounded. Let S be se-
quentially compact. To show that S is closed, take any convergent sequence
{xk} ⊂ S with lim xk = x. Since S is sequentially compact, we can take a
subsequence {xkl

} such that xkl
→ y for some y ∈ S. Then

∥x− y∥ ≤ ∥x− xkl
∥+ ∥xkl

− y∥ → 0,

so x = y ∈ S. Therefore by Proposition 1.6, S is closed. To show that S is
bounded, suppose that it is not. Then for any k we can find xk ∈ S such that
∥xk∥ > k. Then for any x we have

∥xk − x∥ ≥ ∥xk∥ − ∥x∥ ≥ k − ∥x∥ → ∞

as k → ∞, so any subsequence of {xk} cannot converge to x. Therefore S is
not sequentially compact, which is a contradiction. Therefore S is bounded.

Closed and bounded =⇒ sequentially compact. Let S be closed
and bounded. Since by Proposition 1.6 the limit of a convergent sequence in
a closed set cannot escape that set, it suffices to show that any sequence of S
has a convergent subsequence.

We show the claim by induction on the dimension N . For N = 1, let
{xk}∞

k=1 ⊂ S ⊂ [−b, b], where b > 0. Define αl = supk≥l xk. Since xk ∈ [−b, b],
it follows that αl ∈ [−b, b]. By Proposition 1.1, we have αl → α ∈ [−b, b].
For each l, choose kl ≥ l such that |xkl

− αl| < 1/l, which is possible by the
definition of αl. Then

|xkl
− α| ≤ |xkl

− αl|+ |αl − α| < 1
l

+ |αl − α| → 0

as l → ∞, so xkl
→ α. Therefore {xk}∞

k=1 has a convergent subsequence
{xkl
}∞

l=1.
Suppose that the claim is true up to dimension N − 1. Let {xk}∞

k=1 ⊂
S ⊂ [−b, b]N . Write xk = (x1k, . . . , xNk). Since {x1k}∞

k=1 ⊂ [−b, b], it has a
convergent subsequence {x′

1k}. By the induction hypothesis, the sequence of
(N − 1)-vectors {(x′

2k, . . . , x′
Nk)} ⊂ [−b, b]N−1 has a convergent subsequence

{(x′′
2k, . . . , x′′

Nk)}. Since {x′′
1k} is a subsequence of {x′

1k}, it is also convergent.
Therefore {x′′

k} = {(x′′
1k, . . . , x′′

Nk)} ⊂ [−b, b]N also converges, so {xk}∞
k=1 has

a convergent subsequence.

The main result of this chapter is the following extreme value theorem,
which provides a simple sufficient condition for the existence of a solution to
a minimization problem.

Theorem 1.11 (Extreme value theorem). Let ∅ ̸= S ⊂ RN be sequentially
compact and f : S → [−∞,∞] be lower (upper) semicontinuous. Then f
attains a minimum (maximum) over S.

Proof. We show only for the case f is lsc. Let m = infx∈S f(x). Take a se-
quence {xk} ⊂ S such that f(xk)→ m. Since S is sequentially compact, there
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is a subsequence such that xkl
→ x for some x ∈ S. Since f is lsc, we obtain

m ≤ f(x) ≤ lim inf
l→∞

f(xkl
) = m,

so f(x) = m.

By Theorem 1.10, S ⊂ RN is sequentially compact if and only if it is closed
and bounded. Therefore Theorem 1.11 implies that any lower semicontinuous
function defined on a nonempty, closed, and bounded subset of RN attains a
minimum.

1.A TOPOLOGICAL SPACE

In §1.5, we studied the topological properties of the Euclidean space RN .
However, RN is special in the sense that it is a finite-dimensional vector space
with a norm. To expand the applicability, we study the topological properties
of more general spaces.

Let X be a nonempty set and P(X) = 2X := {A : A ⊂ X} be its power
set (the family of all subsets). We say that the collection of subsets T ⊂ P(X)
is a topology on X if the following conditions hold.

(i) ∅, X ∈ T .

(ii) T is closed under arbitrary unions: if {Ui}i∈I ⊂ T , then
⋃

i∈I Ui ∈ T .

(iii) T is closed under finite intersections: if {Uj}J
j=1 ⊂ T , then

⋂J
j=1 Uj ∈ T .

We say (X, T ) is a topological space if T is a topology on X. If the topology
T is clear from the context, we just say X is a topological space. A set U ∈ T
is called an open set. We say that F ⊂ X is a closed set if U := X\F is open.
By definition, ∅ and X are both open and closed. In RN , we proved properties
(i)–(iii) (Proposition 1.4) for open sets; in general spaces, these are defining
properties.

Example 1.1 (Normed space). Let (X, ∥·∥) be a normed space. Declare U ⊂
X to be open if for any x ∈ U , there exists ϵ > 0 such that

Bϵ(x) := {y ∈ X : ∥y − x∥ < ϵ} ⊂ U.

Let T be the collection of all open sets. Then (X, T ) is a topological space.

Example 1.2 (Relative topology). Let (X, T ) be a topological space and
A ⊂ X. Define TA := {U ∩A : U ∈ T }. Then (A, TA) is a topological space.
The topology TA is called the relative topology on A induced by T .

If T1 ⊂ T2 are topologies on X, we say that T1 is weaker than T2.
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Example 1.3 (Topology generated by a family). Let X be a nonempty set
and E ⊂ P(X) be a family of subsets of X. There exists a weakest topology
including E , denoted by T (E) and called the topology generated by E . It is
easy to show that T (E) consists of arbitrary unions of finite intersections of
sets in E .

Example 1.4 (Extended real number). Let R̄ = R ∪ {±∞} = [−∞,∞] be
the set of extended real numbers and let E be the family of open intervals
defined by (1.11). Then (R̄, T (E)) is a topological space.

Let (X, T ) be a topological space and A ⊂ X. If x ∈ A and there exists
an open set U such that x ∈ U ⊂ A, we say that x is an interior point of A
and that A is a neighborhood of x.

Topological spaces are suitable for studying continuous functions. Let X, Y
be topological spaces and f : X → Y . We say that f is continuous at x0 ∈ X
if for every open neighborhood V of f(x0), there exists an open neighborhood
U of x0 such that f(U) ⊂ V . An equivalent statement is that for every open
V ∋ f(x0), the inverse image

f−1(V ) := {x ∈ X : f(x) ∈ V }

is a neighborhood of x0. This definition clearly generalizes the ϵ-δ definition
in (1.13).

Upper and lower semicontinuity can be defined in the obvious way. We
say that f : X → [−∞,∞] is upper semicontinuous (usc) at x0 ∈ X if for
every y > f(x0), the set f−1([−∞, y)) is a neighborhood of x0. Similarly, f
is lower semicontinuous (lsc) if for every y < f(x0), the set f−1((y,∞]) is a
neighborhood of x0. Clearly, f is continuous if it is both usc and lsc. These
notions generalize those in (1.14) and (1.15). When f is continuous (usc,
lsc) at every point x0 ∈ X, we say f is continuous (usc, lsc). The following
proposition provides an alternative characterization of continuous functions.

Proposition 1.12. Let X, Y be topological spaces and f : X → Y . Then f is
continuous if and only if for any open V ⊂ Y , the inverse image f−1(V ) is
open in X.

Proof. Suppose f−1(V ) is open for any open V ⊂ Y . Take any x ∈ X and
any open V ⊂ Y such that f(x) ∈ V . Then U := f−1(V ) is open and contains
x, so f is continuous at x. Since x ∈ X is arbitrary, f is continuous.

Conversely, suppose f is continuous. For any open V ⊂ Y , let U := f−1(V )
and x ∈ U . Then f(x) ∈ V , so there exists an open neighborhood Ux of x
such that f(Ux) ⊂ V , or equivalently Ux ⊂ f−1(V ). Therefore

f−1(V ) = U ⊂
⋃

x∈U

Ux ⊂ f−1(V ),

so f−1(V ) = U =
⋃

x∈U Ux is open.
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A similar characterization holds for usc and lsc functions (Problem 1.14).
Here we started from two topological spaces X, Y and asked if a function

f : X → Y is continuous, but we can also go the other way round. If Y
is a topological space and {fi}i∈I is a family of functions from X to Y , we
could consider the weakest topology on X that makes all fi’s continuous. By
Proposition 1.12, this topology is generated by the sets of the form f−1

i (Vi),
where Vi is open in Y , and is called the weak topology generated by {fi}i∈I .

Example 1.5 (Product topology). For each i ∈ I, let (Xi, Ti) be a topological
space. Let X =

∏
i∈I Xi be the Cartesian product. Define the projection

πi : X → Xi by πi(x) = xi, where x = (xi). The topology on X generated
by {πi}i∈I is called the product topology. Clearly, the product topology is
generated by the sets of the form

∏
i∈I Ui, where Ui ⊂ Xi is open and Ui = Xi

except one i. (Such sets are called cylinders.)

When we consider the Cartesian product of topological spaces, we always
endow it with the product topology.

The extreme value theorem (Theorem 1.11) states that a continuous func-
tion defined on a sequentially compact subset achieves minima and maxima.
To extend this result to general topological spaces, we introduce another con-
cept called compactness. We say that a collection of sets (Ui)i∈I covers A if
A ⊂

⋃
i∈I Ui. A cover (Ui)i∈I is called an open cover if each Ui is open, and

it is called a finite cover if I is a finite set.
We say that a topological space X is compact if every open cover has a

finite subcover, that is, if X =
⋃

i∈I Ui and each Ui is open, then we can take
a finite set J ⊂ I such that X =

⋃
j∈J Uj . We say S ⊂ X is a compact set if

it is compact in the relative topology, or equivalently, if S ⊂
⋃

i∈I Ui and each
Ui is open, then we can take a finite set J ⊂ I such that S ⊂

⋃
j∈J Uj .

Noting that closed sets are complement of open sets, we may provide an
alternative formulation of compactness. We say that a family of sets {Fi}i∈I

has the finite intersection property if
⋂

j∈J Fj ̸= ∅ for every finite J ⊂ I.

Proposition 1.13. A topological space X is compact if and only if for any
family of closed sets {Fi}i∈I with the finite intersection property, we have⋂

i∈I Fi ̸= ∅.

Proof. Let Ui = X\Fi = F c
i , which is open.

Suppose X is compact. If
⋂

i∈I Fi = ∅, then
⋃

i∈I Ui = X. By the definition
of compactness, we can take a finite set J ⊂ I such that X =

⋃
j∈J Uj , so⋂

j∈J Fj = ∅. Therefore if {Fi}i∈I is a family of closed sets with the finite
intersection property, then

⋂
i∈I Fi ̸= ∅.

Conversely, if X is not compact, we can take an open cover {Ui}i∈I without
any finite subcover. Then

⋂
i∈I Fi = ∅ but

⋂
j∈J Fj ̸= ∅ for every finite J ⊂

I.

For normed spaces (or more generally metric spaces that are introduced
in Chapter 7), we can show that compactness and sequential compactness are
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equivalent. (For a proof, see, for instance, Folland (1999, Theorem 0.25).) For
this reason, in the subsequent discussion we just say “compact sets” when
referring to sequentially compact sets.

Compact sets are suitable for studying minima and maxima of continuous
functions. In fact, we can generalize the extreme value theorem as follows.

Theorem 1.14 (Extreme value theorem for topological space). Let X be a
compact topological space and f : X → [−∞,∞] be lower (upper) semicontin-
uous. Then f attains a minimum (maximum) over X.

Proof. We show only for the case f is lsc. Let m = infx∈X f(x). Suppose
to the contrary that there is no x such that f(x) = m. For any y > m,
define Uy := f−1((y,∞]), which is open because f is lsc. Since by assumption
m /∈ f(X), we have X =

⋃
y>m Uy. Since X is compact, we can take finitely

many y1, . . . , yJ > m such that X =
⋃J

j=1 Uyj
. Then for any x ∈ X, we have

f(x) ≥ minj yj > m, which contradicts the assumption m = infx∈X f(x).

PROBLEMS

1.1. Let a, b ∈ RN and ∥·∥ denote the Euclidean norm (1.6). This problem
asks you to prove the Cauchy-Schwarz inequality ∥a∥ ∥b∥ ≥ |⟨a, b⟩|. Note that
this inequality is trivial if a = 0, so assume a ̸= 0.

(i) Let a = (an), b = (bn), and define the function f : R → R by f(x) =∑N
n=1(anx− bn)2. By expanding terms, write f(x) = px2 + qx + r and

obtain concrete expressions for p, q, r.

(ii) Noting that f(x) ≥ 0 for all x, prove the Cauchy-Schwarz inequality
using the discriminant D = q2 − 4pr.

1.2. Let ∥·∥ denote the Euclidean norm (1.6) in RN . Prove the triangle in-
equality ∥x + y∥ ≤ ∥x∥+ ∥y∥. (Hint: take the square of both sides and apply
the Cauchy-Schwarz inequality.)

1.3. Prove that the ℓ1 norm (1.7a) and the ℓ∞ norm (1.7b) are indeed norms
according to the definition.

1.4. Define the sequence {xk}∞
k=0 by x0 = 2 and

xk+1 = 1
2xk + 1

xk

for all k ≥ 0.

(i) Show that
xk+1 −

√
2 = 1

2xk
(xk −

√
2)2.

(ii) Show that xk >
√

2 for all k.
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(iii) Show that xk+1 < xk for all k.

(iv) Show that limk→∞ xk =
√

2.

(v) Can you provide an estimate of the error
∣∣xk −

√
2
∣∣?

1.5. Let x0 > 0 be given, and define {xk}∞
k=0 by xk+1 = βxα

k , where α ∈ (0, 1)
and β > 0 are parameters. Prove that {xk} converges and explicitly compute
its limit.

1.6. (i) Let A, B be any set. Prove that int(A ∩ B) = int A ∩ int B and
cl(A ∪B) = cl A ∪ cl B.

(ii) Show through an example that int(A ∪B) need not equal int A ∪ int B.

1.7. Prove cl A = (int Ac)c and int A = (cl Ac)c.

1.8. Let F be closed and x0 /∈ F .

(i) Prove that ϵ := infx∈F ∥x− x0∥ > 0.

(ii) Prove that U :=
⋃

x∈F B(x, ϵ/2) is open.

(iii) Let V := B(x0, ϵ/2). Prove that F ⊂ U , x0 ∈ V , and U ∩ V = ∅.

1.9. Prove Proposition 1.9. (Hint: imitate the proof of Proposition 1.8.)

1.10. A sequence {xk}∞
k=1 ⊂ RN is called Cauchy if

(∀ϵ > 0)(∃K > 0)(∀k, l ≥ K) ∥xk − xl∥ < ϵ,

that is, the terms with sufficiently large indices are arbitrarily close to each
other.

(i) Prove that a Cauchy sequence is bounded.

(ii) Prove that a sequence {xk}∞
k=1 ⊂ RN is convergent if and only if it is

Cauchy. (Hint: use Theorem 1.10. This property is called the complete-
ness of RN .)

1.11. This problem asks you to prove Theorem 1.3.

(i) For any norm ∥·∥ on RN , define f : RN → R by f(x) = ∥x∥. Show that
f is continuous, where we define convergence of sequences using the sup
norm ∥·∥∞. (Hint: express x = (xn) as x =

∑N
n=1 xnen, where en is the

n-th unit vector, and use the triangle inequality.)

(ii) Define the unit sphere S =
{

x ∈ RN : ∥x∥∞ = 1
}

. Show that S is
nonempty, closed, and bounded.

(iii) Define g : S → R by g(x) = f(x)/ ∥x∥∞. Show that g is continuous.
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(iv) Show that there exist constants 0 < c ≤ C such that

c ∥x∥∞ ≤ ∥x∥ ≤ C ∥x∥∞

for all x ∈ RN .

(v) Prove Theorem 1.3.

1.12. Prove the intermediate value theorem: if f : [a, b] → R is continuous
and f(a) ≤ 0 ≤ f(b), then there exists c ∈ [a, b] such that f(c) = 0. (Hint: let
A = {x ∈ [a, b] : f(x) ≤ 0} and consider c = sup A.)

1.13. Let f : (a, b) → R be increasing, so a < x1 ≤ x2 < b implies f(x1) ≤
f(x2).

(i) Show that for each x ∈ (a, b), g±(x) := limh↓0 f(x±h) exists,1 and that
g−(x) ≤ g+(x) for all x ∈ (a, b).

(ii) Show that f is continuous on (a, b) except at at most countably many
points. (Hint: if g−(x) < g+(x), then there is a rational number in
between.)

1.14. Let X be a topological space and f : X → [−∞,∞]. Show that f is
upper (lower) semicontinuous if and only if for any y ∈ R, the set f−1([−∞, y))
(f−1((y,∞])) is open in X.

1We write limh↓0 f(x + h) = y if limk→∞ f(x + hk) = y for all sequences {hk}∞
k=1 with

hk > 0 and hk → 0.





CHAPTER 2

One-variable

Optimization

2.1 INTRODUCTION

In Chapter 1, we showed by proving the extreme value theorem (Theorem
1.11) that the minimization problem

minimize f(x)
subject to x ∈ C, (2.1)

has a solution x̄ if C ⊂ RN is nonempty, closed, and bounded, and f is lower
semicontinuous on C. In practice, we are not only interested in proving the
existence of a solution but also in its characterization.

The goal of this chapter is to derive necessary or sufficient conditions for
x̄ to be a solution to the minimization problem (2.1) when f is a one-variable
function, i.e., C ⊂ R. To this end, we introduce some terminology. We say that
a point x ∈ C is feasible in the optimization problem (2.1). We say that x̄ ∈ C
is a (global) solution to (2.1) or a (global) minimum of f on C if f(x̄) ≤ f(x)
for all x ∈ C. We say that x̄ ∈ C is a local solution or a local minimum if
there exists a neighborhood U ⊂ C of x such that f(x̄) ≤ f(x) for all x ∈ U .
If this inequality is strict whenever x ̸= x̄, we say that x̄ is a strict local
solution. Global and local maxima are defined analogously. Clearly, a global
solution is a local solution but the converse is generally not true. For instance,
in Figure 2.1, the point m1 is a (global) minimum; m2 is a local (but not
global) minimum; M is a local (but not global) maximum.

2.2 DIFFERENTIATION

A powerful tool for solving nonlinear optimization problems is differentiation
(taking derivatives), which is basically approximating a nonlinear function by
a linear one. Suppose we wish to approximate a function f(x) by a linear

27
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x
m1 M m2

FIGURE 2.1: Global and local minima.

function around the point x = a, so

f(x) ≈ p(x− a) + q (2.2)

for some numbers p, q. The approximation (2.2) should be exact at x = a, so
setting x = a we must have q = f(a). Subtracting q from both sides of (2.2)
and dividing by x− a (when x ̸= a), we obtain

p ≈ f(x)− f(a)
x− a

. (2.3)

Since the approximation (2.2) is for x close to a, it makes sense to define p by
the limit of (2.3) as x→ a. The quantity

p = f ′(a) := lim
x→a

f(x)− f(a)
x− a

, (2.4)

if it exists, is called the derivative of f at x = a. Letting x = a+h with h ̸= 0,
we can also write (2.4) as

f ′(a) = lim
h→0

f(a + h)− f(a)
h

.

In summary, we can rewrite (2.2) as

f(x) ≈ f ′(a)(x− a) + f(a). (2.5)

Figure 2.2 clarifies the linear approximation (2.5).

Example 2.1. Let f(x) = x. Then

f ′(a) = lim
h→0

(a + h)− a

h
= lim

h→0

h

h
= lim

h→0
1 = 1.
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Slope = f ′(a)

a

f(a)

x

FIGURE 2.2: Derivative of a function.

Example 2.2. Let f(x) = x2. Then

f ′(a) = lim
h→0

(a + h)2 − a2

h
= lim

h→0

2ah + h2

h
= lim

h→0
(2a + h) = 2a.

If the derivative of f exists at every point of an interval (a, b), then the
function f is called differentiable on (a, b). The derivative of f at x ∈ (a, b) is
denoted by f ′(x). The derivative f ′(x) is itself another function. If f ′ is con-
tinuous, then f is called continuously differentiable, or simply a C1 function.
When we want to stress that f is C1 on (a, b), we write f ∈ C1(a, b). If f ′(x)
is again differentiable, then its derivative is denoted by f ′′(x) and is called the
second derivative of f . We can define f ′′′(x), f ′′′′(x), etc. analogously. The
r-th derivative of f is usually denoted by f (r)(x). If f is r times differentiable
and f (r)(x) is continuous (“r times continuously differentiable”), then f is
called a Cr function.

The following proposition shows that a function that is differentiable at a
point is continuous at that point.

Proposition 2.1. Let f : (a, b)→ R be differentiable at c ∈ (a, b). Then f is
continuous at c.

Proof. Let x ̸= c and consider the identity

f(x) = f(x)− f(c)
x− c

(x− c) + f(c).

Letting x→ c and using the definition of the derivative, we obtain

lim
x→c

f(x) = f ′(c) · 0 + f(c) = f(c).

Obviously, not every continuous function is differentiable, as we can see
from f(x) = |x| at x = 0.

2.3 NECESSARY CONDITION

Let us go back to the minimization problem (2.1). The following proposition
shows why differentiation is a powerful tool for solving optimization problems.
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Proposition 2.2 (Necessity of first-order condition). Consider the minimiza-
tion problem (2.1). If x̄ ∈ int C is a local solution and f is differentiable at x̄,
then f ′(x̄) = 0.

Proof. Since x̄ is an interior point of C, we have x + h ∈ C for small enough
|h|. Since x̄ attains the minimum of f in a neighborhood of x̄, we have

f(x̄ + h) ≥ f(x̄)

for sufficiently small |h|. Subtracting f(x̄) from both sides and dividing by
h > 0, we obtain

f(x̄ + h)− f(x̄)
h

≥ 0.

Letting h→ 0 and using the definition of the derivative, we get f ′(x̄) ≥ 0. By
considering the case h < 0, we can show f ′(x̄) ≤ 0. Therefore f ′(x̄) = 0.

Proposition 2.2 says that to minimize a differentiable function (with no
constraints), it is necessary that the derivative is zero. Thus if we know that
a solution exists (say by applying the extreme value theorem) and lies in the
interior of C, then we may find the candidates for the solution by solving the
equation f ′(x̄) = 0. The condition f ′(x̄) = 0 in Proposition 2.2 is called the
first-order condition for optimality. Figure 2.3 clarifies this condition.

f ′(x̄) = 0

x̄

f(x̄)

x

FIGURE 2.3: First-order condition is necessary.

Obviously, setting the derivative to zero is not sufficient for optimality in
general, as the following example shows.

Example 2.3. Let f(x) = x3/3− x. Then

f ′(x) = x2 − 1 = (x− 1)(x + 1),

so f ′(x) = 0 ⇐⇒ x = ±1. But clearly f(x) → ±∞ as x → ±∞, so x = ±1
are neither the minimum nor the maximum of f (Figure 2.4).
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x
−1

1

FIGURE 2.4: First-order condition is not sufficient.

2.4 MEAN VALUE AND TAYLOR'S THEOREM

Let f be a differentiable function. By definition, f ′(a) is the limit of f(b)−f(a)
b−a —

the slope between the points (a, f(a)) and (b, f(b))—as b approaches a. Is there
an exact relationship between f ′ and arbitrary b? The mean value theorem
gives an answer.

Proposition 2.3 (Mean value theorem). Let f be continuous on [a, b] and
differentiable on (a, b). Then there exists c ∈ (a, b) such that

f(b)− f(a)
b− a

= f ′(c). (2.6)

Proof. Let
ϕ(x) := f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

Clearly ϕ(a) = ϕ(b) = 0. If ϕ ≡ 0 on [a, b], then

0 = ϕ′(x) = f ′(x)− f(b)− f(a)
b− a

on (a, b), so we can take any c ∈ (a, b). Suppose there exists x ∈ [a, b] such
that ϕ(x) < 0. Since ϕ is continuous, by the extreme value theorem (Theorem
1.11) it attains a minimum at some point c ∈ [a, b]. Since ϕ(a) = ϕ(b) = 0 and
ϕ takes a negative value, it must be c ∈ (a, b). By Proposition 2.2, we have

0 = ϕ′(c) = f ′(c)− f(b)− f(a)
b− a

⇐⇒ f(b)− f(a)
b− a

= f ′(c).

The proof if ϕ takes a positive value is similar.

Recall that differentiation is essentially a linear approximation; see (2.5).
Changing the notation in the mean value theorem (2.6) such that b = x and
c = ξ, we obtain

f ′(ξ) = f(x)− f(a)
x− a

⇐⇒ f(x) = f(a) + f ′(ξ)(x− a).
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There is no reason to stop at a linear (first-order) approximation. If, for ex-
ample, we continue to a quadratic (second-order) approximation, we can show
that for each x, there exists a number ξ between a and x such that

f(x) = f(a) + f ′(a)(x− a) + 1
2f ′′(ξ)(x− a)2. (2.7)

More generally, by increasing the order of polynomial approximation, we ob-
tain the following Taylor’s theorem.

Proposition 2.4 (Taylor’s theorem). Let f be n times differentiable around
x = a. Then for each x, there exists a number ξ between a and x such that

f(x) =
n−1∑
k=0

f (k)(a)
k! (x− a)k + f (n)(ξ)

n! (x− a)n. (2.8)

Proof. Problem 2.7.

Obviously, the mean value theorem (2.6) is a special case of Taylor’s the-
orem (2.8) for n = 1. Similarly, the quadratic approximation (2.7) is a special
case of (2.8) for n = 2.

2.5 SUFFICIENT CONDITION

Proposition 2.2 tells us that if a function is differentiable, the derivative is zero
at the optimum (maximum or minimum). Therefore, setting the derivative to
zero (first-order condition) is a necessary condition for optimality. Is there
a sufficient condition for optimality? The answer is yes: there is a special
but large enough class of functions such that the first-order condition is also
sufficient.

We say that a function f is convex if for any x1, x2 and α ∈ [0, 1] we have

f((1− α)x1 + αx2) ≤ (1− α)f(x1) + αf(x2). (2.9)

Graphically, a function is convex if the segment joining the points (x1, f(x1))
and (x2, f(x2)) lies above the graph of f (Figure 2.5). We say that f is strictly
convex if the inequality (2.9) is strict for α ∈ (0, 1). We say that f is concave
if −f is convex.

As shown in Problems 2.10 and 2.11 (and more generally in Chapter 11), a
twice continuously differentiable function f is convex if and only if the second
derivative is nonnegative, so f ′′(x) ≥ 0. The intuitive explanation is as follows.
When f ′′(x) ≥ 0, then f ′(x)—the derivative or the slope of f—is increasing.
Therefore if you imagine flying along the graph of f , you will be constantly
turning upwards. Therefore the segment that joins arbitrary two points on the
trajectory must lie above the actual trajectory.

The following proposition shows that setting the derivative to zero is suf-
ficient for optimization when the objective function is convex or concave.
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x

y = f(x)

x1 x2

f(x1)

f(x2)

FIGURE 2.5: Convex function.

Proposition 2.5 (Sufficiency of first-order condition for convex functions).
Let f be twice differentiable and convex (concave). If f ′(x̄) = 0, then x̄ is the
minimum (maximum) of f .

Proof. Suppose that f is convex, so f ′′(x) ≥ 0. Applying Taylor’s theorem
(Proposition 2.4) for a = x̄ and n = 2, for any x there exists ξ such that

f(x) = f(x̄) + f ′(x̄)(x− x̄) + 1
2f ′′(ξ)(x− x̄)2.

Since by assumption f ′(x̄) = 0 and f ′′(ξ) ≥ 0, we obtain f(x) ≥ f(x̄). There-
fore x̄ is the minimum of f . A similar argument holds when f is concave.

When the function is not convex, all we can hope is to characterize local
solutions, as in the following proposition.

Proposition 2.6 (Characterization of local solutions). Let U ⊂ R be open
and f : U → R be twice differentiable. Then the following statements are true.

(i) If x̄ ∈ U is a local minimum, then f ′(x̄) = 0 and f ′′(x̄) ≥ 0.

(ii) If f ′(x̄) = 0 and f ′′(x̄) > 0, then x̄ is a strict local minimum.

The proof is similar to Proposition 2.5 and is left as Problem 2.13. Similar
statements hold for local maxima by flipping the sign of f .

2.6 OPTIMAL SAVINGS PROBLEM

To illustrate how to use Proposition 2.5, we provide an example with a step-
by-step analysis.

Consider an agent who lives for two dates indexed by t = 1, 2. The agent
is endowed with initial wealth w > 0, and at t = 1 the agent needs to decide
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how much to consume or save. The gross interest rate on savings is R > 0.
Thus if the agent consumes c at t = 1, savings is w − c, and the wealth at
t = 2 is R(w − c). Suppose that the agent wishes to maximize the utility

U(c1, c2) = c1−γ
1

1− γ
+ β

c1−γ
2

1− γ
, (2.10)

where 0 < γ ̸= 1 is a curvature parameter and β > 0 is the discount factor.
Setting c1 = c and c2 = R(w − c) in (2.10), the objective function is

f(c) := c1−γ

1− γ
+β

(R(w − c))1−γ

1− γ
= 1

1− γ

(
c1−γ + βR1−γ(w − c)1−γ

)
. (2.11)

If 0 < γ < 1, then f is positive and continuous on [0, w]. If γ > 1, then f
is negative and continuous on [0, w] if we allow the value −∞. Hence by the
extreme value theorem (Theorem 1.11), there exists a solution.1

For c ∈ (0, w), the first and second derivatives are

f ′(c) = c−γ − βR1−γ(w − c)−γ ,

f ′′(c) = −γ(c−γ−1 + βR1−γ(w − c)−γ−1).

Since f ′′(c) < 0, by the remark after (2.9), f is concave. The first-order con-
dition is

f ′(c) = 0 ⇐⇒ c−γ = βR1−γ(w − c)−γ

⇐⇒ c = (βR1−γ)−1/γ(w − c)

⇐⇒ c = w

1 + (βR1−γ)1/γ
.

By Proposition 2.5, this c is the optimal consumption.

PROBLEMS

2.1. Using the definition (2.4), compute the derivative of the following func-
tions.

(i) f(x) = x3.

(ii) f(x) = x4.

(iii) f(x) = xn, where n ∈ N. (Hint: binomial theorem.)

(iv) f(x) = 1/x, where x ̸= 0.

(v) f(x) =
√

x, where x > 0.
1As this argument shows, working with extended real numbers is convenient to avoid

cases. In the usual sense, f in (2.11) is “undefined” at c = 0, w if γ > 1.
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2.2. Let f, g be differentiable and α ∈ R. Prove the following statements.

(i) (f(x) + g(x))′ = f ′(x) + g′(x),

(ii) (αf(x))′ = αf ′(x),

(iii) (f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x) (product rule).

(iv) (f(x)/g(x))′ = f ′(x)g(x)−f(x)g′(x)
g(x)2 if g(x) ̸= 0 (quotient rule).

(v) (g(f(x)))′ = g′(f(x))f ′(x) (chain rule).

2.3. The exponential function is defined by

ex = 1 + x + 1
2x2 + 1

6x3 + · · · =
∞∑

n=0

1
n!x

n,

where e = 2.718281828 . . . . It satisfies ex+y = exey and (ex)′ = ex. The
logarithmic function is the inverse function of the exponential, so elog x = x
and log ex = x. Using the chain rule, show that

(i) (log x)′ = 1/x,

(ii) (xα)′ = αxα−1.

2.4. Define f by f(x) = x2 sin(1/x) if x ̸= 0 and f(0) = 0.

(i) Compute f ′(x) when x ̸= 0.

(ii) Using the definition, compute f ′(0).

(iii) Show that f is differentiable but not continuously differentiable.

2.5. (i) Fill in the details of the proof of Proposition 2.2.

(ii) Show that Proposition 2.2 also holds for maximization.

2.6. (i) Let f : (a, b) → R be differentiable and f ′ > 0. Show that f is
strictly increasing, i.e., x1 < x2 implies f(x1) < f(x2). (Hint: use the
mean value theorem.)

(ii) Let f : [a, b]→ R be continuous and differentiable on (a, b). Let x̄ ∈ [a, b]
be a maximum of f , which exists by the extreme value theorem. If
f ′(x) > 0 for x sufficiently close to a, show that x̄ ̸= a.

2.7. This problem asks you to prove Taylor’s theorem. Let I be an open
interval containing a and f : I → R. Suppose that f is n times differentiable
and f (k)(x) is continuous on I for k = 1, . . . , n− 1.
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(i) Define the polynomial P (x) =
∑n−1

k=0
f(k)(a)

k! (x− a)k, let M = f(b)−P (b)
(b−a)n ,

and
ϕ(x) = f(x)− P (x)−M(x− a)n.

Show that ϕ(a) = ϕ′(a) = · · · = ϕ(n−1)(a) = 0 and ϕ(n)(x) = f (n)(x)−
n!M .

(ii) Prove Taylor’s theorem.

2.8. For each of the following functions, determine whether it is convex, con-
cave, or neither.

(i) f(x) = 10x− x2,

(ii) f(x) = x4 + 6x2 + 12x,

(iii) f(x) = 2x3 − 3x2,

(iv) f(x) = x4 + x2,

(v) f(x) = x3 + x4,

(vi) f(x) = ex,

(vii) f(x) = log x (x > 0),

(viii) f(x) = x log x (x > 0),

(ix) f(x) = xα, where α ̸= 0 and x > 0. (Hint: there are a few cases to
consider.)

2.9. Suppose that you are running a firm that produces an output good
using an input good. When the input is x, the output is Axα, where A > 0
and α ∈ (0, 1). Suppose that the unit price of the input is c and the unit price
of the output is p. Compute the input level that maximizes the profit.

The following two problems ask you to show that a twice differentiable
function is convex if and only if the second derivative is nonnegative.

2.10. Let f be differentiable.

(i) Fix x ̸= y and let g(t) = f((1−t)x+ty)−f(x)
t , where t > 0. For 0 < s < t,

show that

g(s) ≤ g(t) ⇐⇒ f((1− s)x + sy) ≤
(

1− s

t

)
f(x) + s

t
f((1− t)x + ty).

(ii) Show that the function g is increasing if and only if f is convex.

(iii) Compute g(1) and limt→0 g(t).
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(iv) Show that f is convex if and only if

f(y)− f(x) ≥ f ′(x)(y − x)

for all x, y.

2.11. Using Taylor’s theorem and Problem 2.10, show that a twice continu-
ously differentiable function f is convex if and only if f ′′(x) ≥ 0 for all x.

2.12. Prove Proposition 2.5 assuming only that f is differentiable (but not
necessarily twice differentiable). (Hint: Problem 2.10.)

2.13. Prove Proposition 2.6.

2.14. Let f be strictly convex. If f has a minimum, show that it is unique.
(Hint: assume there are two minima x1, x2 and derive a contradiction by using
the definition of convexity.)

2.15. Let p, q > 0 be numbers such that 1/p + 1/q = 1.

(i) Fixing b ≥ 0, define f(x) = 1
p xp − bx + 1

q bq for x ≥ 0. Show that f is
convex.

(ii) For all a, b ≥ 0, prove Young’s inequality

1
p

ap + 1
q

bq ≥ ab.

(iii) Let x, y ∈ RN . Define ∥x∥p =
(∑N

n=1 |xn|p
)1/p

. Prove Hölder’s inequal-
ity

∥x∥p ∥y∥q ≥
N∑

n=1
|xnyn| . (2.12)

(Hint: set a = |xn| / ∥x∥p, b = |yn| / ∥y∥q and use Young.)

(iv) Verify that if p = q = 2, then Hölder’s inequality is equivalent to the
Cauchy-Schwarz inequality.





CHAPTER 3

Multi-variable

Unconstrained

Optimization

3.1 INTRODUCTION

In Chapter 2, we derived necessary or sufficient conditions for the minimization
problem

minimize f(x)
subject to x ∈ C (3.1)

to have a solution x̄ when f was differentiable and C ⊂ R. This chapter
extends those results when C ⊂ RN but the solution x̄ is an interior point of
the constraint set C.

Although the extensions are conceptually straightforward, we need to in-
troduce the notion of matrices to make the notation manageable.

3.2 LINEAR MAPS AND MATRICES

Instead of a linear function f : RN → R, consider a linear map f : RN →
RM . This means that (i) for each x ∈ RN , the map f associates a vector
f(x) ∈ RM , and (ii) f is linear (preserves addition and scalar multiplication):
f(αx + βy) = αf(x) + βf(y) for all x, y ∈ RN and α, β ∈ R. Let fm(x) be the
m-th entry of f , so f(x) = (f1(x), . . . , fM (x)). Then clearly each fm(x) is a
linear function of x, so by Proposition 1.2 we have

fm(x) = am1x1 + · · ·+ amN xN

for some numbers am1, . . . , amN . Since this is true for any m, a linear map
has a one-to-one correspondence with numbers (amn), where 1 ≤ m ≤M and

39
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1 ≤ n ≤ N . We write

A = (amn) =



a11 · · · a1n · · · a1N

...
. . .

...
. . .

...
am1 · · · amn · · · amN

...
. . .

...
. . .

...
aM1 · · · aMn · · · aMN


and call it a matrix. For an M × N matrix A and an N -vector x, we define
the M -vector Ax by the vector whose m-th entry is

am1x1 + · · ·+ amN xN .

So f : RN → RM defined by f(x) = Ax is a linear map. By defining addition
and scalar multiplication entrywise, the set of all M × N matrices can be
identified as RMN , the MN -dimensional Euclidean space. The set of all M×N
matrices is denoted by RM×N . When a matrix A is N×N , so the corresponding
linear map f(x) = Ax maps RN to itself, we say that A is a square matrix.
The null function f : RM → RN defined by f(x) = 0 for all x is clearly linear.
The corresponding matrix A clearly has entries amn = 0 for all m, n. This
matrix is called the null matrix or zero matrix and is denoted by A = 0M,N .
When the dimension of the zero matrix is clear from the context, we simply
write A = 0. The identity map id : RN → RN defined by id(x) = x is clearly
linear and has a corresponding matrix I. By simple calculation I is square
and its diagonal (off-diagonal) entries are all 1 (0). This matrix is called the
identity matrix and is denoted by IN . When the dimension is clear from the
context, we simply write A = I.

Now consider two linear maps f : RN → RM and g : RM → RL. Since f, g
are linear, we can find an M × N matrix A = (amn) and an L ×M matrix
B = (blm) such that f(x) = Ax and g(y) = By. We can also consider the
composition of these two maps, h = g ◦ f defined by h(x) := g(f(x)). It is
easy to see that h is a linear map from RN to RL, and therefore it can be
written as h(x) = Cx with an L × N matrix C = (cln). Using the definition
h(x) = g(f(x)) = B(Ax), it is easy to see (Problem 3.1) that

cln =
M∑

m=1
blmamn. (3.2)

So it makes sense to define the multiplication of matrices C = BA by (3.2).
You can use all standard rules of algebra such as B(A1 + A2) = BA1 + BA2,
A(BC) = (AB)C, etc. The proofs are immediate by carrying out the algebra
or thinking about linear maps.

Recall that the inner product of vectors x = (x1, . . . , xN ) and y =
(y1, . . . , yN ) is defined by

⟨x, y⟩ = x1y1 + · · ·+ xN yN . (3.3)
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Using the definition of matrix multiplication and the fact that 1× 1 matrices
can be identified as real numbers, (3.3) can be written as the product of a
1×N matrix and an N × 1 matrix

⟨x, y⟩ =
[
x1 · · · xN

]  y1
...

yN

 . (3.4)

Clearly, an N × 1 matrix can be identified as a vector in RN . When we do so,
we call y ∈ RN a column vector .

Let x = (xm) ∈ RM , y = (yn) ∈ RN , and A = (amn) ∈ RM×N . Then by
the definition of the inner product and matrix multiplication, we have

⟨x, Ay⟩ =
M∑

m=1
xm

(
N∑

n=1
amnyn

)
=

M∑
m=1

N∑
n=1

xmamnyn. (3.5)

The right-hand side of (3.5) can also be interpreted as the inner product
⟨A′x, y⟩, where A′ := (anm) ∈ RN×M . This N ×M matrix A′ is called the
transpose of A and is also denoted by A⊤. If we identify an N -vector as an
N × 1 matrix and a scalar as a 1 × 1 matrix, then (3.4) can be written as
⟨x, y⟩ = x′y. The 1×N matrix

x′ =
[
x1 · · · xN

]
is sometimes called the row vector . If the matrix product AB is defined, then
by definition

⟨(AB)′x, y⟩ = ⟨x, ABy⟩ = ⟨A′x, By⟩ = ⟨B′A′x, y⟩

for all vectors x, y, so (AB)′ = B′A′. In general, when dealing with matrices,
to simplify notation, it is important to use these algebraic rules and avoid
entrywise calculations as much as possible.

3.3 DIFFERENTIATION

In Chapter 2, we defined the derivative of a one-variable function f by the
limit

f ′(x) = lim
h→0

f(x + h)− f(x)
h

. (3.6)

The definition (3.6) is inconvenient for generalizing to multi-variable functions
because h would be a vector but the division by a vector is undefined. We thus
seek a more general definition. Note that (3.6) implies that

f(x + h)− f(x) ≈ f ′(x)h
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for small h, so the change in the function value f(x + h) − f(x) when x is
perturbed by a small deviation h is approximately a linear function f ′(x)h of
h. More precisely, (3.6) is equivalent to

lim
|h|→0

|f(x + h)− f(x)− f ′(x)h|
|h|

= 0.

Motivated by these observations, we define differentiation of multi-variable
functions as follows. Let U ⊂ RN be open and f : U → RM . Equip RN and
RM with some norms, which we simply denote by ∥·∥ for simplicity. (For
instance, RN could be equipped with the ℓ1 norm ∥·∥1, whereas RM could be
equipped with the ℓ2 norm ∥·∥2. The choice of the norm does not matter by
Theorem 1.3.) Then we say that f is differentiable at x ∈ U if there exists an
M ×N matrix A such that

lim
∥h∥→0

∥f(x + h)− f(x)−Ah∥
∥h∥

= 0. (3.7)

It is easy to show by a similar argument as Proposition 2.1 that f is continuous
if it is differentiable.

Suppose f : U → RM is differentiable at x ∈ U and let A be as in (3.7).
We can characterize the matrix A = (amn) as follows. First, let h = ten, where
t ̸= 0 and en is the n-th unit vector of RN . By considering the sup norm on
RM , for each m = 1, . . . , M the definition of differentiability (3.7) implies that

amn = ∂fm

∂xn
(x) := lim

t→0

fm(x1, . . . , xn + t, . . . , xN )− fm(x)
t

, (3.8)

that is, amn equals the derivative of fm with respect to the single variable xn

when we treat other variables x1, . . . , xn−1, xn+1, . . . , xN as constants. The
quantity ∂fm/∂xn defined by the limit (3.8) is called the (m, n)-th partial
derivative of f at x. The matrix of partial derivatives (∂fm/∂xn) is called the
Jacobian and is denoted by Df(x).

We clarify some notions of differentiability of multi-variable functions. Let
U ⊂ RN be open and f : U → RM . By definition, f is differentiable at
x ∈ U if (3.7) holds with A = Df(x). We say that f is partially differentiable
at x if the limit (3.8) exists for all m, n. Clearly, if f is differentiable, it is
partially differentiable, but the converse is generally not true (Problem 3.2).
If f is partially differentiable and the partial derivatives are continuous, we say
that f is continuously differentiable or C1. If f is C1, then it is differentiable
(Problem 3.3).

3.4 CHAIN RULE

We extend the chain rule (g(f(x)))′ = g′(f(x))f ′(x) of one-variable functions
to multi-variable functions.
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Proposition 3.1. Let U ⊂ RN and V ⊂ RM be open. Let f : U → V be
differentiable at a ∈ U and g : V → RL be differentiable at b := f(a) ∈ V .
Then g ◦ f : U → RL defined by (g ◦ f)(x) = g(f(x)) is differentiable at a and

D(g ◦ f)(a)︸ ︷︷ ︸
L×N

= Dg(b)︸ ︷︷ ︸
L×M

Df(a)︸ ︷︷ ︸
M×N

. (3.9)

Proof. Let A = Df(a) be the Jacobian of f at a and define

ϵ(h) := f(a + h)− f(a)−Ah

for h ∈ RN close enough to 0. By the definition of differentiability (3.7), we
have ϵ(h)/ ∥h∥ → 0 as h→ 0. Similarly, if we define B = Dg(b) and

δ(k) := g(b + k)− g(b)−Bk

for k ∈ RM close enough to 0, we have δ(k)/ ∥k∥ → 0 as k → 0.
Letting k = f(a + h)− f(a), we obtain

g(f(a + h))− g(f(a)) = g(b + k)− g(b) = Bk + δ(k)
= B(f(a + h)− f(a)) + δ(f(a + h)− f(a))
= B(Ah + ϵ(h)) + δ(Ah + ϵ(h))
= BAh + Bϵ(h) + δ(Ah + ϵ(h)).

Since ϵ and δ are negligible compared with their arguments, we obtain
(g ◦ f)(a + h)− (g ◦ f)(b)−BAh

∥h∥
→ 0

as h→ 0, so g ◦ f is differentiable at x = a and

D(g ◦ f)(a) = BA = Dg(b)Df(a).

To understand the chain rule (3.9), consider the following example. Let g
be a real-valued function of two variables, say g(x1, x2). Let f be a vector-
valued function of one variable, say f(t) = (f1(t), f2(t)). Since

Dg =
[

∂g
∂x1

∂g
∂x2

]
and Df =

[
f ′

1(t)
f ′

2(t)

]
,

it follows that
d

dt
g(f1(t), f2(t)) = D(g ◦ f) = DgDf

=
[

∂g
∂x1

∂g
∂x2

] [
f ′

1(t)
f ′

2(t)

]
= ∂g

∂x1
f ′

1(t) + ∂g

∂x2
f ′

2(t).

More generally, if f is an M -dimensional function of x1, . . . , xN and g is a
real-valued function of y1, . . . , yM , we have

∂(g ◦ f)
∂xn

=
M∑

m=1

∂g

∂ym

∂fm

∂xn
.
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3.5 NECESSARY CONDITION

Let us go back to the minimization problem (3.1). In the one-variable case,
the first-order condition was f ′(x) = 0. We seek to generalize this condition
for multi-variable optimization.

If f : U → R is partially differentiable, its Jacobian

Df(x) =
[

∂f
∂x1

· · · ∂f
∂xN

]
is a row vector. Its transpose (which is a column vector) is denoted by

∇f(x) := Df(x)⊤ =


∂f
∂x1
...

∂f
∂xN


and is called the gradient. (We read the symbol ∇ “nabla”.)

The following proposition extends the first-order necessary condition for
one-variable optimization in Proposition 2.2 to multi-variable optimization.

Proposition 3.2 (Necessity of first-order condition). Consider the minimiza-
tion problem (3.1). If x̄ ∈ int C is a local solution and f is differentiable at x̄,
then ∇f(x̄) = 0.

Proof. Take any v ∈ RN and define ϕ : R → RN by ϕ(t) = x̄ + vt. Since x̄ is
an interior point of C, the function

g(t) := (f ◦ ϕ)(t) = f(x̄ + vt)

is well defined for t close enough to 0. Since x̄ is a local solution to the mini-
mization problem (3.1), clearly t = 0 is a local minimum of g. By Proposition
2.2, the chain rule, and the definition of the gradient, we obtain

0 = g′(0) = Df(x̄)v = ⟨∇f(x̄), v⟩ .

Since v ∈ RN is arbitrary, we obtain ∇f(x̄) = 0.

PROBLEMS

3.1. Let f : RN → RM and g : RM → RL be linear and define h = g ◦ f to be
their composition, which is linear. Let A = (amn), B = (blm), and C = (cln)
be the matrix representations of f, g, h. Prove that

cln =
M∑

m=1
blmamn.

3.2. Define f : R2 → R by

f(x1, x2) =
{

x2
1x2

x4
1+x2

2
, (x1, x2) ̸= (0, 0)

0. (x1, x2) = (0, 0)
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(i) Using the definition, compute the partial derivatives of f at x = 0.

(ii) Show that f is partially differentiable at any x ∈ R2.

(iii) Show that f is not differentiable at x = 0.

3.3. Let f : R2 → R be a C1 function (i.e., partially differentiable and the
partial derivatives are continuous). Fix (a1, a2).

(i) Using the one-variable mean value theorem, show that there exist num-
bers 0 < θ1, θ2 < 1 such that

f(a1 + h1, a2 + h2)− f(a1, a2)

= ∂f

∂x1
(a1 + θ1h1, a2 + h2)h1 + ∂f

∂x2
(a1, a2 + θ2h2)h2.

(Hint: subtract and add f(a1, a2 + h2) from/to the left-hand side.)

(ii) Let
ϵ(h) = f(a + h)− f(a)− ⟨∇f(a), h⟩ ,

where a = (a1, a2) and h = (h1, h2). Prove that ϵ(h)/ ∥h∥ → 0 as h→ 0.

(iii) Prove that if U ⊂ RN is open and f : U → R is C1, then it is differen-
tiable.

3.4. Compute the partial derivatives and the gradient of the following func-
tions.

(i) f(x1, x2) = a1x1 + a2x2, where a1, a2 are constants.

(ii) f(x1, x2) = ax2
1 + 2bx1x2 + cx2

2, where a, b, c are constants.

(iii) f(x1, x2) = x1x2.

(iv) f(x1, x2) = x1 log x2, where x2 > 0.

3.5. Compute the gradient of the following functions.

(i) f(x) = ⟨a, x⟩, where a, x are vectors of the same dimensions.

(ii) f(x) = ⟨x, Ax⟩, where A is a square matrix of the same dimension as
the vector x.

3.6. Make the proof of Proposition 3.1 more rigorous.

3.7 (Least squares). Suppose that you would like to “explain” some quantity
y (say the earnings of an individual) from other quantities x = (x1, . . . , xN )
(say a constant term, schooling, and job experience). You have a linear model

y = β1x1 + · · ·+ βN xN = x′β,
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where β = (β1, . . . , βN ) is the vector of coefficients. You have some data
{(yi, xi)}I

i=1, where yi ∈ R and xi ∈ RN for each i. To determine the coefficient
vector β, suppose you would like to minimize the sum of squared residuals

f(β) :=
I∑

i=1
(yi − x′

iβ)2.

(i) Define the vector y ∈ RI by y = (y1, . . . , yI) and the matrix X ∈ RI×N

by X = (xin), where xi = (xi1, . . . , xiN ). Show that

f(β) = ∥y−Xβ∥2
,

where ∥·∥ denotes the ℓ2 (Euclidean) norm.

(ii) Using the definition of the inner product and the transpose, show that

f(β) = ⟨y, y⟩ − 2 ⟨X′y, β⟩+ ⟨β, X′Xβ⟩ .

(iii) You would like to solve the problem

min
β∈RN

f(β).

Derive the first-order condition for optimality using only y, X, and β.
(Avoid entrywise calculation!)



CHAPTER 4

Introduction to

Constrained Optimization

4.1 INTRODUCTION

In Chapter 3, we derived a necessary condition for x̄ to be a solution to the
minimization problem

minimize f(x)
subject to x ∈ C. (4.1)

The main result (Proposition 3.2) was that if x̄ is an interior point of the
constraint set C, the gradient of f must be zero: ∇f(x̄) = 0.

This necessary condition for characterizing the solution is unsatisfactory
because in many problems, the solution would not be an interior point of
the constraint set. Consider, for example, the utility maximization problem
discussed in Chapter 0:

maximize u(x1, . . . , xN ) (4.2a)
subject to p1x1 + · · ·+ pN xN ≤ w, (4.2b)

(∀n)xn ≥ 0. (4.2c)

Here u in (4.2a) denotes the utility function of the agent, pn > 0 denotes
the unit price of the good n, and xn ≥ 0 is the quantity of good n that the
agent wishes to consume. The condition (4.2b) is the budget constraint. The
constraint set is thus

C =
{

x ∈ RN
+ : ⟨p, x⟩ ≤ w

}
,

where RN
+ =

{
x = (x1, . . . , xN ) ∈ RN : (∀n)xn ≥ 0

}
denotes the nonnegative

orthant of RN and p = (p1, . . . , pN ) denotes the price vector. In a typical
situation where the agent likes all goods (i.e., the utility function u is strictly

47
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increasing in each argument), at the maximum x̄ the agent will exhaust the
budget, so ⟨p, x̄⟩ = w. To see this, if ⟨p, x̄⟩ < w, the agent can increase utility
by increasing the consumption of some good slightly without violating the
budget constraint, which contradicts optimality. Thus the solution x̄ satisfies
⟨p, x̄⟩ = w, so x̄ is on the boundary of the constraint set C.

In this chapter we derive necessary conditions for a solution to the opti-
mization problem (4.1) when the constraint set C is given by linear inequalities
as in (4.2b) and (4.2c). We make the discussion in this chapter intuitive at
the expense of mathematical rigor. We shall obtain more general and rigorous
results in Chapter 12.

4.2 ONE LINEAR CONSTRAINT

To build intuition, we start the discussion of constrained optimization from
the simplest case, namely when there is a single linear constraint.

Consider the minimization problem with one linear constraint

minimize f(x)
subject to ⟨a, x⟩ ≤ c,

where f : RN → R is differentiable, a ∈ RN is a nonzero vector, and c ∈ R
is a constant. Suppose a solution x̄ exists. The goal is to derive a necessary
condition for x̄.

Define the constraint set by

C =
{

x ∈ RN : ⟨a, x⟩ ≤ c
}

.

If ⟨a, x̄⟩ < c, so the constraint does not bind or is inactive, then x̄ is an interior
point of C and x̄ is a local solution. Hence by Proposition 3.2 a necessary
condition is ∇f(x̄) = 0. If ⟨a, x̄⟩ = c, so the constraint binds or is active,
then the situation is more complicated. The boundary of C is the hyperplane
⟨a, x⟩ = c. Figure 4.1 shows the constraint set C, the solution x̄, and the
vector a. Note that by assumption ⟨a, x̄⟩ = c. Hence if x is a boundary point
of C, then ⟨a, x⟩ = c, so ⟨a, x− x̄⟩ = 0. Therefore a is perpendicular to the
boundary of C.

Consider moving towards the direction v from the solution x̄. Since x̄ is
on the boundary, we have ⟨a, x̄⟩ = c. The point x = x̄ + tv (where t > 0 is
small) is feasible (belongs to the constraint set C) if and only if

⟨a, x̄ + tv⟩ ≤ c = ⟨a, x̄⟩ ⇐⇒ ⟨a, v⟩ ≤ 0, (4.3)

that is, the vectors a, v form an obtuse angle as in Figure 4.1. Since x̄ is a
solution, we have f(x̄ + tv) ≥ f(x̄) for small enough t > 0. Therefore applying
the chain rule (Proposition 3.1), we obtain

0 ≤ lim
t↓0

f(x̄ + tv)− f(x̄)
t

= ⟨∇f(x̄), v⟩ ⇐⇒ ⟨−∇f(x̄), v⟩ ≤ 0. (4.4)
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⟨a, x⟩ = c

a

v

x̄
−∇f(x̄)

C

FIGURE 4.1: Gradient and feasible direction.

(The derivative in (4.4) is called the directional derivative or the Gâteaux
derivative of f in the direction v.) The necessary condition (4.4) implies that
the vectors −∇f(x̄) and v form an obtuse angle. Therefore we obtain the
following general principle for optimality:

If a and v form an obtuse angle, then so do −∇f(x̄) and v. (4.5)

In Figure 4.1, the angle between −∇f(x̄) and v is acute, so the principle (4.5)
is violated.

The only case that −∇f(x̄) and v form an obtuse angle whenever a and
v do so is when −∇f(x̄) and a point to the same direction, as in Figure 4.2.
Therefore if x̄ is a solution, there must be a number λ ≥ 0 such that

−∇f(x̄) = λa ⇐⇒ ∇f(x̄) + λa = 0.

⟨a, x⟩ = c

a

x̄

−∇f(x̄)

v

C

FIGURE 4.2: Necessary condition for optimality.

In the discussion above, we considered the cases in which the constraint
binds (is active) or not, but the inactive case (∇f(x̄) = 0) is a special case of
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the active case (∇f(x̄)+λa = 0) by setting λ = 0. Therefore we can summarize
the necessary condition for optimality as in the following proposition.

Proposition 4.1. Consider the optimization problem

minimize f(x)
subject to ⟨a, x⟩ ≤ c,

where f : RN → R is differentiable, 0 ̸= a ∈ RN , and c ∈ R. If x̄ is a local
solution, then there exists λ ≥ 0 such that

∇f(x̄) + λa = 0.

4.3 MULTIPLE LINEAR CONSTRAINTS

We next consider the optimization problem

minimize f(x)
subject to ⟨a1, x⟩ ≤ c1,

⟨a2, x⟩ ≤ c2,

where f is differentiable, a1, a2 are nonzero vectors, and c1, c2 are constants.
Let x̄ be a solution and C be the constraint set

C = {x : g1(x) ≤ 0, g2(x) ≤ 0} ,

where gi(x) = ⟨ai, x⟩ − ci for i = 1, 2. Functions of this form (linear plus a
constant) are called affine. Assume that both constraints are active at the
solution. Figure 4.3 shows the situation.

a1 = ∇g1
a2 = ∇g2

v

x̄

−∇f(x̄)

C

FIGURE 4.3: Gradient and feasible direction.

In general, the vector v is called a feasible direction if we can move a little
bit towards the direction v from the point x̄, so x̄ + tv ∈ C for small enough
t > 0. In our case, by (4.3), v is a feasible direction if ⟨ai, v⟩ ≤ 0 for i = 1, 2.
If v is a feasible direction and x̄ is the minimum of f , the necessary condition
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(4.4) is still valid. By looking at Figure 4.3, in order for x̄ to be the minimum,
it is necessary that −∇f(x̄) lies between the vectors a1 and a2. This is true if
and only if there are numbers λ1, λ2 ≥ 0 such that

−∇f(x̄) = λ1a1 + λ2a2 ⇐⇒ ∇f(x̄) + λ1∇g1(x̄) + λ2∇g2(x̄) = 0.

Although we have assumed that both constraints bind, this equation is true
even if one (or both) of them does not bind by setting λ1 = 0 and/or λ2 = 0.

4.4 KARUSH-KUHN-TUCKER THEOREM

It is clear that the preceding argument holds for arbitrarily many linear con-
straints. Therefore we obtain the following general theorem.

Theorem 4.2 (Karush-Kuhn-Tucker theorem with linear constraints). Con-
sider the optimization problem

minimize f(x)
subject to gi(x) ≤ 0 (i = 1, . . . , I),

where f is differentiable and gi(x) = ⟨ai, x⟩ − ci is affine with ai ̸= 0. If x̄ is
a local solution, then there exist λ1, . . . , λI such that

∇f(x̄) +
I∑

i=1
λi∇gi(x̄) = 0, (4.6a)

(∀i) λi ≥ 0, gi(x̄) ≤ 0, λigi(x̄) = 0. (4.6b)

Condition (4.6a) is called the first-order condition. Its interpretation is that
at the minimum x̄, the negative of the gradient −∇f(x̄) must lie between
all the normal vectors ai = ∇gi(x̄) corresponding to the active constraints
(Figure 4.3). Condition (4.6b) is called the complementary slackness condition.
The first-order and complementary slackness conditions are jointly called the
Karush-Kuhn-Tucker (KKT) conditions. The numbers λ1, . . . , λI in (4.6) are
called Lagrange multipliers. The condition λi ≥ 0 says that the Lagrange
multiplier is nonnegative, and gi(x̄) ≤ 0 says that the constraint is satisfied,
which are not new. The condition λigi(x̄) = 0 takes care of both the active
(binding) and inactive (non-binding) cases. If the constraint i is active, then
gi(x̄) = 0, so we have λigi(x̄) = 0 automatically. If the constraint i is inactive,
we have λi = 0, so again λigi(x̄) = 0 automatically.

An easy way to remember the first-order condition (4.6a) is as follows.
Given the objective function f(x) and the constraints gi(x) ≤ 0, define the
Lagrangian

L(x, λ) = f(x) +
I∑

i=1
λigi(x),

where λ = (λ1, . . . , λI). The Lagrangian is the sum of the objective function
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f(x) and the constraint functions gi(x) weighted by the Lagrange multipliers
λi. Pretend that λ is constant and you want to minimize L(x, λ) with respect
to x without any constraints. Then the first-order condition is

0 = ∇L(x, λ) = ∇f(x) +
I∑

i=1
λi∇gi(x),

which is exactly (4.6a).

William Karush (1917-1997)
A version of Theorem 4.2 appeared in the 1939 master's thesis of
William Karush (1917-1997) but received no attention. (Applied math-
ematics gained respect only after proving its usefulness during World
War II.) The theorem became widely known after the rediscovery by
Harold Kuhn (1925-2014) and Albert Tucker (1905-1995) in a confer-
ence paper in 1950. For this reason (and perhaps because Karush was
a teaching professor at California State University whereas Kuhn and
Tucker were research professors at Princeton), the KKT theorem is of-
ten called the �Kuhn-Tucker theorem�. Obviously, we should give credit
to Karush. See Kjeldsen (2000) for an interesting historical discussion.

4.5 INEQUALITY AND EQUALITY CONSTRAINTS

So far we have considered the case when all constraints are inequalities, but
what if there are also equations? For example, consider the optimization prob-
lem

minimize f(x)
subject to ⟨a, x⟩ ≤ c,

⟨b, x⟩ = d,

where f is differentiable, a, b are nonzero vectors, and c, d are constants. We
derive a necessary condition for optimality by turning this problem into one
with only inequality constraints. Note that ⟨b, x⟩ = d is equivalent to ⟨b, x⟩ ≤
d and ⟨b, x⟩ ≥ d. Furthermore, ⟨b, x⟩ ≥ d is equivalent to ⟨−b, x⟩ ≤ −d.
Therefore the problem is equivalent to:

minimize f(x)
subject to ⟨a, x⟩ − c ≤ 0,

⟨b, x⟩ − d ≤ 0,

⟨−b, x⟩+ d ≤ 0.
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Setting g1(x) = ⟨a, x⟩ − c, g2(x) = ⟨b, x⟩ − d, and g3(x) = ⟨−b, x⟩ + d, this
problem is exactly the form in Theorem 4.2. Therefore if x̄ is a solution, there
exist Lagrange multipliers λ1, λ2, λ3 ≥ 0 such that

∇f(x̄) + λ1∇g1(x̄) + λ2∇g2(x̄) + λ3∇g3(x̄) = 0.

Substituting ∇gi(x̄)’s, we obtain

∇f(x̄) + λ1a + λ2b + λ3(−b) = 0.

Letting λ = λ1 and µ = λ2 − λ3, we obtain

∇f(x̄) + λa + µb = 0.

This equation is similar to the KKT condition (4.6), except that µ can be
positive or negative. In general, we obtain the following theorem.

Theorem 4.3 (Karush-Kuhn-Tucker theorem with linear constraints). Con-
sider the optimization problem

minimize f(x)
subject to gi(x) ≤ 0 (i = 1, . . . , I),

hj(x) = 0 (j = 1, . . . , J),

where f is differentiable and gi(x) = ⟨ai, x⟩ − ci and hj(x) = ⟨bj , x⟩ − dj

are affine with ai, bj ̸= 0. If x̄ is a local solution, then there exist Lagrange
multipliers λ1, . . . , λI and µ1, . . . , µJ such that

∇f(x̄) +
I∑

i=1
λi∇gi(x̄) +

J∑
j=1

µj∇hj(x̄) = 0, (4.7a)

(∀i) λi ≥ 0, gi(x̄) ≤ 0, λigi(x̄) = 0, (4.7b)
(∀j) hj(x̄) = 0. (4.7c)

An easy way to remember the KKT conditions (4.7) is as follows. As in
the case with only inequality constraints, define the Lagrangian

L(x, λ, µ) = f(x) +
I∑

i=1
λigi(x) +

J∑
j=1

µjhj(x).

Pretend that λ, µ are constants and you want to minimize L with respect to
x. The first-order condition is ∇xL(x, λ, µ) = 0, which is exactly (4.7a). The
complementary slackness condition (4.7b) is the same as in the case with only
inequality constraints. The new condition (4.7c) merely says that the solution
x̄ must satisfy the equality constraints hj(x) = 0.
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4.6 CONSTRAINED MAXIMIZATION

We briefly discuss maximization. Although maximization is equivalent to min-
imization by flipping the sign of the objective function, doing so every time is
inefficient. So consider the maximization problem

maximize f(x)
subject to gi(x) ≥ 0 (i = 1, . . . , I), (4.8)

where f is differentiable and gi’s are affine. Then (4.8) is equivalent to the
minimization problem

minimize − f(x)
subject to − gi(x) ≤ 0 (i = 1, . . . , I).

Applying the KKT theorem 4.2, the necessary condition for optimality is

−∇f(x̄)−
I∑

i=1
λi∇gi(x̄) = 0, (4.9a)

(∀i) λi(−gi(x̄)) = 0. (4.9b)

Obviously, (4.9) is equivalent to (4.6) by multiplying all terms by (−1). For
this reason, it is customary to formulate a maximization problem as in (4.8)
so that the inequality constraints are always “greater than or equal to zero”.

Tips for formulating constrained optimization problems
• For minimization problems, use the format

minimize f(x)
subject to g(x) ≤ 0.

• For maximization problems, use the format

maximize f(x)
subject to g(x) ≥ 0.

• In either case, the Lagrangian is L(x, λ) = f(x) + λg(x) with λ ≥ 0.

• First-order condition is ∇xL(x, λ) = 0.

To illustrate how to use the KKT theorem, we provide an example with a
step-by-step analysis.
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Example 4.1. Consider the utility maximization problem (4.2) with two
goods (N = 2). Suppose the utility function u : R2

+ → [−∞,∞) is

u(x) = α log x1 + (1− α) log x2, (4.10)

where 0 < α < 1 and x1, x2 ≥ 0 are consumption of goods 1 and 2. (The log-
arithmic utility function (4.10) is called a Cobb-Douglas utility function.) Let
p1, p2 > 0 be the price of each good and w > 0 be the wealth. By convention,
we define log 0 = −∞. The consumer’s utility maximization problem (UMP)
is

maximize α log x1 + (1− α) log x2

subject to p1x1 + p2x2 ≤ w,

x1 ≥ 0, x2 ≥ 0.

Step 1. Existence of a solution.

Define the constraint set by

C =
{

(x1, x2) ∈ R2 : p1x1 + p2x2 ≤ w, x1 ≥ 0, x2 ≥ 0
}

.

Since p1, p2, w > 0, it is easy to show that C is nonempty, closed, and bounded.
The objective function u is continuous. Therefore by the extreme value theo-
rem (Theorem 1.11), u achieves a maximum x̄ = (x̄1, x̄2).

Step 2. Application of KKT theorem.

If x̄n = 0 for some n, then u(x̄) = −∞, which is clearly not an op-
timum. Therefore x̄n > 0 for all n. Since u is differentiable on the set
R2

++ =
{

x = (x1, x2) ∈ R2 : x1 > 0, x2 > 0
}

, we can apply the KKT theorem.
To this end, rewrite the optimization problem as

maximize α log x1 + (1− α) log x2

subject to w − p1x1 − p2x2 ≥ 0,

x1 ≥ 0,

x2 ≥ 0.

Step 3. Derivation of KKT conditions.

Define the Lagrangian by

L(x, λ, µ) = α log x1 + (1− α) log x2 + λ(w − p1x1 − p2x2) + µ1x1 + µ2x2,

where λ ≥ 0 is the Lagrange multiplier corresponding to the budget constraint
and µn ≥ 0 is the Lagrange multiplier corresponding to the nonnegativity
constraint xn ≥ 0 for n = 1, 2. The first-order conditions are

0 = ∂L

∂x1
= α

x1
− λp1 + µ1,

0 = ∂L

∂x2
= 1− α

x2
− λp2 + µ2.



56 ■ Essential Mathematics for Economics

The complementary slackness conditions are

λ(w − p1x1 − p2x2) = 0,

µ1x1 = 0,

µ2x2 = 0.

Step 4. Derivation of the solution.

Since the solution satisfies x1, x2 > 0, by complementary slackness we
obtain µ1 = µ2 = 0. Then by the first-order condition we get x1 = α

λp1
,

x2 = 1−α
λp2

, so λ > 0 and hence p1x1 + p2x2 = w. Substituting the expressions
for x1, x2 into p1x1 + p2x2 = w, we obtain

α

λ
+ 1− α

λ
= w ⇐⇒ λ = 1

w
.

Therefore
(x1, x2) =

(
αw

p1
,

(1− α)w
p2

)
.

Since we know that a solution exists, and we reached a unique candidate by
using only necessary conditions, this x must be the unique solution.

4.7 DROPPING NONNEGATIVITY CONSTRAINTS

In many economic applications such as the utility maximization problem in
Example 4.1, some of the constraints are nonnegative constraints: x ≥ 0. In
Example 4.1, we used the fact log 0 = −∞ to rule out solutions of the form
x1 = 0 or x2 = 0. The following proposition provides a more general sufficient
condition for dropping nonnegativity constraints.

Proposition 4.4. Consider the minimization problem (4.1), where f : RN
+ →

(−∞,∞] is continuous and C ⊂ RN
+ . Suppose that

(i) C is a convex set, so x1, x2 ∈ C and t ∈ [0, 1] imply (1− t)x1 + tx2 ∈ C;
furthermore, there exists x0 ≫ 0 such that x0 ∈ C,

(ii) f is differentiable on RN
++ with partial derivatives that are uniformly

bounded above, so there exists b ≥ 0 such that maxn supx∈C
∂f

∂xn
≤ b,

(iii) f satisfies the Inada condition with respect to xn, so

lim
y→x

∂f

∂xn
(y) = −∞ (4.11)

whenever x = (x1, . . . , xN ) satisfies xn = 0.

If x̄ ∈ C is a solution, then x̄n > 0.
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Proof. Suppose x̄ ∈ C is a solution to the minimization problem (4.1). Since
C is convex and x0 ∈ C, we may define g : [0, 1] → (−∞,∞] by g(t) =
f(x(t)), where x(t) := (1− t)x̄ + tx0. By assumption, g is continuous on [0, 1]
and differentiable on (0, 1]. Applying the chain rule and using the uniform
boundedness of partial derivatives, for t ∈ (0, 1] we obtain

g′(t) =
N∑

n=1

∂f

∂xn
(x(t))(x0n − x̄n)

≤ ∂f

∂xn
(x(t))(x0n − x̄n) + (N − 1)b ∥x0 − x̄∥ , (4.12)

where the norm denotes the supremum (l∞) norm.
Suppose to the contrary that x̄n = 0. Then x0n − x̄n > 0, so letting t ↓ 0

in (4.12) and using the Inada condition (4.11), we obtain limt↓0 g′(t) = −∞.
In particular, g′(t) < 0 for sufficiently small t. Since x̄ is a solution, we have

−∞ < g(0) = f(x̄) ≤ f(x0) <∞.

By the mean value theorem (Proposition 2.3), we can take s ∈ (0, t) such that
g(t)− g(0) = g′(s)(t− 0) = g′(s)t < 0 =⇒ f(x(t)) = g(t) < g(0) = f(x̄),

which is a contradiction because x̄ is a solution.

Remark. The condition of the form (4.11) was introduced by Inada (1963) to
rule out corner solutions. If the Inada condition holds, because the nonnega-
tivity constraint does not bind, the corresponding Lagrange multiplier must
be zero. Therefore we may drop terms from the Lagrangian corresponding
to these constraints outright, which significantly simplifies the analysis. (See
Problem 4.2 as an application.)

PROBLEMS

4.1. Consider a consumer with utility function

u(x) =
N∑

n=1
αn log xn,

where αn > 0,
∑N

n=1 αn = 1, and xn ≥ 0 is the consumption of good n. Let
p = (p1, . . . , pN ) be a price vector with pn > 0 and w > 0 be the wealth.

(i) Formulate the consumer’s utility maximization problem.

(ii) Compute the solution.
4.2. Solve the same problem as above for the case

u(x) =
N∑

n=1
αn

x1−γ
n

1− γ
,

where 0 < γ ̸= 1.
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CHAPTER 5

Vector Space, Matrix,

and Determinant

5.1 INTRODUCTION

When dealing with the calculus of functions with multiple variables, linear
algebra becomes indispensable. We have already encountered some of the re-
sults in Chapters 1 and 3. The next few chapters cover additional results and
related topics that will be subsequently applied. Because linear algebra itself
is not the main goal of this book, the treatment is not comprehensive. Jänich
(1994) and Axler (2024) cover basic topics with proofs, while Lax (2007) fo-
cuses more on the analytical aspects.

5.2 VECTOR SPACE

Roughly speaking, a linear space (more commonly vector space) is a set on
which addition and scalar multiplication are defined. Thus if V is a vector
space, for each vector v, w ∈ V, there corresponds the sum v + w ∈ V, and for
each v ∈ V and scalar α, there corresponds the scalar multiplication αv ∈ V.
By “scalar”, for practical purposes we use either the set of real numbers R or
the set of complex numbers C. Unless otherwise stated, the scalar field is R.
We omit the precise axioms as they are well known.

A typical example of a vector space is the N -dimensional Euclidean space
RN defined in Chapter 1. Other examples are

V1 := {v : R→ R : v is a continuous function} , (5.1a)
V2 := {v : R→ R : v is a bounded continuous function} , (5.1b)
V3 := {v : R→ R : v is a polynomial} , (5.1c)
V4 := {v : R→ R : v is a polynomial of degree ≤ N − 1} , (5.1d)

etc., where addition and scalar multiplication of functions are defined point-
wise. If the subset W ⊂ V is itself a vector space, we say that W is a subspace

61



62 ■ Essential Mathematics for Economics

of V. Obviously, in (5.1), V2, V3 are subspaces of V1 and V4 is a subspace of
V3.

Let V be a vector space, v1, . . . , vK ∈ V, and α1, . . . , αK ∈ R. Then the
vector

v := α1v1 + · · ·+ αKvK =
K∑

k=1
αkvk ∈ V

is called a linear combination of {vk} with coefficients {αk}. The set

span[v1, . . . , vK ] :=
{

v =
K∑

k=1
αkvk : (∀k)αk ∈ R

}

is called the span of {vk}, which is clearly a subspace of V. When
span[v1, . . . , vK ] = V, that is, if any v ∈ V can be expressed as a linear
combination of {vk}, we say that {vk} spans V. If V has a finite set of vectors
{vk} that spans V, we say that V is finite dimensional. Otherwise, we say
that V is infinite dimensional. Clearly RN is finite dimensional because it can
be spanned by the unit vectors {en}N

n=1 defined by en = (0, . . . , 1, . . . , 0). In
contrast, the spaces V1, V2, V3 in (5.1) are infinite dimensional.

We say that the set of vectors {vk} is linearly dependent (or the vectors are
linearly dependent) if there exists 0 ̸= α = (αk) ∈ RK such that

∑K
k=1 αkvk =

0, that is, there is a nontrivial linear combination that generates 0. Otherwise,
we say that {vk} is linearly independent. By definition, if {vk} is linearly
independent, then

∑K
k=1 αkvk = 0 implies αk = 0 for all k. If {vk}K

k=1 is
linearly independent and spans V, we say that {vk} is a basis of V. Then we
say that the dimension of V is K and write dim V = K. Clearly dimRN = N .
In (5.1), any v ∈ V4 can be uniquely expressed as

v(x) =
N∑

n=1
αnxn−1.

Therefore V4 is spanned by the monomials 1, x, . . . , xN−1. It is straightforward
to show that they are linearly independent (by applying the fundamental
theorem of algebra; see Problem 5.1), so dim V4 = N .

For general sets V, W, we say that ϕ : V → W is one-to-one (or injective)
if v1 ̸= v2 implies ϕ(v1) ̸= ϕ(v2). We say that ϕ is onto (or surjective) if for
all w ∈W, there exists v ∈ V such that ϕ(v) = w. When ϕ is both one-to-one
and onto, we say that it is bijective. In that case for each w ∈W, there exists
a unique v ∈ V such that ϕ(v) = w, which we denote as v = ϕ−1(w). The map
ϕ−1 : W → V is called the inverse of ϕ. Roughly speaking, when a bijective
map (or bijection) ϕ : V → W preserves properties that we are interested in,
we call it an isomorphism. For instance, if V, W are vector spaces (which are
characterized by linearity), a bijection ϕ : V → W is an isomorphism if it is
linear:

ϕ(α1v1 + α2v2) = α1ϕ(v1) + α2ϕ(v2).
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Two sets that are isomorphic (that is, those mapped by an isomorphism) can
be regarded as identical, as long as we are concerned with the properties that
we are interested in. For example, let V be a vector space with dim V = N . By
definition, we can take a basis {vn}N

n=1, and for any v ∈ V, we can uniquely
express it as v =

∑N
n=1 xnvn for some x1, . . . , xN ∈ R. Thus we can define ϕ :

V→ RN by ϕ(v) = x = (x1, . . . , xN ). This ϕ is an isomorphism (see Problem
5.2 for details), so any N -dimensional (real) vector space is isomorphic to RN .
For instance, V4 in (5.1) is isomorphic to RN by identifying

V4 ∋ v(x) =
N∑

n=1
αnxn−1 ←→ α = (α1, . . . , αN ) ∈ RN .

5.3 SOLVING LINEAR EQUATIONS

In practice, we often want to solve the linear equation

Ax = b, (5.2)

where A is an N ×N matrix, b ∈ RN , and x ∈ RN . If we define ϕ : RN → RN

by ϕ(x) = Ax, then (5.2) can be rewritten as ϕ(x) = b. Obviously, if ϕ is
bijective, we may solve x = ϕ−1(b). Clearly ϕ is linear, so if ϕ is bijective, ϕ−1

is also linear and admits a matrix representation by the discussion in Chapter
3. In that case, this matrix is called the inverse of A and is denoted by A−1.
Thus we may write the solution of (5.2) as x = A−1b. A matrix that admits an
inverse is called nonsingular or invertible. If A is invertible (so ϕ is bijective),
clearly AA−1 = A−1A = I, where I denotes the identity matrix. The inverse
of A, if it exists, is unique. To see this, suppose that B, C are both inverses of
A. Then AB = BA = I and AC = CA = I, so

B = BI = B(AC) = (BA)C = IC = C.

All this argument is vacuous unless we can characterize conditions under
which A is nonsingular or provide an algorithm to compute A−1 or x = A−1b,
which we turn to next. If N = 1, then (5.2) may be written as ax = b (where
all quantities are real numbers) and we can solve x = b/a provided a ̸= 0. If
N = 2, (5.2) may be written as

a11x1 + a12x2 = b1,

a21x1 + a22x2 = b2,

and we can solve it by eliminating one variable from the two equations. This
process involves (i) swapping two equations, (ii) multiplying an equation by a
nonzero scalar, and (iii) adding a scalar multiple of an equation to another.

These operations can be expressed as matrix multiplication. Fix N and
let 1 ≤ i ̸= j ≤ N and c ̸= 0. Let P = I (identity matrix), and define
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P (i, j) = (pmn) by setting pii = pjj = 0 and pij = pji = 1 in P . For instance,
if N = 3 and (i, j) = (2, 3), we have

P (i, j) =

1 0 0
0 0 1
0 1 0

 .

Then (i) swapping rows i and j of (5.2) corresponds to the equation

P (i, j)Ax = P (i, j)b. (5.3)

Note that P (i, j)2 = I, so multiplying P (i, j) from left to (5.3), we recover
(5.2). Thus these equations are equivalent.

Next, let Q = I, and define Q(i; c) = (qmn) by setting qii = c in Q. For
instance, if N = 3 and i = 2, we have

Q(i; c) =

1 0 0
0 c 0
0 0 1

 .

Then (ii) multiplying row i of (5.2) by c ̸= 0 corresponds to the equation

Q(i; c)Ax = Q(i; c)b. (5.4)

Note that Q(i; 1/c)Q(i; c) = I, so multiplying Q(i; 1/c) from left to (5.4), we
recover (5.2).

Finally, let R = I, and define R(i, j; c) = (rmn) by setting rij = c in R.
For instance, if N = 3 and (i, j) = (2, 3), we have

R(i, j; c) =

1 0 0
0 1 c
0 0 1

 .

Then (iii) adding c times row j of (5.2) to row i corresponds to the equation

R(i, j; c)Ax = R(i, j; c)b. (5.5)

Note that R(i, j;−c)R(i, j; c) = I, so multiplying R(i, j;−c) from left to (5.5),
we recover (5.2).

Thus multiplying any of these matrices P, Q, R from left to (5.2) leaves
the system of equations equivalent. We can now provide an algorithm to solve
the system of linear equations (5.2), called Gaussian elimination.

Solving linear equations by Gaussian elimination
(i) If A = 0 (zero matrix), then either (5.2) holds for all x (if b = 0) or no x (if

b ̸= 0). Hence assume A ̸= 0.
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(ii) Find (i, j) such that aij ̸= 0. If j ̸= 1, consider the equation AP (1, j)P (1, j)x =
b. By rede�ning AP (1, j) as A and P (1, j)x as x (swapping x1 and xj), we
may assume ai1 ̸= 0 for some i.

(iii) Find i such that ai1 ̸= 0. If i ̸= 1, consider the equation P (i, 1)Ax = P (i, 1)b.
By rede�ning P (i, 1)A as A and P (i, 1)b as b (swapping rows 1 and i), we may
assume a11 ̸= 0.

(iv) Multiply Q(1, 1; 1/a11) from left to Ax = b. Then we may assume a11 = 1.

(v) For each m = 2, . . . , N , multiply R(m, 1; −am1) from left to Ax = b. Then we
may assume am1 = 0 for all m > 1.

(vi) The system of equations can now be written as[
1 A12
0 Ã

][
x1
x̃

]
=
[

b1

b̃

]
,

where A12 is 1×(N −1), x̃ is (N −1)×1, etc. This equation reduces to Ãx̃ = b̃
and x1 = b1 − A12x̃, so if we can solve the former, we are done. However, note
that the dimension has reduced by 1, so we may repeat this process until we
can no longer continue.

(vii) By induction, by multiplying appropriate P, Q, R from left to Ax = b or by
rewriting Ax = b as AP P x = b, we may write Ax = b equivalently as

(LAP )P x = Lb, (5.6)

where L is the product of �nitely many P (i, j), Q(i; c), R(i, j; c) matrices, P
is the product of �nitely many P (i, j) matrices, and

LAP =
[

Ir B
0N−r,r 0N−r,N−r

]
for some 0 ≤ r ≤ N and B ∈ Rr×(N−r).

(viii) Write y = P x, c = Lb, and partition (5.6) as[
I B
0 0

][
y1
y2

]
=
[

c1
c2

]
,

which is equivalent to y1 + By2 = c1 and c2 = 0. Therefore, there exists
a solution if and only if c2 = 0, in which case the solution takes the form
y1 = c1 − By2 for any y2 ∈ RN−r.

(ix) There exists a unique solution if and only if r = N , in which case y = P x =
Lb ⇐⇒ x = P Lb (because P 2 = I).
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Remark. Let P = (pmn) be as in (5.6), which is the product of finitely many
P (i, j) matrices. Then for each m, we have pmn = 1 for exactly one n and
pmn = 0 for all other n. Similarly, for each n, we have pmn = 1 for exactly one
m and pmn = 0 for all other m. Such a matrix is called a permutation matrix.
Remark. Gaussian elimination also provides an algorithm to compute the
inverse matrix. To see this, note that X = A−1 satisfies AX = I. Thus
replacing x, b in (5.2) with X, I and applying Gaussian elimination, we obtain
X = A−1.

The number r in the Gaussian elimination algorithm is called the rank of
the matrix A, which is uniquely determined by A (Problem 5.5).

In the Gaussian elimination algorithm, we implicitly assumed A is a square
matrix, but this is obviously not necessary (except the obvious change of
notation and the last statement on uniqueness). If A is M ×N , we say that
A has full row rank if r = M and full column rank if r = N . If r = M = N ,
way say A has full rank. The following corollary is obvious from the definition
of invertibility and the Gaussian elimination algorithm.

Corollary 5.1. Let A ∈ RN×N . Then A is invertible if and only if it has full
rank.

5.4 DETERMINANT

Although Gaussian elimination is practical for computational purposes, it does
not provide theoretical insights. To this end, we define the determinant of
square matrices.

An N × N matrix can be written as A = [a1, . . . , aN ], where an ∈ RN is
the n-th column vector. Consider the function D : RN×N → R satisfying the
following properties.

(i) (Multi-linearity) For each n, D(. . . , xn, . . . ) is linear in xn ∈ RN , that
is, for all xn, yn ∈ RN and α, β ∈ R, we have

D(. . . , αxn + βyn, . . . ) = αD(. . . , xn, . . . ) + βD(. . . , yn, . . . ).

(ii) (Alternation) For each m < n, the sign of D flips whenever we flip
columns m, n:

D(. . . , xm, . . . , xn, . . . ) = −D(. . . , xn, . . . , xm, . . . ).

(iii) (Normalization) D(I) = 1.

It turns out that properties (i)–(iii) define a unique function D. Let us
consider a few special cases. For N = 1, we can write A = (a) (scalar), so it
must be

D(A) = D(a) = D(aI) = aD(I) = a.

Clearly this function satisfies (i)–(iii). Before considering the case N = 2, we
note a few lemmas.
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Lemma 5.2. Let A = [a1, . . . , aN ]. If D satisfies (ii) and am = an for some
m ̸= n, then D(A) = 0.

Proof. Let Ã be the matrix obtained by flipping the columns m, n of A. Since
am = an, we have Ã = A. Hence using (ii), we obtain D(A) = D(Ã) = −D(A),
so D(A) = 0.

Lemma 5.3. Let A = [a1, . . . , aN ]. If D satisfies (i), (ii) and {an} is linearly
dependent, then D(A) = 0.

Proof. Since {an} is linearly dependent, we have
∑N

n=1 αnan = 0 for some
0 ̸= α ∈ RN . Suppose αj ̸= 0. Then aj = − 1

αj

∑
n ̸=j αnan. Using (i), (ii), we

obtain

D(A) = D

. . . ,− 1
αj

∑
n ̸=j

αnan, . . .

 = −
∑
n ̸=j

αn

αj
D(. . . , an, . . . ).

In the last expression, because columns j, n are both an, by Lemma 5.2, we
have D(. . . , an, . . . ) = 0. Therefore D(A) = 0.

Now suppose N = 2 and A =
[
a b
c d

]
. If D satisfies (i)–(iii), then

D(A) = aD

(
1 b
0 d

)
+ cD

(
0 b
1 d

)
= abD

(
1 1
0 0

)
+ adD

(
1 0
0 1

)
+ bcD

(
0 1
1 0

)
+ cdD

(
0 0
1 1

)
= adD

(
1 0
0 1

)
− bcD

(
1 0
0 1

)
= ad− bc,

where we have used Lemma 5.2. Thus D is uniquely determined.
The general case proceeds by induction. Suppose that for each n =

1, . . . , N − 1, there exists a unique function Dn : Rn×n → R satisfying prop-
erties (i)–(iii). Let A = (amn) ∈ RN×N . For fixed i, define

DN (A) =
N∑

m=1
(−1)m+iamiDN−1(Ami), (5.7)

where Ami is the (N − 1) × (N − 1) submatrix of A obtained by removing
row m and column i. Then we can show that DN (A) does not depend on i
and that it is the unique function satisfying (i)–(iii). For a proof (which uses
Lemma 5.3), see for instance Jänich (1994, Chapter 6). The unique value D(A)
is called the determinant of A and is denoted by det A or |A|.
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The formula (5.7) is called the Laplace expansion of the determinant. For
instance, for N = 2 and i = 1, we may compute∣∣∣∣a b

c d

∣∣∣∣ = a(d)− c(b) = ad− bc.

For N = 3 and i = 1, we may compute∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣e f
h i

∣∣∣∣− d

∣∣∣∣b c
h i

∣∣∣∣+ g

∣∣∣∣b c
e f

∣∣∣∣
= a(ei− fh)− d(bi− ch) + g(bf − ce),

etc.
The following lemma shows that properties (i) and (ii) characterize the

determinant up to normalization, which is useful for deriving properties of
the determinant.

Lemma 5.4. If F : RN×N → R satisfies (i), (ii), then F (A) = |A|F (I).

Sketch of proof. Repeatedly using (i), (ii) as we did for the 2×2 case, we may
write F (A) = g(A)F (I) for some function g independent of F . If F (I) = 1,
then by uniqueness it must be F = det, so g(A) = det A = |A|. Hence F (A) =
|A|F (I).

Proposition 5.5. If A, B ∈ RN×N , then |AB| = |A| |B| = |BA|.

Proof. Fix A ∈ RN×N and define F : RN×N → R by F (X) = |AX|. Using
the linearity of X 7→ AX, we can see that F satisfies properties (i), (ii). Hence
by Lemma 5.4, we obtain

|AX| = F (X) = |X|F (I) = |X| |A| = |A| |X| .

Setting X = B, we obtain |AB| = |A| |B|. Interchanging the roles of A, B, we
obtain |BA| = |B| |A| = |A| |B|.

We say that a square matrix A is block upper triangular if it can be written
as

A =
[
A11 A12
0 A22

]
, (5.8)

where A11, A22 are square matrices (that need not have the same size) called
diagonal blocks. If in addition A12 = 0, we say that A is block diagonal. In
this example, there are two diagonal blocks, but there could be any number
M , for instance

A =

A11 · · · A1M

...
. . .

...
0 · · · AMM

 .

The following proposition facilitates the calculation of the determinant of
block upper triangular matrices.
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Proposition 5.6. If A is block upper triangular and is given by (5.8), then
|A| = |A11| |A22|.

Proof. Let A11 ∈ Rr×r. For a general matrix X ∈ Rr×r, define

F (X) =
∣∣∣∣X A12
0 A22

∣∣∣∣ .
Then F satisfies properties (i), (ii) of the determinant, so by Lemma 5.4 we
have F (X) = |X|F (I). Hence it suffices to show F (I) = |A22|. Now

F (I) =
∣∣∣∣I A12
0 A22

∣∣∣∣ =
∣∣∣∣I 0
0 A22

∣∣∣∣
by subtracting some multiples of the first r columns from the last N − r
columns and applying Lemma 5.2. If we view the last expression as a function
of A22, it satisfies properties (i), (ii) of the determinant, so by Lemma 5.4 and
property (iii) we have F (I) = |A22|.

Remark. Block lower triangular matrices are defined in the obvious way, and
Proposition 5.6 remains true.

We say that a square matrix A = (amn) is upper triangular if amn = 0
whenever m > n, so A can be written as

A =

a11 · · · a1N

...
. . .

...
0 · · · aNN

 .

Similarly, we say A = (amn) is lower triangular if amn = 0 whenever m <
n. Obviously, an upper triangular matrix is block upper triangular with N
diagonal blocks of size 1× 1.

Corollary 5.7. If A = (amn) is upper triangular, then its determinant equals
the product of its diagonal entries: |A| = a11 · · · aNN =

∏N
n=1 ann.

Proof. Apply Proposition 5.6 and induction.

An important implication of the Laplace expansion (5.7) is that it provides
an explicit formula for the inverse matrix. To this end, we introduce some
definitions. Let A = (amn) be a square matrix. Let Amn be the submatrix of
A obtained by removing row m and column n. Then cmn := (−1)m+n |Amn|
is called the (m, n) cofactor of A. The matrix C = (cmn) is called the cofactor
matrix.

Proposition 5.8. Let A be a square matrix and C be its cofactor matrix.
Then A is invertible if and only if |A| ≠ 0, in which case

A−1 = 1
|A|

C ′. (5.9)
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Proof. By the definition of the cofactor, for each i the Laplace expansion
formula (5.7) implies

|A| =
N∑

m=1
amicmi.

Let A[i← j] be the matrix obtained by replacing column i with column j. If
i ̸= j, since column j appears twice in A[i ← j], by Lemma 5.2 and (5.7) we
have

0 = |A[i← j]| =
N∑

m=1
amjcmi.

Define Kronecker’s delta by δij = 1 if i = j and δij = 0 if i ̸= j. Combining
the cases i = j (hence A[i← j] = A) and i ̸= j, we obtain

δij |A| =
N∑

m=1
cmiamj .

Collecting terms into a matrix, we obtain |A| I = C ′A. Therefore if |A| ≠ 0,
then A is invertible and (5.9) holds. Conversely, if A is invertible, then by
Proposition 5.5, we obtain 1 = |I| =

∣∣AA−1
∣∣ = |A|

∣∣A−1
∣∣, so it must be

|A| ≠ 0.

Example 5.1. Let A be 2× 2 and

A =
[
a b
c d

]
.

The cofactor matrix is
C =

[
d −c
−b a

]
,

so the inverse matrix is

A−1 = 1
|A|

C ′ = 1
ad− bc

[
d −b
−c a

]
.

The following theorem provides equivalent conditions for the invertibility
of a square matrix A.

Theorem 5.9. Let A be a square matrix. Then the following conditions are
equivalent.

(i) A is invertible.

(ii) The column vectors of A are linearly independent.

(iii) For any b, the equation Ax = b has a unique solution.

(iv) A has full rank.
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(v) |A| ≠ 0.

Proof. (i) =⇒ (ii): Let A = [a1, . . . , aN ]. Suppose
∑N

n=1 xnan = 0 for some
x = (x1, . . . , xN ). Then Ax = 0. Since A is invertible, x = A−1Ax = 0.

(ii) =⇒ (iii): Let A = [a1, . . . , aN ]. Since {an} is linearly independent,
the vector space V := span[a1, . . . , aN ] has dimension N . Since V ⊂ RN , it
must be V = RN . Hence the equation Ax = b has a solution. Uniqueness
follows by linear independence.

(iii) =⇒ (iv): Obvious from Gaussian elimination and the definition of
the rank.

(iv) =⇒ (v): If A has full rank, by applying Gaussian elimination, we
may write LAP = I, where L is the product of finitely many matrices of the
form P, Q, R. By Proposition 5.5, we obtain 1 = |I| = |LAP | = |L| |A| |P |.
Therefore |A| ≠ 0.

(v) =⇒ (i): Obvious from Proposition 5.8.

Order of operations
Let us evaluate how many algebraic operations are required to solve
the linear equation Ax = b. (i) If we use Gaussian elimination, for
each i and m ̸= i, we subtract a constant multiple of row i from row
m, which involves N numbers. Repeating this for each m and iter-
ating over i, the order of operations is N × N × N = N3. (ii) If we
use Gaussian elimination to compute A−1 �rst (so applying Gaussian
elimination to b = en for each n) and compute x = A−1b, the order of
operations is N3 ×N = N4. (iii) Suppose we use the Laplace expansion
to compute |A|. Letting o(n) be the order for computing the determi-
nant of A ∈ Rn×n, then Laplace expansion implies o(n) = no(n − 1),
so o(n) = n!. Thus computing A−1 requires N2 × (N − 1)! ∼ (N + 1)!
operations. We conclude that Laplace expansion is not practical. Fur-
thermore, when solving linear equations, it is better to avoid comput-
ing the inverse. (In Matlab, use x = A\b instead of x = inv(A)*b.)

PROBLEMS

5.1. This problem asks you to show that the space of polynomials of degree
up to N − 1 (V4 in (5.1)) has dimension N . It is clear that the monomials
1, x, . . . , xN−1 span V4, so it suffices to show that these monomials are linearly
independent. To show this, let

v(x) =
N∑

n=1
αnxn−1

and suppose v = 0 (the function identically equal to zero). By applying the
fundamental theorem of algebra, prove that α1 = · · · = αN = 0.
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5.2. Let V be an N -dimensional real vector space. By definition, there exists
a basis {vn}N

n=1, which means that {vn} is linearly independent and spans V.

(i) Prove that for each v ∈ V, there exists a unique x = (x1, . . . , xN ) ∈ RN

such that v =
∑N

n=1 xnvn.

(ii) Define ϕ : V → RN by ϕ(v) = x, where x is as in the previous ques-
tion. Prove that ϕ is an isomorphism. More precisely, prove that ϕ is
(a) one-to-one, (b) onto, and (c) linear.

5.3. This problem asks you to prove that any subspace W of V = RN (or
more generally, a subspace of any finite-dimensional space) is closed.

Since W is a subspace of V, we can take a basis {an}N
n=1 of V such that

{an}M
n=1 is a basis of W, where M = dim W ≤ N . For any x ∈ V, there exist

unique numbers x1, . . . , xN such that x =
∑N

n=1 xnan. Define

∥x∥ = max
n
|xn| .

(i) Prove that ∥·∥ is a norm on V.

(ii) Show that W is closed. (Hint: use Theorem 1.3.)

(iii) Let V be the space of bounded continuous functions defined on [−1, 1]
and W ⊂ V be the space of polynomials. (Convergence is defined by the
sup norm ∥f∥ = supx∈[−1,1] |f(x)|.) Show that W is not closed. Hence
the assumption of finite dimension is essential.

5.4. Let A, B, C be matrices with appropriate dimensions so that the following
expressions are well defined. Prove that A(B + C) = AB + AC, A(BC) =
(AB)C, (AB)−1 = B−1A−1, and (AB)′ = B′A′.

5.5. Suppose there are two ways to write (5.6) as

L1AP1 =
[
Ir1 B1
0 0

]
, L2AP2 =

[
Ir2 B2
0 0

]
.

Prove that r1 = r2.

5.6. (i) Let A be a 2× 2 block upper triangular matrix

A =
[
A11 A12
0 A22

]
.

If A is invertible, explicitly compute A−1.

(ii) Repeat the above problem if A is 3× 3 block upper triangular. What if
A is N ×N block upper triangular?

5.7. The Fibonacci sequence is defined by f0 = 0, f1 = 1, and fn = fn−1 +
fn−2 for n ≥ 2. The first few terms are 0, 1, 1, 2, 3, 5, 8, 13, . . . .
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(i) Show that [
fn+1
fn

]
=
[
1 1
1 0

] [
fn

fn−1

]
.

(ii) Show that [
fn+1 fn

fn fn−1

]
=
[
1 1
1 0

]n

.

(iii) Show that fn+1fn−1 − f2
n = (−1)n.





CHAPTER 6

Spectral Theory

6.1 INTRODUCTION

In economic analysis, we often want to know the behavior of the matrix power
Ak as k →∞. For instance, linearization of economic models often imply the
dynamics

xt = Axt−1 + ut, (6.1)

where xt is a vector of state variables, A is a square matrix, and ut is a vector
of shocks. (Although not a topic of this book, an equation of the form (6.1)
is called a vector autoregression or VAR.) Iterating (6.1), we obtain

xt = ut + Aut−1 + · · ·+ At−1u1 + Atx0. (6.2)

Thus if limt→∞ At = 0, then the term Atx0 in (6.2) converges to 0, so the
initial condition becomes irrelevant as time goes by.

We say that a square matrix A = (amn) is diagonal if amn = 0 whenever
m ̸= n, so we can write

A = diag[d1, . . . , dN ] :=

d1 · · · 0
...

. . .
...

0 · · · dN

 .

If A is diagonal, a straightforward calculation shows Ak = diag[dk
1 , . . . , dk

N ] for
all k ∈ N, so Ak → 0 as k →∞ if and only if |dn| < 1 for all n. This chapter
generalizes this argument for any square matrix.

6.2 EIGENVALUE AND EIGENVECTOR

Let A be a square matrix, which could be real or complex. If there is a vector
v ̸= 0 and scalar α such that Av = αv, we say that α is an eigenvalue of
A and v is an eigenvector corresponding to α. In that case, by iteration we
may compute Akv = αkv, so we can easily understand the behavior of Akv as
k →∞.

75
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We may characterize all eigenvalues of a square matrix A ∈ CN×N as
follows. By definition, α is an eigenvalue if and only if there exists v ̸= 0 such
that

Av = αv ⇐⇒ (αI −A)v = 0.

By Theorem 5.9, such v ̸= 0 exists if and only if |αI −A| = 0. For any complex
number z ∈ C, define the function ΦA : C → C by ΦA(z) = |zI −A|. Then
by applying the Laplace expansion of the determinant and induction, we can
see that ΦA is a polynomial of degree N with leading coefficient 1. By the
fundamental theorem of algebra, the equation ΦA(z) = 0 has exactly N roots
if we count multiplicity. Thus, any A ∈ CN×N has exactly N eigenvalues. The
polynomial ΦA is called the characteristic polynomial of A.

Example 6.1. If A is 2× 2 and

A =
[
a b
c d

]
,

then

ΦA(z) = |zI −A| =
∣∣∣∣z − a −b
−c z − d

∣∣∣∣ = z2 − (a + d)z + ad− bc.

The equation ΦA(z) = 0 is called the characteristic equation of A, and its
roots are called characteristic roots. By the previous argument, characteristic
roots and eigenvalues of A are identical. Note that even if A is a real matrix,
the eigenvalues (hence eigenvectors) need not be real.

Example 6.2. If

A =
[
cos θ − sin θ
sin θ cos θ

]
,

the characteristic equation and roots are

z2 − 2(cos θ)z + 1 = 0 ⇐⇒ z = cos θ ± i sin θ,

which are complex whenever sin θ ̸= 0.

Thus when we discuss eigenvalues and eigenvectors, we always consider
the complex vector space CN unless otherwise specified.

The characteristic polynomial of a block upper triangular matrix is the
product of the characteristic polynomials of the diagonal blocks.

Proposition 6.1. If

A =
[
A11 A12
0 A22

]
is block upper triangular, then ΦA(z) = ΦA11(z)ΦA22(z).

Proof. Immediate from the definition of the characteristic polynomial and
Proposition 5.6.
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For upper triangular matrix, the eigenvalues are given by diagonal entries.

Proposition 6.2. If A = (amn) is upper triangular (so amn = 0 whenever
m > n), then the eigenvalues of A are the diagonal entries a11, . . . , aNN .

Proof. If A is upper triangular, so is zI − A, whose n-th diagonal entry is
z − ann. By Corollary 5.7, we have

ΦA(z) = |zI −A| = (z − a11) · · · (z − aNN ).

6.3 DIAGONALIZATION

We usually take the standard basis {e1, . . . , eN} in RN or CN , but that is
not necessary. Suppose we take a different basis {p1, . . . , pN}, so by definition
the vectors {pn} are linearly independent. By Theorem 5.9, the matrix P =
[p1, . . . , pN ] is invertible. Let x be any vector and y = P −1x. Then

x = PP −1x = Py = y1p1 + · · ·+ yN pN ,

so the entries of y can be interpreted as the coordinates of x when expressed
with the basis P . How does a matrix A look when we use the basis P? Consider
the linear map x 7→ Ax. Then

y = P −1x 7→ P −1Ax = (P −1AP )(P −1x) = (P −1AP )y,

so the linear map x 7→ Ax has the matrix representation B = P −1AP under
the basis P . In general, when there exists an invertible matrix P such that
B = P −1AP , we say that A, B are similar. When A, B are similar, they can be
regarded as identical because they can be mapped to each other by a change
of basis. For instance, using Proposition 5.5, the characteristic polynomial of
B = P −1AP is

ΦB(z) = |zI −B| =
∣∣zI − P −1AP

∣∣ =
∣∣P −1(zI −A)P

∣∣ = |zI −A| = ΦA(z),

so A, B have identical eigenvalues.
For analysis, it is oftentimes useful to find a matrix P such that P −1AP is a

simple matrix. For instance, let B = P −1AP and suppose that computing Bk

is easy (which is the case if B is diagonal). Then Bk = (P −1AP )k = P −1AkP ,
so we may compute Ak = PBkP −1. The simplest matrices of all are diagonal
ones. When D := P −1AP is diagonal, we say that A is diagonalizable. The
following proposition provides a sufficient condition for diagonalizability.

Proposition 6.3. If the eigenvalues of the square matrix A are distinct, A
is diagonalizable.

Proof. Let {αn}N
n=1 be the eigenvalues of A. For each n, let pn be an eigen-

vector of A corresponding to αn. Then Apn = αnpn for all n.
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Let us show that {pn} are linearly independent. Suppose
∑N

n=1 xnpn = 0.
Fix m, and multiply both sides by Bm :=

∏
n ̸=m(A− αnI). Since

(A− αI)(A− βI) = A2 − (α + β)A + αβI = (A− βI)(A− αI),

it does not matter the order we apply the product. Since pn is an eigenvector,
we have (A− αnI)pn = Apn − αnpn = 0. Therefore we obtain

0 = Bm0 = Bm

N∑
n=1

xnpn = xm

∏
n ̸=m

(αm − αn)

 pm.

Since {αn} are distinct and pm ̸= 0, we obtain xm = 0. Since this holds for
all m, it follows that {pn} are linearly independent.

Now define the matrix P = [p1, . . . , pN ]. By Theorem 5.9, P is invertible.
Stacking Apn = αnpn as column vectors, we obtain

AP = A[p1, . . . , pN ] = [α1p1, . . . , αN pN ] = P diag[α1, . . . , αN ].

Multiplying P −1 from left, we obtain P −1AP = diag[α1, . . . , αN ].

6.4 INNER PRODUCT AND NORM

When the eigenvalues are not distinct, a matrix may not be diagonalizable
(Problem 6.4). To treat such cases, we need additional structure.

Let V be a real vector space. We say that a function ⟨·, ·⟩ : V × V → R is
an inner product if it satisfies the following conditions.

(i) (Nonnegativity) ⟨x, x⟩ ≥ 0 for all x ∈ V, with equality if and only if
x = 0,

(ii) (Symmetry) ⟨x, y⟩ = ⟨y, x⟩ for all x, y ∈ V,

(iii) (Linearity) ⟨x, y⟩ is linear in y.1

A real vector space equipped with an inner product ⟨·, ·⟩ is called an inner
product space. An obvious example is RN , but there are many others.

Example 6.3. Let a < b and w : [a, b] → (0,∞) be a positive continuous
function. Let V be the space of continuous functions defined on [a, b]. For
f, g ∈ V, define

⟨f, g⟩ =
∫ b

a

f(x)g(x)w(x) dx.

Then V is an inner product space (Problem 6.1).

1Some authors require linearity in the first argument x instead of the second argument
y. For real vector spaces, the two definitions are equivalent due to symmetry. For complex
vector spaces, they are equivalent up to complex conjugacy.
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As in RN , if V is an inner product space, for each x ∈ V we may define
∥x∥ :=

√
⟨x, x⟩ ≥ 0. Then for any x, y ∈ V, the Cauchy-Schwarz inequality

∥x∥ ∥y∥ ≥ |⟨x, y⟩| (6.3)

and the triangle inequality

∥x + y∥ ≤ ∥x∥+ ∥y∥ (6.4)

hold (Problem 6.2). Thus an inner product space is automatically a normed
space.

When V is a complex vector space, symmetry is replaced with

(ii)’ (Conjugate symmetry) ⟨x, y⟩ = ⟨y, x⟩,

where ᾱ denotes the complex conjugate of the scalar α ∈ C. For example, if
V = CN and x, y ∈ CN , the inner product is defined by

⟨x, y⟩ = x∗y = x̄′y =
N∑

n=1
x̄nyn,

where x∗ = x̄′ is the transpose of the complex conjugate of x, or conjugate
transpose for short.

Let V be a (real or complex) inner product space. Two vectors x, y ∈ V
satisfying ⟨x, y⟩ = 0 are called orthogonal. The set of vectors {vk}K

k=1 is called
orthogonal if any two vectors are orthogonal. If in addition ∥vk∥ = 1 for all k,
we say that {vk}K

k=1 is orthonormal. If {vk} spans V, we call it an orthonormal
basis.

Let V be an inner product space and {vk}K
k=1 be linearly independent.

Then we may construct orthonormal vectors {uk}K
k=1 such that

span[u1, . . . , uK ] = span[v1, . . . , vK ],

as follows. First, take v1. Since {vk} is linearly independent, clearly v1 ̸= 0. De-
fine u1 = v1/ ∥v1∥. Then clearly ∥u1∥ = 1. We proceed by induction. Suppose
u1, . . . , uk have already been defined and span[u1, . . . , uk] = span[v1, . . . , vk].
Define v = vk+1 −

∑k
l=1 ⟨vk+1, ul⟩ul. Since {vk} is linearly independent, we

have vk+1 /∈ span[v1, . . . , vk] = span[u1, . . . , uk], so v ̸= 0. Define uk+1 =
v/ ∥v∥. Then clearly ∥uk+1∥ = 1 and ⟨uk+1, ul⟩ = 0 for all l = 1, . . . , k. Con-
tinuing this process, we obtain the desired orthonormal vectors {uk}. This
process is called the Gram-Schmidt orthonormalization.

6.5 UPPER TRIANGULARIZATION

We now show that any complex square matrix A can be upper triangularized,
so we can find an invertible matrix P such that P −1AP is upper triangular.

To this end, we introduce some definitions. For a complex (not necessarily
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square) matrix A, we define its conjugate transpose A∗ by the complex con-
jugate of the transpose. Therefore if A = (amn), then A∗ = (ānm). Using the
properties of the inner product, we have

⟨A∗x, y⟩ = (A∗x)∗y = x∗(A∗)∗y = x∗Ay = ⟨x, Ay⟩ .

Take an arbitrary basis in CN . Starting from this basis, applying the
Gram-Schmidt orthonormalization, we may construct an orthonormal basis
{u1, . . . , uN}. Define the matrix U by U = [u1, . . . , uN ]. Noting that {un} is
orthonormal and using the definition of the inner product, the (m, n) entry of
the matrix U∗U is

⟨um, un⟩ = δmn =
{

1, (m = n)
0. (m ̸= n)

Therefore U∗U = I. A matrix U ∈ CN×N is called unitary if U∗U = UU∗ = I,
or equivalently U∗ = U−1. A real unitary matrix is called orthogonal. By
definition, P ∈ RN×N is orthogonal if P ′P = PP ′ = I or P ′ = P −1. If U1, U2
are unitary matrices and U = U1U2, then

U∗U = (U1U2)∗(U1U2) = U∗
2 U∗

1 U1U2 = U∗
2 U2 = I,

so U is also unitary. Thus the set of unitary matrices is closed under multi-
plication.

The following theorem shows that any square matrix can be upper trian-
gularized by a unitary matrix.

Theorem 6.4 (Schur triangularization theorem). For any A ∈ CN×N , there
exists a unitary matrix U such that U−1AU = U∗AU is upper triangular.

Proof. We prove by mathematical induction on the dimension N of A. If
N = 1, the claim is trivial by setting U = (1).

Suppose that the claim is true up to dimension N − 1. Let α1 be an eigen-
value of A and u1 be a corresponding eigenvector, so Au1 = α1u1. Without
loss of generality, assume ∥u1∥ = 1. Applying the Gram-Schmidt orthonor-
malization, construct an orthonormal basis {un} and set U0 = [u1, . . . , uN ].
Then U0 is unitary. Consider the matrix U∗

0 AU0. Its (m, 1) entry is

e∗
mU∗

0 AU0e1 = u∗
mAu1 = α1u∗

mu1 = α1 ⟨um, u1⟩ = α1δm1.

Therefore we can take A1 ∈ C(N−1)×(N−1) and b1 ∈ CN−1 such that

U∗
0 AU0 =

[
α1 b∗

1
0 A1

]
. (6.5)

By the induction hypothesis, we can take a unitary matrix U1 such that T1 :=
U∗

1 A1U1 is upper triangular. Let

V :=
[
1 0
0 U1

]
.
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Since U1 is unitary, we have V ∗V = I, so V is unitary. Furthermore, we can
rewrite (6.5) as

U∗
0 AU0 =

[
α1 b∗

1
0 U1T1U∗

1

]
= V

[
α1 b∗

1U1
0 T1

]
V ∗. (6.6)

Let U := U0V , which is unitary. Multiplying V ∗ (V ) from left (right) to (6.6),
we obtain

U∗AU = V ∗U∗
0 AU0V =

[
α1 b∗

1U1
0 T1

]
,

which is upper triangular.

The Schur triangularization theorem has many applications. One of them
is to provide a class of matrices for which diagonalization is always possible.
Matrices satisfying A∗ = A are called Hermitian or self-adjoint.2 Real self-
adjoint matrices are commonly called symmetric. Note that if A = (amn) is
real symmetric, then A′ = A and amn = anm.

Corollary 6.5 (Spectral theorem). A self-adjoint matrix is diagonalizable by
a unitary matrix.

Proof. Let A be self-adjoint. By Theorem 6.4, we can take a unitary U such
that T := U∗AU is upper triangular. Therefore its conjugate transpose T ∗ is
lower triangular. Since A∗ = A, we have

T = U∗AU = U∗A∗U = (U∗AU)∗ = T ∗,

so T is both upper and lower triangular, hence diagonal.

The eigenvalues of self-adjoint matrices are all real.

Proposition 6.6. If A ∈ CN×N is self-adjoint, the following statements are
true.

(i) For any x ∈ CN , the quadratic form ⟨x, Ax⟩ is real.

(ii) All eigenvalues of A are real.

Proof. (i) ⟨x, Ax⟩ = ⟨Ax, x⟩ = ⟨A∗x, x⟩ = ⟨x, Ax⟩, so ⟨x, Ax⟩ ∈ R.
(ii) Let α ∈ C be an eigenvalue of A, so Av = αv for some v ̸= 0. Then by

(i) we have
R ∋ ⟨v, Av⟩ = ⟨v, αv⟩ = α ⟨v, v⟩ = α ∥v∥2

,

so α = ⟨v, Av⟩ / ∥v∥2 is also real.

Since real symmetric matrices are self-adjoint, the eigenvalues of real sym-
metric matrices are all real (and so are eigenvectors).

2The transpose of the cofactor matrix is sometimes called the (classical) adjoint matrix
or the adjugate matrix, which should not be confused. The term “self-adjoint” is commonly
used in functional analysis.
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Corollary 6.7. A real symmetric matrix is diagonalizable by an orthogonal
matrix.

Proof. Immediate from Corollary 6.5 and Proposition 6.6.

6.6 POSITIVE DEFINITE MATRICES

For A ∈ RN×N and x ∈ RN , the inner product ⟨x, Ax⟩ is called a quadratic
form. Such expressions often appear in applications; see for instance Problem
3.7. Without loss of generality, we may assume A is symmetric. To see this,
noting that ⟨x, Ax⟩ is a scalar, we have ⟨x, Ax⟩ = ⟨Ax, x⟩ = ⟨x, A′x⟩, so

⟨x, Ax⟩ = 1
2(⟨x, Ax⟩+ ⟨Ax, x⟩) =

〈
x,

(
A + A′

2

)
x

〉
.

Thus we may replace the matrix A with the symmetric matrix (A + A′)/2
without affecting the value of the quadratic form.

In many applications, it is important to know the sign of the quadratic form
⟨x, Ax⟩. We say that a symmetric matrix A is positive semidefinite (psd) if
⟨x, Ax⟩ ≥ 0 for all x. If the inequality is strict whenever x ̸= 0, we say that A is
positive definite (pd). Negative (semi)definite matrices are defined analogously.
Clearly, A is negative (semi)definite if and only if −A is positive (semi)definite.
We may provide a complete characterization of positive (semi)definite matrices
by applying the spectral theorem.

Proposition 6.8. A real symmetric matrix is positive semidefinite (definite)
if and only if all eigenvalues are nonnegative (positive).

Proof. By Corollary 6.7, we can take an orthogonal matrix P such that
P ′AP = diag[α1, . . . , αN ]. For any x, let y = P ′x. Since PP ′ = I, we have

⟨x, Ax⟩ = x′Ax = x′PP ′APP ′x = y′ diag[α1, . . . , αN ]y =
N∑

n=1
αny2

n.

The last expression is nonnegative (positive) for all x (hence for all y) if and
only if all αn’s are nonnegative (positive).

There is a simple test for positive definiteness that does not involve solving
for eigenvalues. Let A be a square matrix. The determinant of the matrix
obtained by keeping the first k rows and columns of A is called the k-th
principal minor of A. For example, if A = (amn) is N × N , then the first
principal minor is a11, the second principal minor is a11a22 − a12a21, and the
N -th principal minor is |A|, etc.

Proposition 6.9. A real symmetric matrix is positive definite if and only if
its principal minors are all positive.
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Proof. We prove by mathematical induction on the dimension N of the matrix
A. If N = 1, the claim is trivial.

Suppose the claim is true up to dimension N − 1, and let A ∈ RN×N .
Partition A as

A =
[
A1 b
b′ c

]
,

where A1 ∈ R(N−1)×(N−1) is symmetric, b ∈ RN−1, and c ∈ R. Let

P =
[
I −A−1

1 b
0 1

]
.

Then by simple algebra we get

P ′AP =
[
A1 0
0 c− b′A−1

1 b

]
.

By Proposition 5.6, we have |P | = 1, so P is invertible. Since

⟨x, Ax⟩ = x′Ax = (P −1x)′(P ′AP )(P −1x),

A is pd if and only if P ′AP is. But since P ′AP is block diagonal, P ′AP is
pd if and only if A1 is pd and c − b′A−1b > 0. By the inductive hypothesis,
A1 is pd if and only if its principal minors are all positive. Furthermore, since
|P | = 1, by Propositions 5.5 and 5.6 we have

|A| = |P ′AP | = |A1| (c− b′A−1
1 b).

Therefore

A is pd ⇐⇒ all principal minors of A1 are positive and c− b′A−1
1 b > 0

⇐⇒ all principal minors of A1 are positive and |A| > 0
⇐⇒ all principal minors of A are positive,

so the claim is true for N as well.

6.7 SECOND-ORDER OPTIMALITY CONDITION

The astute reader may notice that we have provided a second-order charac-
terization of local minima of one-variable functions in Proposition 2.6, but we
have not done so for multi-variable functions in Chapter 3. The reason is that
it requires knowledge of positive definite matrices. We now have all tools to
study second-order conditions for optimality.

Let U ⊂ RN be open and f : U → R be C2 (twice continuously differen-
tiable). Fix some a ∈ U , let x ∈ U be sufficiently close to a, and define the
one-variable function g : [0, 1]→ R by g(t) = f(a+t(x−a)). Then g(0) = f(a)
and g(1) = f(x). Now apply Taylor’s theorem to g and set t = 1. The result
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is Taylor’s theorem for the multi-variable function f(x). The multi-variable
version of Taylor’s theorem is most useful in the second-order approximation:

f(x) = f(a) + ⟨∇f(a), x− a⟩+ 1
2
〈
x− a,∇2f(ξ)(x− a)

〉
, (6.7)

where ξ = (1− θ)a + θx for some 0 < θ < 1 and

∇2f =
(

∂2f

∂xm∂xn

)
is the matrix of second partial derivatives of f , known as the Hessian.

Although we do not prove it (see Theorem 9.41 of Rudin (1976)), for C2

functions, the order of the partial derivatives can be exchanged: ∂2f
∂xm∂xn

=
∂2f

∂xn∂xm
. Thus the Hessian is a symmetric matrix.

The following proposition provides a second-order characterization of local
minima, which generalizes Proposition 2.6.

Proposition 6.10. Let U ⊂ RN be open and f : U → R be C2. Then the
following statements are true.

(i) If x̄ ∈ U is a local minimum, then ∇f(x̄) = 0 and ∇2f(x̄) is positive
semidefinite.

(ii) If ∇f(x̄) = 0 and ∇2f(x̄) is positive definite, then x̄ is a strict local
minimum.

Proof. Suppose x̄ is a local minimum. By Proposition 3.2, we have ∇f(x̄) = 0.
Take any v ∈ RN . Then for small enough t > 0, letting a = x̄ and x = a + tv
in (6.7), we obtain

f(x̄) ≤ f(x) = f(x̄) + t ⟨∇f(x̄), v⟩+ 1
2 t2 〈v,∇2f(x̄ + θtv)v

〉
=⇒ 0 ≤

〈
v,∇2f(x̄ + θtv)v

〉
.

Letting t → 0 and noting that f is C2, we obtain
〈
v,∇2f(x̄)v

〉
≥ 0. Since v

is arbitrary, ∇2f(x̄) is positive semidefinite.
Conversely, suppose that ∇f(x̄) = 0 and ∇2f(x̄) is positive definite. Since

the determinant of a matrix is continuous in its entries, the signs of principal
minors of ∇2f(x) remain the same if x is sufficiently close to x̄. Hence by
Proposition 6.9, ∇2f(x) is positive definite in the neighborhood of x̄. Let
∥v∥ = 1 and x = x̄ + tv for sufficiently small t > 0. By Taylor’s theorem, we
have

f(x) = f(x̄) + t ⟨∇f(x̄), v⟩+ 1
2 t2 〈v,∇2f(x̄ + θtv)v

〉
= f(x̄) + 1

2 t2 〈v,∇2f(x̄ + θtv)v
〉

> f(x̄),

so x̄ is a strict local minimum.
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6.8 MATRIX NORM AND SPECTRAL RADIUS

In Chapter 1, we defined the norm on a vector space by a real function satisfy-
ing nonnegativity, positive homogeneity, and triangle inequality. Since N ×N
matrices can be viewed as N2-dimensional vectors, we can also define norms
for matrices.

However, a distinctive property of matrices is that they can be multiplied.
We thus define the matrix norm by a function satisfying the following four
properties:

(i) (Nonnegativity) ∥A∥ ≥ 0, with equality if and only if A = 0,

(ii) (Positive homogeneity) ∥αA∥ = |α| ∥A∥,

(iii) (Triangle inequality) ∥A + B∥ ≤ ∥A∥+ ∥B∥,

(iv) (Submultiplicativity) ∥AB∥ ≤ ∥A∥ ∥B∥.

When submultiplicativity is dropped, we call ∥·∥ a vector norm for matrices.
With a (vector) norm on the set of matrices, we may talk about the conver-
gence of sequences of matrices. By the norm equivalence theorem (Theorem
1.3), all vector norms (and hence matrix norms) define the same topology.

Any norm ∥·∥ on RN induces a matrix norm.

Proposition 6.11. Let ∥·∥ be a norm on RN . For any A ∈ RN×N , define

∥A∥ = sup
x ̸=0

∥Ax∥
∥x∥

. (6.8)

Then ∥·∥ is a matrix norm on RN×N .

Proof. We first show that (6.8) is well-defined. Using the positive homogeneity
of the norm, we have ∥A(αx)∥ / ∥αx∥ = ∥Ax∥ / ∥x∥ for all α ̸= 0 and x ̸= 0.
Therefore by setting α = 1/ ∥x∥, without loss of generality we may assume
∥x∥ = 1. Then (6.8) becomes

∥A∥ = sup
∥x∥=1

∥Ax∥ . (6.9)

Since the unit sphere
{

x ∈ RN : ∥x∥ = 1
}

is nonempty, closed, bounded, and
the norm is continuous, it follows from the extreme value theorem (Theorem
1.11) that the maximum in (6.9) is achieved and is finite. Therefore ∥A∥ ∈
[0,∞) is well defined.

(Nonnegativity) Clearly ∥A∥ ≥ 0. If ∥A∥ = 0, then ∥Ax∥ = 0 for all
x ∈ RN . Since ∥·∥ is a norm on RN , we have Ax = 0 for all x, so A = 0.

(Positive homogeneity) Let α ∈ R. Then (6.8) implies

∥αA∥ = sup
x ̸=0

∥αAx∥
∥x∥

= |α| sup
x̸=0

∥Ax∥
∥x∥

= |α| ∥A∥ .
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(Triangle inequality) Note that (6.8) implies ∥Ax∥ ≤ ∥A∥ ∥x∥ for all x.
Therefore

∥(A + B)x∥ = ∥Ax + Bx∥ ≤ ∥Ax∥+ ∥Bx∥ ≤ (∥A∥+ ∥B∥) ∥x∥ .

Dividing both sides by ∥x∥ and taking the supremum, we obtain ∥A + B∥ ≤
∥A∥+ ∥B∥.

(Submultiplicativity) For all x, we have

∥ABx∥ = ∥A(Bx)∥ ≤ ∥A∥ ∥Bx∥ ≤ ∥A∥ ∥B∥ ∥x∥ .

Dividing both sides by ∥x∥ and taking the supremum, we obtain ∥AB∥ ≤
∥A∥ ∥B∥.

The matrix norm ∥·∥ in Proposition 6.11 is called the operator norm.

Example 6.4. If ∥·∥ denotes the ℓ∞ norm and A = (amn), then

∥Ax∥ = max
m

∣∣∣∣∣
N∑

n=1
amnxn

∣∣∣∣∣ .
Taking the maximum over all x with ∥x∥ = maxn |xn| = 1, it follows from
(6.9) that

∥A∥ = max
m

N∑
n=1
|amn| .

Remark. The proof of Proposition 6.11 does not use the property of R, so we
can also define the operator norm on CN×N . Furthermore, except submulti-
plicativity, we have not used the fact that A, B are square matrices, so we
may define a vector norm on CM×N induced by any norms defined on CN

and CM using (6.8).

If A ∈ CN×N , the set of eigenvalues {αn}N
n=1 is called the spectrum of A.

The largest absolute value of all eigenvalues,

ρ(A) := max
n
|αn| , (6.10)

is called the spectral radius of A.
As another application of the Schur triangularization theorem, we can show

that the eigenvalues and the spectral radius of a matrix are continuous in the
entries.

Proposition 6.12 (Continuity of eigenvalues). Let {Ak}∞
k=1 ⊂ CN×N be a

sequence such that A := limk→∞ Ak exists. Then there exist a subsequence
{Akl

}∞
l=1 and an ordered list (αnkl

)N
n=1 of eigenvalues of Akl

such that αn :=
liml→∞ αnkl

exists for all n and {αn}N
n=1 is the spectrum of A.
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Proof. For each k, by Theorem 6.4, we can take a unitary matrix Uk such
that Tk := U∗

k AkUk is upper triangular. Since the column vectors of unitary
matrices form an orthonormal basis, they are bounded. Therefore by Theorem
1.10, we can take a convergent subsequence {Ukl

}. Let U = liml→∞ Ukl
. Since

each Ukl
is unitary, so is U . Let T := U∗AU . Since Ukl

→ U and Ak → A, we
have Tkl

→ T . Let αnkl
be the n-th diagonal entry of Tkl

. Since Tkl
is upper

triangular, by Proposition 6.2 (αnkl
)N
n=1 is an ordered list of eigenvalues of

Tkl
and hence of Akl

. Since Tkl
→ T , αn := liml→∞ αnkl

exists for all n and
T is upper triangular. Since T = U∗AU , {αn}N

n=1 is the spectrum of A.

Corollary 6.13. The spectral radius is continuous in the entries of the matrix.

Recall that if A = diag[d1, . . . , dN ] is diagonal, we have Ak → 0 as k →
0 if and only if |dn| < 1 for all n. (Here we implicitly assume entrywise
convergence, but we can use any vector norm by Theorem 1.3.) By Proposition
6.2, the spectrum of A is {d1, . . . , dN}, and hence ρ(A) = maxn |dn|. Thus, for
diagonal matrices, we have Ak → 0 if and only if ρ(A) < 1. This property is
in fact true for all matrices. Before we state the result, to simplify notation,
for a general matrix A = (amn), denote the matrix of absolute values by
|A| = (|amn|). (Although we use the same notation as the determinant, the
meaning should be clear from the context.)

Proposition 6.14. Let A ∈ CN×N . Then limk→∞ Ak = 0 if and only if
ρ(A) < 1.

Proof. By the Schur triangularization theorem (Theorem 6.4), without loss of
generality, we may assume that A is upper triangular.

Suppose that A is upper triangular and Ak → 0. By Proposition 6.2, the
diagonal entries of A are eigenvalues of A denoted by {αn}. Therefore the
diagonal entries of Ak are

{
αk

n

}
. Since Ak → 0, we have αk

n → 0 as k → ∞.
Therefore |αn| < 1 for all n, so ρ(A) < 1.

Conversely, suppose A is upper triangular and r := ρ(A) < 1. Since A is
upper triangular, we may uniquely write A = D + T , where D is diagonal and
T is upper triangular with Tmn = 0 for all m ≥ n. Then we have the entrywise
inequality

|A| = |D|+ |T | ≤ rI + |T | .
Since T ∈ CN×N is upper triangular with zero diagonal entries, we can easily
check that |T |N = 0 (Problem 6.15). Therefore by the triangle inequality for
complex numbers and the binomial theorem, for k ≥ N we have

0 ≤
∣∣Ak
∣∣ ≤ |A|k ≤ (rI + |T |)k =

k∑
l=0

(
k

l

)
rk−l |T |l =

N−1∑
l=0

(
k

l

)
rk−l |T |l .

The binomial coefficient in the last expression can be bounded as(
k

l

)
= k(k − 1) · · · (k − l + 1)

l! ≤ kl

l! ,
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which is a polynomial in k. Since 0 ≤ r < 1, for all l = 0, . . . , N − 1 we have(
k
l

)
rk−l → 0 as k →∞, so Ak → 0.

The spectral radius and the matrix norm are related as follows.

Theorem 6.15 (Gelfand spectral radius formula). Let ∥·∥ be any matrix
norm on CN×N . Then ρ(A) ≤

∥∥Ak
∥∥1/k and ρ(A) = limk→∞

∥∥Ak
∥∥1/k.

Proof. Let α be an eigenvalue of A and v ̸= 0 be a corresponding eigenvector.
Then Akv = αkv for all k. Let V = (v, . . . , v) be the matrix obtained by
replicating v. Then AkV = αkV . Taking the norm of both sides, we obtain

|α|k ∥V ∥ =
∥∥AkV

∥∥ ≤ ∥∥Ak
∥∥ ∥V ∥ =⇒ |α|k ≤

∥∥Ak
∥∥ .

Since α is any eigenvalue, it follows that ρ(A) ≤
∥∥Ak

∥∥1/k.
Take any ϵ > 0 and define Ã = 1

ρ(A)+ϵ A. Then ρ(Ã) = ρ(A)
ρ(A)+ϵ < 1, so

limk→∞ Ãk = 0 by Proposition 6.14. Therefore
∥∥Ãk

∥∥ < 1 for large enough k,
and hence

∥∥Ak
∥∥ ≤ (ρ(A)+ϵ)k. Taking the k-th root, letting k →∞, and ϵ ↓ 0,

we obtain lim supk→∞
∥∥Ak

∥∥1/k ≤ ρ(A). Since ρ(A) ≤
∥∥Ak

∥∥1/k, it follows that
ρ(A) = limk→∞

∥∥Ak
∥∥1/k.

Remark. Although the above proof of Theorem 6.15 uses the submultiplica-
tivity of the matrix norm, this condition is actually not necessary. For a proof
of Gelfand’s formula that does not require submultiplicativity, see Horn and
Johnson (2013, Theorem 5.7.10).

An important implication of Theorem 6.15 is that the “size” of the matrix
power Ak is approximately ρ(A)k. Recall that in complex analysis we study
the convergence of power series

f(z) =
∞∑

k=0
akzk.

If this series converges for |z| < r and a matrix satisfies ρ(A) < r, then we
may unambiguously define the matrix series

f(A) =
∞∑

k=0
akAk.

See Problems 6.16 and 6.17 for concrete examples.

PROBLEMS

6.1. Verify the claim in Example 6.3.

6.2. Let V be a real inner product space. For x ∈ V, define ∥x∥ =
√
⟨x, x⟩ ≥ 0.
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(i) For any 0 ̸= x ∈ V and y ∈ V, define the function f : R → R by
f(t) = ∥tx− y∥2. Solve mint f(t).

(ii) By evaluating f at the minimum value, prove the Cauchy-Schwarz in-
equality (6.3).

(iii) By using the Cauchy-Schwarz inequality, prove the triangle inequality
(6.4).

6.3. Generalize the Cauchy-Schwarz inequality for a complex inner product
space.

6.4. Prove that the matrix A =
[
1 1
0 1

]
is not diagonalizable. (Hint: Proposi-

tion 6.2.)

6.5. Let A be real symmetric and positive semidefinite. Show that there exists
a real symmetric and positive semidefinite matrix B such that A = B2.

6.6. Let A be real symmetric with eigenvalues α1, . . . , αN , where |α1| ≤ · · · ≤
|αN |. Let ∥·∥ be the Euclidean norm. Show that for any nonzero vector x ∈ RN ,
we have |α1| ≤ ∥Ax∥ / ∥x∥ ≤ |αN |.

6.7. Let A = [a1, . . . , aN ] ∈ RM×N , where an is the n-th column vector of
A. Show that A′A is positive definite if and only if {a1, . . . , aN} is linearly
independent.

6.8. Let V be a real inner product space. Let {vn}N
n=1 ⊂ V, and define the

N ×N matrix A = (amn) by amn = ⟨vm, vn⟩.

(i) Show that A is positive semidefinite.

(ii) Show that A is positive definite if and only if the vectors {vn}N
n=1 are

linearly independent.

(iii) For the inner product space V, consider the space of continuous functions
f : [0, 1]→ R with inner product defined by

⟨f, g⟩ =
∫ 1

0
f(x)g(x) dx.

Show that ⟨·, ·⟩ is indeed an inner product.

(iv) Let V be as in the previous question. For n = 1, . . . , N , let vn(x) = xn−1.
Show that {vn}N

n=1 is linearly independent.

(v) Define the matrix A = (amn) by amn = 1
m+n−1 . Prove that A is positive

definite.

6.9. Compute the partial derivatives, the gradient, and the Hessian of the
following functions.
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(i) f(x1, x2) = a1x1 + a2x2, where a1, a2 are constants.

(ii) f(x1, x2) = ax2
1 + 2bx1x2 + cx2

2, where a, b, c are constants.

(iii) f(x1, x2) = x1x2.

(iv) f(x1, x2) = x1 log x2, where x2 > 0.

6.10. Compute the gradient and the Hessian of the following functions.

(i) f(x) = ⟨a, x⟩, where a, x are vectors of the same dimensions and ⟨a, x⟩ =
a · x is the inner product of a and x.

(ii) f(x) = ⟨x, Ax⟩, where A is a square matrix of the same dimension as
the vector x.

6.11. Let f(x1, x2) = x3
1 +3x2

1 +x1x2 +x2
2−5x2 +6. Compute all points with

∇f(x) = 0, and determine whether each is a local minimum, local maximum,
or neither.

6.12. For A = (amn) ∈ CN×N , define

∥A∥ =
(

N∑
m,n=1

|amn|2
)1/2

.

Show that ∥·∥ is a matrix norm.

6.13. For A = (amn) ∈ CN×N , define

∥A∥ =
N∑

m,n=1
|amn| .

Show that ∥·∥ is a matrix norm.

6.14. Let ∥·∥ be the Euclidean norm on CN and let A ∈ CN×N .

(i) Show that ∥Ax∥2 = ⟨x, A∗Ax⟩.

(ii) Show that max∥x∥=1 ⟨x, A∗Ax⟩ = ρ(A∗A).

(iii) Show that ∥A∥ =
√

ρ(A∗A).

6.15. For 1 ≤ p ≤ N , let T p
N be the set of N ×N upper triangular matrices

A = (amn) with amn = 0 whenever n−m < p.

(i) Show that if A ∈ T p
N and B ∈ T q

N , then AB ∈ T p+q
N .

(ii) Show that if A ∈ T 1
N , then AN = 0.

6.16. If ρ(A) < 1, prove that the matrix series
∑∞

k=0 Ak is well defined and
equals (I −A)−1. (Hint: use (1− z)(1 + z + · · ·+ zk) = 1− zk+1.)
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6.17. Prove that the matrix series

exp(A) :=
∞∑

k=0

1
k!A

k

is well defined. (Hint: use the Cauchy criterion for convergence.) We can thus
define the matrix exponential.





CHAPTER 7

Metric Space and

Contraction

7.1 METRIC SPACE

Recall that a normed space is a vector space V equipped with a norm ∥·∥. For
any two elements v1, v2 of V, we may define their distance by

d(v1, v2) := ∥v1 − v2∥ .

Using the properties of the norm, we can easily show (Problem 7.1) that d
satisfies the following three properties:

(i) (Nonnegativity) d(v1, v2) ≥ 0, with equality if and only if v1 = v2,

(ii) (Symmetry) d(v1, v2) = d(v2, v1),

(iii) (Triangle inequality) d(v1, v3) ≤ d(v1, v2) + d(v2, v3).

In general, if a set V is equipped with a function d : V × V → R satisfying
these three properties, we say that (V, d) is a metric space and refer to the
function d as the metric or the distance. When the metric d is understood, we
often just say V is a metric space, omitting the reference to d.

If (V, d) is a metric space and V1 ⊂ V, the pair (V1, d) is obviously a
metric space. This property allows us to construct many metric spaces. In
contrast, if (V, ∥·∥) is a normed space and V1 ⊂ V, the pair (V1, ∥·∥) is a
normed space if and only if V1 is a subspace (has the vector space structure).
For instance, let V be the set of functions from R to R, which is a vector space
by defining addition and scalar multiplication pointwise. Let V1 ⊂ V be the
set of increasing functions. Then V1 can never be a normed space because it
is not a vector space (since the difference of two increasing functions need not
be increasing). But V1 could be a metric space with a suitable metric.

We provide several examples.

93
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Example 7.1. Let X ⊂ RN be nonempty and V be the space of bounded
functions on X:

V = {v : X → R : v is bounded} .

For v ∈ V, define
∥v∥ = sup

x∈X
|v(x)| .

Then (V, ∥·∥) is a normed space.

Proof. Since v ∈ V is bounded, clearly 0 ≤ ∥v∥ < ∞. If ∥v∥ = 0, then
|v(x)| = 0 for all x ∈ X, so v = 0. If α ∈ R and v ∈ V, then

∥αv∥ = sup
x∈X
|αv(x)| = |α| sup

x∈X
|v(x)| = |α| ∥v∥ .

Noting that |v(x)| ≤ ∥v∥ for all x ∈ X, for v1, v2 ∈ V, we have

|v1(x) + v2(x)| ≤ |v1(x)|+ |v2(x)| ≤ ∥v1∥+ ∥v2∥ .

Taking the supremum of the left-hand side over x ∈ X, we obtain

∥v1 + v2∥ ≤ ∥v1∥+ ∥v2∥ .

Therefore ∥·∥ is a norm.

The norm ∥·∥ in Example 7.1 is called the supremum norm or the sup
norm.

Example 7.2. Let (V, ∥·∥) be as in Example 7.1. For v1, v2 ∈ V, define

d(v1, v2) = ∥v1 − v2∥ = sup
x∈X
|v1(x)− v2(x)| .

Then for any V1 ⊂ V, the pair (V1, d) is a metric space.

The distance d in Example 7.2 is called the sup distance. For instance, the
set of bounded increasing (or continuous or convex) functions from R to R
equipped with the sup distance is a metric space but not a normed space.

If (V, d) is a metric space, we define the (open) ball with center v ∈ V and
radius ϵ > 0 by the set

Bϵ(v) := {w ∈ V : d(v, w) < ϵ} .

Then we may define the convergence of sequences in V and the topology (open
sets) of V exactly as in Chapter 1. For instance, a set U ⊂ V is open if and only
if for any v ∈ U , we can take ϵ > 0 such that Bϵ(v) ⊂ U . Similarly, a sequence
{vk}∞

k=1 ⊂ V converges to v ∈ V if and only if d(vk, v) → 0 as k → ∞. All
results in §1.5 generalize to metric spaces, and the proofs are identical.
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7.2 COMPLETENESS AND BANACH SPACE

Let (V, d) be a metric space. We say that a sequence {vk}∞
k=1 ⊂ V is Cauchy

if
(∀ϵ > 0)(∃K > 0)(∀k, l ≥ K) d(vk, vl) < ϵ. (7.1)

We know from Problem 1.10 that Cauchy sequences in RN are convergent.
This property is called the completeness of RN . When the metric space (V, d)
is complete, we call it a complete metric space. A normed space (V, ∥·∥) can
be viewed as a metric space with distance d(v1, v2) = ∥v1 − v2∥. A complete
normed space is called a Banach space. The following proposition provides an
example.

Proposition 7.1. The normed space (V, ∥·∥) in Example 7.1 is a Banach
space. If V1 ⊂ V is closed, the metric space (V1, d) in Example 7.2 is complete.

Proof. Let V be the space of bounded functions on X with sup norm ∥·∥. Let
{vk}∞

k=1 ⊂ V be Cauchy. By definition, (7.1) holds. Since |v(x)| ≤ ∥v∥ for all
x, we have

(∀ϵ > 0)(∃K > 0)(∀k, l ≥ K)(∀x ∈ X) |vk(x)− vl(x)| < ϵ. (7.2)

Therefore for fixed x ∈ X, the real sequence {vk(x)} is Cauchy. By Problem
1.10, {vk(x)} is convergent; let v(x) be its limit. Letting l → ∞ in (7.2), we
obtain

(∀ϵ > 0)(∃K > 0)(∀k ≥ K)(∀x ∈ X) |vk(x)− v(x)| ≤ ϵ.

Taking the supremum over x ∈ X, we obtain

(∀ϵ > 0)(∃K > 0)(∀k ≥ K) ∥vk − v∥ ≤ ϵ.

This implies that vk − v ∈ V, and hence v = vk − (vk − v) ∈ V. Furthermore,
by the definition of convergence, we have vk → v as k → ∞. Therefore V is
complete and (V, ∥·∥) is a Banach space.

Let V1 ⊂ V be closed. If {vk}∞
k=1 ⊂ V1 is Cauchy, then in particular it is

Cauchy in V. Since V is complete, {vk}∞
k=1 converges to some v ∈ V. Since

V1 ⊂ V is closed, we have v ∈ V1. Therefore (V1, d) is a complete metric
space.

Since monotonicity and convexity are preserved by taking limits, it follows
that the spaces of bounded increasing functions, bounded convex functions,
and bounded increasing convex functions are all complete metric spaces.

Corollary 7.2. The space of bounded continuous functions is Banach. Any
closed subset of it is a complete metric space.

Proof. Let X ⊂ RN and bX be the space of bounded functions on X with sup
norm ∥·∥. By Proposition 7.1, bX is Banach. Let bcX be the space of bounded
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continuous functions on X. Since bcX ⊂ bX is a vector space and (bX, ∥·∥) is
Banach (hence normed space), (bcX, ∥·∥) is a normed space. Let {vk}∞

k=1 be
Cauchy in bcX. Then it is Cauchy in bX, and since bX is Banach, we can take
v ∈ bX such that ∥vk − v∥ → 0 as k → ∞. Hence to show the completeness
of bcX, it suffices to show that v is continuous.

Take any ϵ > 0. Since vk → v in bX, we can take K such that ∥v − vk∥ <
ϵ/3 for k > K. Fix such k and take any x ∈ X. Since vk is continuous, we can
take a neighborhood U of x such that |vk(y)− vk(x)| < ϵ/3 for y ∈ U . Then

|v(y)− v(x)| = |v(y)− vk(y) + vk(y)− vk(x) + vk(x)− v(x)|
≤ |v(y)− vk(y)|+ |vk(y)− vk(x)|+ |vk(x)− v(x)|

≤ ∥v − vk∥+ ϵ

3 + ∥v − vk∥ < ϵ,

so v is continuous.

Convergence with respect to the supremum norm as in Proposition 7.1 is
sometimes called uniform convergence. Corollary 7.2 states that the uniform
limit of continuous functions on a compact set is continuous, a well-known
result in real analysis.

7.3 CONTRACTION MAPPING THEOREM

In general, if V is a set and T is a function from V to itself (T : V → V), we
say that T is a self map or sometimes an operator . If T is a self map on V and
v ∈ V satisfies T (v) = v, so v remains unchanged by applying T , we say that
v is a fixed point of T . In what follows, we often write Tv for T (v) to simplify
notation, just like we did for matrix multiplication.

Let (V, d) be a metric space. A self map T : V→ V is called a contraction
mapping (or simply a contraction) with modulus β if β ∈ [0, 1) and

d(Tv1, T v2) ≤ βd(v1, v2) (7.3)

for all v1, v2 ∈ V. Intuitively, the condition (7.3) means that when we apply
T , the distance between two points shrinks by a factor β < 1. The following
contraction mapping theorem (also called the Banach fixed point theorem) is
elementary but has many important applications, as we shall see below.

Theorem 7.3 (Contraction mapping theorem). Let (V, d) be a complete met-
ric space and T : V→ V be a contraction with modulus β ∈ [0, 1). Then

(i) T has a unique fixed point v∗ ∈ V,

(ii) for any v0 ∈ V, we have v∗ = limk→∞ T kv0, and

(iii) the approximation error d(T kv0, v∗) has order of magnitude βk.
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Proof. First note that a contraction is continuous (indeed, uniformly contin-
uous) because for any ϵ > 0, if d(v1, v2) < ϵ then

d(Tv1, T v2) ≤ βd(v1, v2) ≤ βϵ ≤ ϵ.

Take any v0 ∈ V and define vk = Tvk−1 for k ≥ 1. Then vk = T kv0. Since T
is a contraction, we have

d(vk, vk−1) = d(Tvk−1, T vk−2) ≤ βd(vk−1, vk−2) ≤ · · · ≤ βk−1d(v1, v0).

If k > l ≥ K, then by the triangle inequality we have

d(vk, vl) ≤ d(vk, vk−1) + · · ·+ d(vl+1, vl)
≤ (βk−1 + · · ·+ βl)d(v1, v0)

= βl − βk

1− β
d(v1, v0) ≤ βl

1− β
d(v1, v0) ≤ βK

1− β
d(v1, v0).

Since 0 ≤ β < 1, we have βK → 0 as K → ∞, so {vk} is Cauchy. Since V is
complete, v∗ = limk→∞ vk exists. By the triangle inequality, we have

d(Tv∗, v∗) ≤ d(Tv∗, T vk) + d(Tvk, vk) + d(vk, v∗)
≤ βd(v∗, vk) + d(vk+1, vk) + d(vk, v∗)
≤ (1 + β)d(vk, v∗) + βkd(v1, v0)→ 0

as k →∞, so d(Tv∗, v∗) = 0. Since d is a metric, we have Tv∗ = v∗, so v∗ is
a fixed point of T .

To show uniqueness, suppose that v1, v2 are fixed points of T , so Tv1 = v1
and Tv2 = v2. Since T is a contraction, we have

0 ≤ d(v1, v2) = d(Tv1, T v2) ≤ βd(v1, v2) =⇒ (β − 1)d(v1, v2) ≥ 0.

Since β < 1, it must be d(v1, v2) = 0 and hence v1 = v2. Therefore the fixed
point is unique.

Finally, let v∗ be the fixed point of T , v0 be any point, and vk = T kv0.
Then

d(vk, v∗) = d(Tvk−1, T v∗) ≤ βd(vk−1, v∗) ≤ · · · ≤ βkd(v0, v∗).

Letting k →∞ we have vk → v∗, and the error has order of magnitude βk.

Sometimes, we need to work with self maps T such that T m is a contraction
for some m ∈ N, although T itself may not be a contraction. The following
theorem extends Theorem 7.3 to such a case. (See Problem 7.3 for an example.)

Theorem 7.4. Let (V, d) be a complete metric space and T : V→ V be such
that T m is a contraction for some m ∈ N. Then T has a unique fixed point
v∗ ∈ V and we have v∗ = limk→∞ T kv0 for any v0 ∈ V.
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Proof. By the contraction mapping theorem, T m has a unique fixed point
v∗ ∈ V, so T mv∗ = v∗. Since

Tv∗ = TT mv∗ = T m+1v∗ = T mTv∗,

T v∗ is also a fixed point of T m. Since the fixed point of T m is unique, it must
be Tv∗ = v∗, so v∗ is a fixed point of T . If v1, v2 are fixed points of T , then
v1 = Tv1 = · · · = T mv1 and v2 = Tv2 = · · · = T mv2, so v1, v2 are also fixed
points of T m. Since T m is a contraction, it must be v1 = v2. Therefore the
fixed point of T is unique.

To show T kv0 → v∗ for any v0 ∈ V, express any k ∈ N uniquely as
k = mqk + rk, where qkn ∈ Z+ and rk ∈ {0, . . . , m− 1}. Then for each
fixed r ∈ {0, . . . , m− 1}, applying Theorem 7.3 to the initial value T rv0, we
have v∗ = limq→∞(T m)qT rv0 = limq→∞ T mq+rv0. Since r ∈ {0, . . . , m− 1}
is arbitrary, we obtain T kv0 → v∗.

7.4 BLACKWELL'S SUFFICIENT CONDITION

It would be convenient if there is a sufficient condition for contraction that is
easily verifiable. The following proposition provides a sufficient condition for
a contraction. Below, for functions v1, v2 defined on a set X, we write v1 ≤ v2
if v1(x) ≤ v2(x) for all x ∈ X.

Proposition 7.5 (Blackwell’s sufficient condition). Let X be a set and V be
a space of functions on X with the following properties:

(a) (Upward shift) For v ∈ V and c ∈ R+, we have v + c ∈ V.

(b) (Bounded difference) For all v1, v2 ∈ V, we have

d(v1, v2) := sup
x∈X
|v1(x)− v2(x)| <∞.

Suppose that (V, d) is a complete metric space and T : V→ V satisfies

(i) (Monotonicity) v1 ≤ v2 implies Tv1 ≤ Tv2,

(ii) (Discounting) there exists β ∈ [0, 1) such that, for all v ∈ V and c ∈ R+,
we have T (v + c) ≤ Tv + βc.

Then T is a contraction with modulus β.

Proof. Take any v1, v2 ∈ V and let c = d(v1, v2) ≥ 0. For any x ∈ X, we have

v1(x) = v1(x)− v2(x) + v2(x) ≤ v2(x) + c,

so v1 ≤ v2 + c ∈ V by the upward shift property. Using monotonicity and
discounting, we obtain

Tv1 ≤ T (v2 + c) ≤ Tv2 + βc =⇒ Tv1 − Tv2 ≤ βc.
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Interchanging the role of v1, v2, we obtain Tv2 − Tv1 ≤ βc. This shows that
|(Tv1)(x)− (Tv2)(x)| ≤ βd(v1, v2) for any x ∈ X. Taking the supremum over
x, we obtain d(Tv1, T v2) ≤ βd(v1, v2), so T is a contraction with modulus
β.

7.5 PEROV CONTRACTION

There is a useful generalization of the contraction mapping theorem to what
is called vector-valued metric spaces.

Let V be a set, N ∈ N, and d : V×V→ RN . We say that d is a vector-valued
metric if the following conditions hold:

(i) (Nonnegativity) d(v1, v2) ≥ 0, with equality if and only if v1 = v2,

(ii) (Symmetry) d(v1, v2) = d(v2, v1),

(iii) (Triangle inequality) d(v1, v3) ≤ d(v1, v2) + d(v2, v3).

In conditions (i) and (iii), note that for a = (a1, . . . , aN ) ∈ RN and b =
(b1, . . . , bN ) ∈ RN , we write a ≤ b if and only if an ≤ bn for all n. A set V
endowed with a vector-valued metric d is called a vector-valued metric space.
Obviously, a metric space is a special case of a vector-valued metric space by
setting N = 1.

Let ∥·∥ denote the supremum norm on RN , so ∥a∥ = maxn |an| for
a = (a1, . . . , aN ) ∈ RN . Note that the supremum norm satisfies the following
monotonicity property: if a, b ∈ RN and 0 ≤ a ≤ b, then

∥a∥ = max
n

an ≤ max
n

bn = ∥b∥ .

The monotonicity will be repeatedly used in the subsequent discussion. If
(V, d) is a vector-valued metric space and we define ∥d∥ : V × V→ R by

∥d∥ (v1, v2) = ∥d(v1, v2)∥ = max
n

dn(v1, v2),

then (V, ∥d∥) is a metric space in the usual sense. To see this, conditions (i)
and (ii) are trivial, and condition (iii) holds because

∥d∥ (v1, v3) = ∥d(v1, v3)∥ ≤ ∥d(v1, v2) + d(v2, v3)∥
≤ ∥d(v1, v2)∥+ ∥d(v2, v3)∥ = ∥d∥ (v1, v2) + ∥d∥ (v2, v3),

where the first inequality uses condition (iii) for d and the monotonicity of
the supremum norm ∥·∥. We say that the vector-valued metric space (V, d) is
complete if the metric space (V, ∥d∥) is complete.

Below, let ∥·∥ also denote the operator norm for N×N matrices induced by
the supremum norm (Proposition 6.11). Recall that for a square matrix A, the
spectral radius ρ(A) is defined by the largest absolute value of all eigenvalues
(see (6.10)). We extend the notion of contractions as follows. Let (V, d) be
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a vector-valued metric space. We say that a self map T : V → V is a Perov
contraction with coefficient matrix B ≥ 0 if ρ(B) < 1 and

d(Tv1, T v2) ≤ Bd(v1, v2) (7.4)

for all v1, v2 ∈ V. Here B ≥ 0 means that the matrix B = (bmn) is nonnegative:
bmn ≥ 0 for all m, n. (We have much more to say about nonnegative matri-
ces in Chapter 9.) We can now generalize the contraction mapping theorem
(Theorem 7.3) as follows.

Theorem 7.6 (Perov contraction theorem). Let (V, d) be a complete vector-
valued metric space and T : V → V be a Perov contraction with coefficient
matrix B ≥ 0. Then

(i) T has a unique fixed point v∗ ∈ V,

(ii) for any v0 ∈ V, we have v∗ = limk→∞ T kv0, and

(iii) for any β ∈ (ρ(B), 1), the approximation error d(T kv0, v∗) has order of
magnitude βk.

Proof. Because the proof of Theorem 7.6 is similar to Theorem 7.3, we only
provide a sketch and leave the details to Problem 7.4. Take any v0 ∈ V and
define vk = Tvk−1 for k ≥ 1. Then vk = T kv0. Repeatedly applying the
triangle inequality and (7.4), for k > l, we obtain

d(vk, vl) ≤ (Bk−1 + · · ·+ Bl)d(v1, v0).

Applying the sup norm ∥·∥ and using its monotonicity, we obtain

∥d(vk, vl)∥ ≤ (
∥∥Bk−1∥∥+ · · ·+

∥∥Bl
∥∥) ∥d(v1, v0)∥ .

Take any β ∈ (ρ(B), 1). By the Gelfand spectral radius formula (Theorem
6.15), we have

∥∥Bk
∥∥ ≤ βk for sufficiently large k, so

∥d(vk, vl)∥ ≤ (βk−1 + · · ·+ βl) ∥d(v1, v0)∥ ≤ βl

1− β
∥d(v1, v0)∥ → 0

as l → ∞. Therefore {vk} is Cauchy in the complete metric space (V, ∥d∥)
and hence convergent. The rest of the proof is the same as Theorem 7.3.

The following proposition generalizes Blackwell’s sufficient condition to
Perov contractions.

Proposition 7.7. Let X be a set and V be a space of functions v : X → RN

with the following properties:

(a) (Upward shift) For v ∈ V and c ∈ RN
+ , we have v + c ∈ V.



Metric Space and Contraction ■ 101

(b) (Bounded difference) For all u, v ∈ V and n, we have

dn(u, v) := sup
x∈X
|un(x)− vn(x)| <∞.

Let d = (d1, . . . , dN ). Suppose that (V, d) is a complete vector-valued metric
space and T : V→ V satisfies

(i) (Monotonicity) u ≤ v implies Tu ≤ Tv,

(ii) (Discounting) there exists a nonnegative matrix B ∈ RN×N with ρ(B) <
1 such that, for all v ∈ V and c ∈ RN

+ , we have T (v + c) ≤ Tv + Bc.

Then T is a Perov contraction with coefficient matrix B.

The proof is similar to Proposition 7.5 (Problem 7.5).

7.6 PARAMETRIC CONTINUITY OF FIXED POINT

Let (V, d) be a complete metric space. In some applications, the self map
T : V → V itself may depend on some parameter θ ∈ Θ, or more precisely,
T : V × Θ → V. Fixing θ ∈ Θ, we may define the self map Tθ : V → V by
Tθ(v) = T (v, θ). If for each θ the self map Tθ is a contraction, then by the
contraction mapping theorem, there exists a unique fixed point v∗(θ) ∈ V. A
natural question is how v∗(θ) depends on the parameter θ ∈ Θ. The following
proposition shows that v∗ is continuous if T is continuous.

Proposition 7.8. Let (V, d) be a complete metric space and Θ be a topological
space. Suppose T : V × Θ → V is continuous and there exists β ∈ [0, 1) such
that for all θ ∈ Θ, the self map Tθ : V → V defined by Tθv = T (v, θ) is a
contraction with modulus β. Then

(i) for each θ ∈ Θ, there exists a unique fixed point v∗(θ) of Tθ, and

(ii) v∗ : Θ→ V is continuous.

Proof. The first claim is immediate from the contraction mapping theorem.
To show the second claim, fix any (v0, θ) ∈ V × Θ and define vk = T k

θ v0
for k ∈ N. Then by the triangle inequality and the contraction property, we
have

d(vk, v0) ≤ d(vn, vk−1) + · · ·+ d(v1, v0)
≤ (βk−1 + · · ·+ 1)d(v1, v0)

≤ 1
1− β

d(v1, v0) = 1
1− β

d(Tθv0, v0).

Letting k → ∞ and noting that vk → v∗(θ) by the contraction mapping
theorem, we have

d(v∗(θ), v0) ≤ 1
1− β

d(Tθv0, v0). (7.5)
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Since v0 ∈ V and θ ∈ Θ are arbitrary in (7.5), set θ = θ′ and v0 = v∗(θ),
where θ, θ′ ∈ Θ are arbitrary. Since by definition Tθv0 = v0, it follows that

d(v∗(θ′), v∗(θ)) ≤ 1
1− β

d(Tθ′v0, v0) = 1
1− β

d(Tθ′v0, Tθv0)

= 1
1− β

d(T (v0, θ′), T (v0, θ)), (7.6)

where v0 = v∗(θ). Since T is continuous and v0 = v∗(θ) depends only on θ,
for any ϵ > 0 there exists an open neighborhood U of θ such that

d(T (v0, θ′), T (v0, θ)) < (1− β)ϵ (7.7)

whenever θ′ ∈ U . Combining (7.6) and (7.7), for all θ′ ∈ U we have

d(v∗(θ′), v∗(θ)) < ϵ,

so v∗ : Θ→ V is continuous.

Remark. If T : V × Θ → V satisfies the assumption of Proposition 7.8, we
say that T is a uniform contraction with modulus β. Chicone (2006, Theo-
rem 1.244) shows that the fixed point of a uniform contraction is not just
continuous but also smooth if T is smooth.

NOTES

Blackwell’s sufficient condition (Proposition 7.5) is essentially Theorem 5 of
Blackwell (1965), who imposes stronger assumptions. The Perov contraction
theorem (Theorem 7.6) appeared in Perov (1964) to study a system of ordinary
differential equations. The exposition in §7.5 largely follows Toda (2021b).

PROBLEMS

7.1. Let (V, ∥·∥) be a normed space and define d : V × V → R by d(v1, v2) =
∥v1 − v2∥. For any set V1 ⊂ V, prove that (V1, d) is a metric space.

7.2. Let (V, d) be a complete metric space, T : V → V a contraction with a
unique fixed point v∗ ∈ V, and let V1 ⊂ V be a nonempty closed set such that
TV1 ⊂ V1. Show that v∗ ∈ V1.

7.3. Consider the integral equation

f(x) = λ

∫ x

a

K(x, y)f(y) dy + ϕ(x), (7.8)

where ϕ : [a, b] → R and K : [a, b]2 → R are given continuous functions and
λ ∈ R.
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(i) Let V be the space of continuous functions f : [a, b]→ R equipped with
the supremum norm ∥·∥. For each x ∈ [a, b], define

(Tf)(x) = λ

∫ x

a

K(x, y)f(y) dy + ϕ(x).

Show that T : V→ V.

(ii) Let M := sup(x,y)∈[a,b]2 |K(x, y)|. For any f, g ∈ V, show that

|(Tf)(x)− (Tg)(x)| ≤ |λ|M(x− a) ∥f − g∥ .

(iii) Show that there exists a unique solution f to (7.8) by showing that T m

is a contraction for some m ∈ N.

7.4. Complete the proof of Theorem 7.6.

7.5. Prove Proposition 7.7.

7.6. Define the 2× 2 upper triangular matrix T by

T =
[
a b
0 a

]
,

where a, b ≥ 0. We also use the notation T for the operator T : R2 → R2

defined by x 7→ Tx. Endow R2 with the supremum norm, so write ∥x∥ =
max {|x1| , |x2|} for x = (x1, x2)′.

(i) Compute the eigenvalues and spectral radius of T .

(ii) Compute the operator norm of T induced by ∥·∥.

(iii) Show that T is not a contraction if a + b ≥ 1.

(iv) Show that T is a Perov contraction if a < 1.





CHAPTER 8

Implicit Function and

Stable Manifold Theorem

8.1 INTRODUCTION

When solving economic problems, we often encounter equations like

f(x, y) = 0, (8.1)

where y is an endogenous variable and x is an exogenous variable. Oftentimes
y does not have an explicit expression, but nevertheless we might be interested
in how y changes with x, that is, dy/ dx. Such an exercise is called comparative
statics. The implicit function theorem, which is one of the most useful the-
orems for economic analysis, allows us to compute this derivative as follows.
Let y = g(x). Substituting this into (8.1), we obtain

f(x, g(x)) = 0. (8.2)

Differentiating both sides of (8.2) with respect to x and using the chain rule,
we get fx + fyg′(x) = 0, where fx is the shorthand for ∂f/∂x. Solving this
equation, we obtain g′(x) = −fx/fy. This is the essence of the implicit function
theorem (Theorem 8.3).

The analysis of dynamic economic models often reduces to the nonlinear
implicit difference equation of the form

f(xt, xt+1) = 0

for t = 0, 1, . . . . We say that x∗ is a steady state if f(x∗, x∗) = 0. The local
stable manifold theorem (Theorem 8.9) allows us to study the local behavior
of the solution {xt}∞

t=0 around the steady state x∗ by linearization.
To illustrate the usefulness of these techniques, we discuss applications

to optimal savings problem, optimal portflio problem, and the overlapping
generations model.

105
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8.2 INVERSE FUNCTION THEOREM

To prove the implicit function theorem, we need the following inverse function
theorem.

Theorem 8.1 (Inverse function theorem). Let f : RN → RN be C1. If Df(x0)
is invertible, then there exists a neighborhood V of y0 = f(x0) such that

(i) f : U := f−1(V )→ V is bijective,

(ii) g = f−1 is C1, and

(iii) Dg(y) = [Df(g(y))]−1 on V .

If f is affine, so f(x) = y0 + A(x − x0) for some matrix A, then we can
find the inverse function by solving

y = y0 + A(x− x0) ⇐⇒ x = x0 + A−1(y − y0)

provided that A is invertible. The idea to prove the general case is to linearize
f around x0. Since f is differentiable, we have

y = f(x) ≈ f(x0) + Df(x0)(x− x0).

Solving this equation for x, we obtain

x ≈ x0 + Df(x0)−1(y − f(x0)). (8.3)

Therefore, given an approximate solution x0 of f(x) = y, the solution can be
approximated further by (8.3) (which is essentially the Newton method for
solving the nonlinear equation f(x) = y discussed in Appendix A.2). This
intuition is helpful for understanding the proof below.

To prove the inverse function theorem, we need the following result.

Proposition 8.2 (Mean value inequality). Let f : RN → RM be differentiable
and ∥·∥ denote the Euclidean norm (as well as the operator norm induced by
∥·∥). Then

∥f(x2)− f(x1)∥ ≤ sup
t∈[0,1]

∥Df(x1 + t(x2 − x1))∥ ∥x2 − x1∥ .

Proof. The claim is trivial if f(x1) = f(x2), so assume f(x1) ̸= f(x2). Take
any v ∈ RM with ∥v∥ = 1. Define ϕ : [0, 1]→ R by

ϕ(t) = ⟨v, f(x1 + t(x2 − x1))− f(x1)⟩ .

Then ϕ(0) = 0 and ϕ(1) = ⟨v, f(x2)− f(x1)⟩. By the mean value theorem
(Proposition 2.3), there exists t ∈ (0, 1) such that

⟨v, f(x2)− f(x1)⟩ = ϕ(1)− ϕ(0)
= ϕ′(t) = ⟨v, Df(x1 + t(x2 − x1))(x2 − x1)⟩ ,
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where the last equality follows from the chain rule. Taking the absolute value
of both sides and applying the Cauchy-Schwarz inequality, we obtain

|⟨v, f(x2)− f(x1)⟩| = |⟨v, Df(x1 + t(x2 − x1))(x2 − x1)⟩|
≤ ∥Df(x1 + t(x2 − x1))(x2 − x1)∥
≤ ∥Df(x1 + t(x2 − x1))∥ ∥x2 − x1∥ ,

where the last inequality follows from ∥v∥ = 1 and the property of the matrix
norm; see (6.9). Taking the supremum over t ∈ [0, 1] and setting

v = f(x2)− f(x1)
∥f(x2)− f(x1)∥ ,

we obtain the desired inequality.

Proof of Theorem 8.1. Fix y ∈ RN and define T : RN → RN by

T (x) = x + Df(x0)−1(y − f(x)),

which is well-defined because Df(x0) is invertible. To simplify notation, let
A = Df(x0)−1. For any x1, x2, let x(t) = x1 + t(x2 − x1). Applying the mean
value inequality (Proposition 8.2) to T (x), we have

∥T (x2)− T (x1)∥ ≤ sup
t∈[0,1]

∥I −ADf(x(t))∥ ∥x2 − x1∥ .

Since f is C1 and A = Df(x0)−1, we can take ϵ > 0 such that ∥I −ADf(x)∥ ≤
1/2 whenever ∥x− x0∥ ≤ ϵ. Noting that y cancels out in T (x2) − T (x1), the
choice of ϵ does not depend on y. Let B = {x : ∥x− x0∥ ≤ ϵ} be the closed
ball with center x0 and radius ϵ. If x1, x2 ∈ B, then

∥x(t)− x0∥ ≤ (1− t) ∥x1 − x0∥+ t ∥x2 − x0∥ ≤ ϵ,

so x(t) ∈ B. Therefore if x1, x2 ∈ B, we have

∥T (x2)− T (x1)∥ ≤ 1
2 ∥x2 − x1∥ . (8.4)

Let us show that T (B) ⊂ B if y is sufficiently close to y0 = f(x0). To see this,
note that

T (x)− x0 = x− x0 + A(f(x0)− f(x)) + A(y − y0).

Using the mean value inequality to x 7→ x−Af(x), we obtain

∥T (x)− x0∥ ≤ sup
t∈[0,1]

∥I −ADf(x0 + t(x− x0))∥ ∥x− x0∥+ ∥A(y − y0)∥ .

Take a neighborhood V of y0 such that ∥A(y − y0)∥ ≤ 1
2 ϵ for all y ∈ V . If

y ∈ V and x ∈ B, then we have

∥T (x)− x0∥ ≤
1
2 ∥x− x0∥+ 1

2ϵ ≤ ϵ,
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so T (x) ∈ B. This shows that T (B) ⊂ B. Since T : B → B and (8.4) holds,
T is a contraction with modulus 1/2. Furthermore, since B is closed, by the
contraction mapping theorem (Theorem 7.3), there exists a unique fixed point
x of T . Since

x = T (x) = x + A(y − f(x)),

we have y = f(x).
Let the unique x ∈ B such that y = f(x) for any y ∈ V be denoted

by x = g(y). Since f(x) = y, we have f(g(y)) = y. Let us show that g is
continuous on V . Suppose yk → y and xk = g(yk) but xk ̸→ x. Since B is
closed and bounded, by taking a subsequence if necessary, we may assume that
xk → x′, where x ̸= x′ ∈ B. Since f(xk) = f(g(yk)) = yk, letting k →∞, since
f is continuous we get f(x′) = y, which is a contradiction because f(x) = y
has a unique solution on B. Therefore g is continuous.

To show the differentiability of g, for small enough h ∈ RN , let k(h) :=
g(y + h)− g(y). Since g is continuous, so is k. Noting that g(y + h) = g(y) +
k(h) = x + k and f is differentiable, we obtain

y + h = f(g(y + h)) = f(x + k) = f(x) + Dfk + o(k).

Since y = f(x), we get h = Dfk + o(k), so h and k have the same order of
magnitude. Finally,

g(y + h) = g(y) + k = g(y) + [Df ]−1(h− o(k)) = g(y) + [Df ]−1h + o(h),

so g is differentiable and Dg(y) = [Df(g(y))]−1.

Remark. Although Theorem 8.1 and Proposition 8.2 assume the domain of
f is RN , because the proofs use only local arguments, the statements remain
valid even if the domain is an arbitrary open set.

8.3 IMPLICIT FUNCTION THEOREM

Armed with the inverse function theorem, we can state and prove the implicit
function theorem. In what follows, for a function f(x, y), Dxf(x, y) denotes
the Jacobian of f with respect to x.

Theorem 8.3 (Implicit function theorem). Let f : RM × RN → RN be C1.
If f(x0, y0) = 0 and Dyf(x0, y0) is invertible, then there exist neighborhoods
U of x0 and V of y0 and a function g : U → V such that

(i) for all x ∈ U , f(x, y) = 0 ⇐⇒ y = g(x),

(ii) g is C1, and

(iii) Dxg(x) = −[Dyf(x, y)]−1Dxf(x, y), where y = g(x).
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Proof. (i) Define F : RM+N → RM+N by

F (x, y) =
[

x
f(x, y)

]
.

Then F is C1. Furthermore, since

DF (x, y) =
[

I 0
Dxf(x, y) Dyf(x, y)

]
is block lower triangular, by Proposition 5.6 we have

|DF (x0, y0)| = |Dyf(x0, y0)| ≠ 0,

so DF (x0, y0) is invertible. Since F (x0, y0) = (x0, 0), by the inverse function
theorem there exists a neighborhood V of (x0, 0) such that F : F −1(V )→ V
is bijective. Let G be the inverse function of F . Then for any (z, w) ∈ V , we
have

F (x, y) = (z, w) ⇐⇒ (x, y) = G(z, w) = (G1(z, w), G2(z, w)).

Since by definition F (x, y) = (x, f(x, y)), we have x = z, so

f(x, y) = w ⇐⇒ y = G2(x, w).

Letting w = 0, we have

f(x, y) = 0 ⇐⇒ y = g(x) := G2(x, 0).

(ii) Since G is continuously differentiable, so is g.
(iii) Differentiating both sides of f(x, g(x)) = 0 with respect to x and

applying the chain rule, we get

Dxf + DyfDxg = 0 ⇐⇒ Dxg = −[Dyf ]−1Dxf.

Remembering the implicit function theorem
A simple way to remember the assumption and the statement of
the implicit function theorem is as follows. Start from the equation
f(x, y) = 0. Set y = g(x), di�erentiate f(x, g(x)) = 0 applying the
chain rule, and derive (iii):

Dxf + DyfDxg = 0 ⇐⇒ Dxg = −[Dyf ]−1Dxf.

For this equation to be meaningful, we need Dyf to be invertible,
which is exactly the assumption.

As mentioned in the introduction, the implicit function theorem is one of
the most useful theorems for economic analysis. In what follows, we discuss
several applications.
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8.4 OPTIMAL SAVINGS PROBLEM

As the first application of the implicit function theorem, consider the following
generalization of the optimal savings problem discussed in §2.6.

An agent lives for two dates indexed by t = 1, 2. The agent is endowed
with initial wealth w > 0, and at t = 1 the agent needs to decide how much to
consume or save. The gross interest rate on savings is R > 0. Thus if the agent
consumes c at t = 1, savings is w − c, and the wealth at t = 2 is R(w − c).
Suppose that the agent wishes to maximize the utility

U(c1, c2) = u(c1) + βv(c2), (8.5)

where u, v are period utility functions and β > 0 is the discount factor. As-
sume u is twice continuously differentiable on (0,∞) with u′ > 0, u′′ < 0,
limx↓0 u′(x) =∞ (which is the Inada condition discussed in Proposition 4.4),
and likewise for v. Clearly, the model in §2.6 is a special case by setting
u(c) = v(c) = c1−γ

1−γ .
Letting s = w − c be the savings, solving the optimal savings problem

reduces to maximizing
u(w − s) + βv(Rs).

Applying the same argument as in §2.6, the first-order condition is

−u′(w − s) + βRv′(Rs) = 0. (8.6)

Under the maintained assumption, it is straightforward to show that there
exists a unique s ∈ (0, w) satisfying (8.6). A natural question is how the
optimal savings s depends on model parameters such as the initial wealth w
or the gross interest rate R.

For instance, suppose we would like to compute ∂s/∂w. To this end, define
f(w, s) by the left-hand side of (8.6), so

f(w, s) = −u′(w − s) + βRv′(Rs).

To compute ∂s/∂w, we apply the implicit function theorem to x = w and
y = s. A straightforward calculation yields

fw(w, s) = −u′′(w − s) > 0,

fs(w, s) = u′′(w − s) + βR2v′′(Rs) < 0.

Therefore by the implicit function theorem, we obtain

∂s

∂w
= −fw

fs
= u′′(w − s)

u′′(w − s) + βR2v′′(Rs) ∈ (0, 1).

8.5 OPTIMAL PORTFOLIO PROBLEM

As the second application of the implicit function theorem, let us study how
an investor’s asset allocation is related to wealth. Consider an agent with a
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utility function u and initial wealth w > 0. Suppose that there are two assets,
one risky (stock) with gross return R > 0 and the other risk-free (bond) with
gross risk-free rate Rf > 0. If the investor invests x in the risky asset, the
total wealth after investment is

R(x) := Rx + Rf (w − x).

Therefore the utility maximization problem is

max
x

E[u(R(x))],

where E denotes the expectation. Suppose that u′ > 0 and u′′ < 0, so the
utility function is strictly increasing and concave.

The following lemma shows that if the expected excess return of the risky
asset is positive, then the investor always holds a positive amount of stocks.

Lemma 8.4. Suppose that E[R] > Rf and a solution x to the utility maxi-
mization problem exists. Then x > 0.

Proof. Let f(x) = E[u(R(x))] be the expected utility. Then by the chain rule
we have

f ′(x) = E[u′(R(x))(R−Rf )],
f ′′(x) = E[u′′(R(x))(R−Rf )2].

Since u′′ < 0, and R ̸= Rf with positive probability because E[R] > Rf , it
follows that f ′′(x) < 0. Therefore f is strictly concave.

If x solves the utility maximization problem, by the first-order condition
we have f ′(x) = 0. Since

f ′(0) = E[u′(Rf w)(R−Rf )] = u′(Rf w)(E[R]−Rf ) > 0

because u′ > 0 and E[R] > Rf and f ′ is strictly decreasing because f ′′ < 0,
f ′(x) = 0 < f ′(0) implies x > 0.

A measure of risk aversion known as the absolute risk aversion coefficient
at wealth w is defined by the quantity α(w) = −u′′(w)/u′(w). The following
proposition shows that if investors’ absolute risk aversion is decreasing, then
investors hold more stocks as they get richer. The proof is an application of
the implicit function theorem.

Proposition 8.5. Suppose that α(w) = −u′′(w)/u′(w) is decreasing, E[R] >
Rf , and let x > 0 be the optimal stock holdings. Then ∂x/∂w ≥ 0.

Proof. By the first-order condition, we have

F (w, x) := E[u′(R(x))(R−Rf )] = 0.
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Assuming that the implicit function theorem is applicable, we have ∂x/∂w =
−(∂F/∂w)/(∂F/∂x). The denominator is

∂F

∂x
= E[u′′(R(x))(R−Rf )2] < 0,

so we can apply the implicit function theorem. Using the definition of α, the
numerator is

∂F

∂w
= E[u′′(R(x))(R−Rf )Rf ] = −E[α(R(x))u′(R(x))(R−Rf )Rf ].

If R ≥ Rf , since x > 0 we get

R(x) = Rx + Rf (w − x) = Rf w + (R−Rf )x ≥ Rf w.

Since α is decreasing, we get α(R(x)) ≤ α(Rf w). Multiplying both sides by
R−Rf ≥ 0, we obtain

α(R(x))(R−Rf ) ≤ α(Rf w)(R−Rf ).

If R ≤ Rf , by a similar argument R(x) ≤ Rf and α(R(x)) ≥ α(Rf w), so
again

α(R(x))(R−Rf ) ≤ α(Rf w)(R−Rf ).

Since u′ > 0, we obtain

E[α(R(x))u′(R(x))(R−Rf )Rf ] ≤ E[α(Rf w)u′(R(x))(R−Rf )Rf ]
= α(Rf w)Rf E[u′(R(x))(R−Rf )] = 0

by the first-order condition, so ∂F/∂w ≥ 0. Hence by the implicit function
theorem ∂x/∂w = −(∂F/∂w)/(∂F/∂x) ≥ 0.

For similar economic applications of the implicit function theorem, see for
example Phelan and Toda (2019, Theorem 3), Toda and Walsh (2020, Lemma
1), and Beare and Toda (2022, Appendix B).

8.6 STABLE MANIFOLD THEOREM

In some economic applications, we would like to study the long run behavior
of the (potentially nonlinear) dynamics xt = f(xt−1) for t = 1, 2, . . . . This
section introduces some tools for that purpose.

We first consider the special case where f is linear, so xt = Axt−1 for
some A ∈ RN×N . Then by iteration xt = Atx0, so by Proposition 6.14 we
have xt → 0 as t→∞ for all x0 if and only if ρ(A) < 1. However, we may be
interested in under what conditions on x0 we have Atx0 → 0 without assuming
ρ(A) < 1. The following theorem shows that the set of such x0 is a subspace
whose dimension is related to the number of particular eigenvalues.
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Theorem 8.6 (Stable manifold theorem for linear operators). Let A ∈ RN×N

and define its stable manifold by

Es(A) :=
{

x ∈ RN : lim
t→∞

Atx = 0
}

. (8.7)

Then Es(A) is a subspace with dimension equal to the number of eigenvalues
of A with absolute value strictly less than 1.

The idea of the proof of Theorem 8.6 is to choose an invertible matrix
P such that P −1AP is “simple” and to reduce to this case. Although the
Schur triangularization theorem (Theorem 6.4) allows us to convert A to an
upper triangular matrix, this argument cannot be applied because A may have
complex eigenvalues. The following proposition allows us to stay in RN .
Proposition 8.7. Let A ∈ RN×N . Then there exists a real invertible matrix
P such that P −1AP is block upper triangular, where each diagonal block is
either 1× 1 or 2× 2 of the form[

r cos θ −r sin θ
r sin θ r cos θ

]
(8.8)

with r > 0 and sin θ ̸= 0.
Proof. The proof is by induction on N . If N = 1, the claim is trivial by setting
P = (1).

Suppose N = 2. Then A has either two real eigenvalues or two complex
eigenvalues that are complex conjugates of each other. Suppose first that A
has two real eigenvalues. Let α be one of them and p1 ∈ R2 be a corresponding
eigenvector, so Ap1 = αp1. Take any p2 ∈ R2 such that {p1, p2} is linearly
independent. Then we can take β1, β2 ∈ R such that Ap2 = β1p1 + β2p2.
Define the matrix P = [p1, p2], which is invertible because {p1, p2} is linearly
independent (Theorem 5.9). Collecting vectors into a matrix, we obtain

AP = [Ap1, Ap2] = [αp1, β1p1 + β2p2] = P

[
α β1
0 β2

]
⇐⇒ P −1AP =

[
α β1
0 β2

]
,

which is upper triangular and hence block upper triangular with 1×1 diagonal
blocks. Suppose next that A has two complex eigenvalues α, ᾱ ∈ C. Let v ∈ C2

be an eigenvector corresponding to α. Since α /∈ R, we can take r > 0 and
θ ∈ R such that sin θ ̸= 0 and α = r(cos θ+i sin θ). Uniquely write v = p1−ip2,
where p1, p2 ∈ R2. To simplify notation, let c = cos θ and s = sin θ ̸= 0. Then

A(p1 − ip2) = Av = αv = r(c + is)(p1 − ip2).

Comparing the real and imaginary parts, we obtain

Ap1 = r(cp1 + sp2), (8.9a)
Ap2 = r(−sp1 + cp2). (8.9b)
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If p2 = 0, then (8.9b) implies rsp1 = 0. Since r > 0 and s ̸= 0, we obtain
p1 = 0, so v = p1 − ip2 = 0, which contradicts that v is an eigenvector.
Therefore p2 ̸= 0. Let us show that {p1, p2} is linearly independent. If not,
because p2 ̸= 0, we may write p1 = βp2 for some β ∈ R. Then (8.9b) implies

Ap2 = r(c− sβ)p2,

so r(c − sβ) is a real eigenvalue of A, which is a contradiction. Therefore
{p1, p2} is linearly independent and P := [p1, p2] is invertible. Collecting the
two vectors in (8.9) into a matrix, we obtain

AP = rP

[
c −s
s c

]
⇐⇒ P −1AP = r

[
c −s
s c

]
,

which takes the form (8.8).
Finally, suppose N ≥ 3 and the claim is true up to dimension N − 1. The

remaining proof is essentially the same as Theorem 6.4 so we only provide a
sketch. If A has a real eigenvalue α1, we can take a real eigenvector p1, so
Ap1 = αp1. Construct a basis {pn} and set P0 = [p1, . . . , pN ]. For each n ≥ 2,
we can take {βmn}N

m=1 ⊂ R such that Apn =
∑N

m=1 βmnpm. Collecting these
vectors into a matrix, we obtain

AP0 = P0


α1 β12 · · · β1N

0 β22 · · · β2N

...
...

. . .
...

0 βN2 · · · βNN

 ⇐⇒ P −1
0 AP0 =

[
α1 b′

1
0 A1

]

for some b1 ∈ RN−1 and A1 ∈ R(N−1)×(N−1). Thus the analysis reduces to
the case N−1. If A has no real eigenvalues, by imitating the proof of the 2×2
case, we can take an invertible P0 such that

P −1
0 AP0 =

r cos θ −r sin θ b′
1

r sin θ r cos θ b′
2

0 0 A1


and the analysis reduces to the case N − 2.

Proof of Theorem 8.6. Clearly 0 ∈ Es(A). If x, y ∈ Es(A), by definition
Atx, Aty → 0 as t→∞. Then for any α, β ∈ R, we have

At(αx + βy) = αAtx + βAty → α · 0 + β · 0 = 0

as t→∞, so αx + βy ∈ Es(A). Therefore Es(A) is a subspace.
To determine the dimension of Es(A), let Ns(A) and Nu(A) be the number

of eigenvalues of A that have absolute value less than (at least) 1. When the
matrix is clear from the context, omit the reference to A. Then Ns +Nu = N .
We prove the claim by induction on Nu. If Nu = 0, then Ns = N and all
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eigenvalues of A have absolute value less than 1. Then ρ(A) < 1, so Proposition
6.14 implies Atx → 0 for any x ∈ RN . Clearly Es(A) = RN has dimension
N = Ns, so the claim holds.

Let j ≥ 1, suppose the claim holds for Nu = 0, . . . , j − 1, and consider
the case Nu = j. Let P be an invertible matrix and define Ã = P −1AP
and x̃ = P −1x. Since Atx = P (P −1AP )tP −1x = PÃtx̃ → 0 if and only if
Ãtx̃ → 0, by Proposition 8.7, without loss of generality we may assume that
A is block upper triangular where each diagonal block is either 1× 1 or 2× 2
of the form (8.8). Write

A =

A1 · · · ∗
...

. . .
...

0 · · · AM

 =
[
B C
0 AM

]
, (8.10)

where M is the number of diagonal blocks and B is defined by keeping the first
(M − 1)× (M − 1) blocks of A. By interchanging rows and columns, without
loss of generality we may assume that diagonal blocks are ordered according
to the spectral radius: ρ(A1) ≤ · · · ≤ ρ(AM ).

By the induction hypothesis, we have Nu = j ≥ 1, so ρ(AM ) ≥ 1. Partition
the vector x in accordance with the blocks of A in (8.10) such that

x =

 x1
...

xM

 =
[

y
xM

]
. (8.11)

Using (8.10) and (8.11), a straightforward calculation shows that

Atx =
[
Bt

∑t
s=1 Bt−sCAs−1

M

0 At
M

] [
y

xM

]
=
[
Bty +

∑t
s=1 Bt−sCAs−1

M xM

At
M xM

]
. (8.12)

Let us show that At
M xM → 0 as t → ∞ if and only if xM = 0. If AM

is 1 × 1, since ρ(AM ) ≥ 1, we can write AM = a with |a| ≥ 1. Therefore
At

M xM = atxM → 0 if and only if xM = 0. If AM is 2× 2, then AM takes the
form (8.8), so

At
M = rt

[
cos tθ − sin tθ
sin tθ cos tθ

]
.

Since r = ρ(AM ) ≥ 1, the ℓ2 norm of At
M xM is∥∥At

M xM

∥∥ = rt ∥xM∥ → 0

if and only if xM = 0.
Using (8.12), we have Atx → 0 if and only if xM = 0 and Bty → 0.

Therefore dim Es(A) = dim Es(B). By Proposition 6.1, the spectrum of A is
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the union of the spectra of B and AM . Thus j = Nu(A) = Nu(B) + Nu(AM ).
Since by assumption Nu(AM ) equals either 1 or 2, it follows that Nu(B) ≤
j − 1. Therefore we may apply the induction hypothesis to B and obtain
dim Es(B) = Ns(B). Since all eigenvalues of AM have absolute value at least
1, we have Ns(A) = Ns(B), so dim Es(A) = Ns(A).

We next consider the general nonlinear case. Let U ⊂ RN be a nonempty
open set. We say that f : U → f(U) is a homeomorphism if f−1 : f(U) →
U exists and f, f−1 are both continuous. Similarly, we say that f is a Cr-
diffeomorphism if f−1 : f(U)→ U exists and f, f−1 are both Cr. When r = 1,
we simply say f is a diffeomorphism. Let f : U → f(U) be a homeomorphism.
If f(x∗) = x∗ for some x∗ ∈ U , we say that x∗ is a fixed point or a steady state
of f . If f is a diffeomorphism, x∗ is a fixed point, and none of the eigenvalues
of the Jacobian Df(x∗) have absolute value equal to 1, we say that x∗ is a
hyperbolic fixed point of f .

Let {xt}∞
t=0 be a sequence satisfying xt = f(xt−1) for all t. If x∗ is a

fixed point of f and x0 = x∗, then obviously xt = x∗ for all t. Under some
conditions, as long as x0 is sufficiently close to x∗, we may expect that {xt}∞

t=0
will converge to x∗. The following Hartman-Grobman theorem allows us to
derive sufficient conditions.

Theorem 8.8 (Hartman-Grobman). Let 0 ∈ U ⊂ RN be open and f : U →
f(U) be a diffeomorphism such that 0 is a hyperbolic fixed point of f . Then
there exists an open set V with 0 ∈ V ⊂ U and a homeomorphism h : V →
h(V ) with h(0) = 0 such that

f(h(x)) = h(Df(0)x) (8.13)

whenever x ∈ V and both sides of the equation are defined.

Proof. See Chicone (2006, §4.3).

The Hartman-Grobman theorem implies that, if we let A = Df(0) in
(8.13), then (h−1 ◦ f ◦ h)(x) = Ax for x sufficiently close to 0. Iterating both
sides t times, we obtain

(h−1 ◦ f t ◦ h)(y0) = Aty0 ⇐⇒ xt = f t(x0) = h(Aty0) (8.14)

for y0 = h−1(x0). Therefore whether xt → 0 or not reduces to Aty0 → 0
or not, which we have already studied in Theorem 8.6. We thus obtain the
following theorem.

Theorem 8.9 (Local stable manifold theorem). Let everything be as in The-
orem 8.8 and. Let A = Df(0) and Es(A) be its stable manifold in (8.7). Then
there exists an open neighborhood Ω of 0 such that, if x0 ∈ h(Es(A)∩Ω), then
xt := f t(x0)→ 0 as t→∞.
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Proof. If dim Es(A) = 0, then Es(A) = {0} and the claim is obvious because
f(0) = h(0) = 0. Suppose dim Es(A) ≥ 1. Using the same notation as in the
proof of Theorem 8.6, we have Ns = dim Es(A) ≥ 1. Arrange the eigenvalues
of A such that |α1| ≤ · · · ≤ |αN |. Then by assumption |αNs

| < 1 ≤ |αNs+1|.
Take r ∈ (|αNs | , 1). By Theorem 6.15 and the proof of Theorem 8.6, we can
take a constant C > 0 such that ∥Aty∥ ≤ Crt ∥y∥ for all t and y ∈ Es(A).
Therefore if we take Ω to be the open ball Bϵ(0) with center 0 and sufficiently
small radius ϵ > 0, for any x0 ∈ h(Es(A) ∩ Ω), by setting y0 = h−1(x0),
the sequence {Aty0} remains arbitrarily close to 0. Therefore xt in (8.14) is
well defined, and since Aty0 → 0 by Theorem 8.6 and h(0) = 0, we obtain
xt → 0.

Remark. If the fixed point x∗ of f is different from the origin, we may apply
Theorems 8.8 and 8.9 by considering the function f̃(x) := f(x + x∗). For in-
stance, the statement of Theorem 8.9 remains valid by changing 0 everywhere
to x∗ and letting x0 ∈ h((Es(A) + x∗) ∩ Ω).

8.7 OVERLAPPING GENERATIONS MODEL

As an application of the local stable manifold theorem, we study a simple
overlapping generations (OLG) model.

We embed the optimal savings problem studied in §8.4 into a dynamic
model. Time is discrete and is indexed by t = 0, 1, . . . . At any date, there are
two agents, one young and one old. The young agent born at time t becomes
old at time t + 1. The old agent exits the economy after consuming. At time
t, the young and old are endowed with aGt and bGt units of consumption
goods, where a, b > 0 and G > 1 is the economic growth rate. In addition, the
initial old at t = 0 is endowed with one share of an asset that pays constant
dividend D > 0 (in units of the consumption good) every period. The utility
function of an agent born at time t is

U(yt, zt+1) = u(yt) + βu(zt+1), (8.15)

where (yt, zt+1) denote the consumption when young and old, β > 0 is the
discount factor, and the period utility function is the constant relative risk
aversion (CRRA) specification

u(c) =
{

c1−γ

1−γ if 0 < γ ̸= 1,
log c if γ = 1,

(8.16)

where the parameter γ > 0 governs risk aversion. The objective of the agents
is to maximize utility subject to the budget constraints, taking prices as given.
Let {Pt}∞

t=0 be the sequence of asset prices, to be determined. Letting xt be
the number of asset shares demanded by the young, the budget constraints of
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an agent born at time t are

Young: yt + Ptxt = aGt, (8.17a)
Old: zt+1 = bGt+1 + (Pt+1 + D)xt. (8.17b)

That is, at time t the young decides to spend income aGt on consumption
yt and asset purchase Ptxt, and at time t + 1 the old liquidates all wealth to
consume.

Using the budget constraints (8.17) to solve for (yt, zt+1) and substituting
into the utility function (8.15), the young seeks to maximize utility

u(aGt − Ptx) + βu(bGt+1 + (Pt+1 + D)x) (8.18)

over the number of shares held x = xt. Applying the same argument as in
§8.4, taking the derivative of (8.18) with respect to x and setting it to zero,
we obtain the first-order condition

−Ptu
′(aGt − Ptx) + β(Pt+1 + D)u′(bGt+1 + (Pt+1 + D)x) = 0. (8.19)

However, in the economy there is only one share of the asset, which needs to
be held by somebody to equate demand and supply. Because the old exits the
economy, the old sells the entire assets. This means the young must buy the
asset, so in equilibrium we have xt = 1. Therefore setting x = 1 in (8.19),
using the functional form (8.15), and rearranging terms, we obtain

Pt = β

(
bGt+1 + Pt+1 + D

aGt − Pt

)−γ

(Pt+1 + D). (8.20)

Thus an equilibrium is characterized by a sequence {Pt}∞
t=0 satisfying (8.20)

for all t.
Note that (8.20) is a highly nonlinear difference equation in Pt and it may

look hopeless to analyze it. However, for this purpose the local stable manifold
theorem (Theorem 8.9) is very useful. Because incomes are growing at rate
G > 1 and the nonlinear difference equation (8.20) is non-autonomous (i.e., it
explicitly depends on t), the first step is to detrend variables so that the system
becomes autonomous. We thus define the detrended variable ξ = (ξ1t, ξ2t) by
ξ1t := Pt/(aGt) and ξ2t := D/(aGt). Then (8.20) can be rewritten as the
system of autonomous nonlinear implicit difference equations

F (ξt, ξt+1) = 0, (8.21)

where F : R4 → R2 is defined by

F1(ξ, η) = βG1−γ

(
w + η1 + Gξ2

1− ξ1

)−γ

(η1 + Gξ2)− ξ1, (8.22a)

F2(ξ, η) = η2 −
1
G

ξ2 (8.22b)
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with w := b/a. Let ξ∗ = (ξ∗
1 , ξ∗

2) be a steady state of the difference equation
(8.21), so F (ξ∗, ξ∗) = 0. Since G > 1 and hence 1/G ∈ (0, 1), (8.22b) implies
that ξ∗

2 = 0. Using (8.22a), we can solve for ξ∗
1 as

βG1−γ

(
w + ξ∗

1
1− ξ∗

1

)−γ

ξ∗
1 − ξ∗

1 = 0 ⇐⇒ ξ∗
1 = (βG1−γ)1/γ − w

1 + (βG1−γ)1/γ
. (8.23)

To guarantee that the steady state in (8.23) is positive, assume w <
(βG1−γ)1/γ .

We apply the implicit function theorem at (ξ, η) = (ξ∗, ξ∗) to express
(8.21) as ξt+1 = f(ξt) for ξt close to ξ∗. Noting that ξ∗

2 = 0, a straightforward
calculation using (8.22) and (8.23) implies that

DξF (ξ∗, ξ∗) =
[
F1,ξ1 F1,ξ2

0 −1/G

]
and DηF (ξ∗, ξ∗) =

[
F1,η1 0

0 1

]
,

where

F1,ξ1 = −γβG1−γ(w + ξ∗
1)−γ(1− ξ∗

1)γ−1ξ∗
1 − 1 = −1− γ

ξ∗
1

1− ξ∗
1

,

F1,η1 = βG1−γ

(
w + ξ∗

1
1− ξ∗

1

)−γ (
1− γ

ξ∗
1

w + ξ∗
1

)
= 1− γ

ξ∗
1

w + ξ∗
1

,

and F1,ξ2 is unimportant. Therefore except the special case with γ = 1+w/ξ∗
1 ,

we may apply the implicit function theorem, and for (ξ, η) sufficiently close
to (ξ∗, ξ∗), we have F (ξ, η) = 0 ⇐⇒ η = f(ξ) for some C1 function f with

Df(ξ∗) = −[DηF (ξ∗, ξ∗)]−1DξF (ξ∗, ξ∗) =
[
λ1 ∗
0 λ2

]
,

where

(λ1, λ2) =

 1 + γ
ξ∗

1
1−ξ∗

1

1− γ
ξ∗

1
w+ξ∗

1

,
1
G

 . (8.24)

We thus obtain the following proposition.

Proposition 8.10. Let κ := (βG1−γ)1/γ > b/a =: w. If 1
γ ̸=

κ−w
κ(1+w) , then

there exists an equilibrium such that Pt/(aGt) converges to ξ∗
1 in (8.23). If in

addition
1
γ

>
1
2

κ− w

κ

1− κ

1 + w
, (8.25)

then such an equilibrium is unique.

Proof. By the implicit function theorem, the equilibrium dynamics can be
expressed as ξt+1 = f(ξt) if ξt is sufficiently close to ξ∗

1 . To study the local
stability, we apply the local stable manifold theorem (Theorem 8.9). Since
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G > 1, one eigenvalue of Df(ξ∗) is λ2 = 1/G ∈ (0, 1). If 1− γ
ξ∗

1
w+ξ∗

1
> 0, then

clearly λ1 > 1. If 1− γ
ξ∗

1
w+ξ∗

1
< 0, then

λ1 =
1 + γ

ξ∗
1

1−ξ∗
1

1− γ
ξ∗

1
w+ξ∗

1

< −1 ⇐⇒ 1 + γ
ξ∗

1
1− ξ∗

1
> −1 + γ

ξ∗
1

w + ξ∗
1

⇐⇒ 1
γ

>
(κ− w)(1− κ)

2κ(1 + w)

using the definition of κ and ξ∗
1 . Furthermore, we have

1− γ
ξ∗

1
w + ξ∗

1
= 0 ⇐⇒ 1

γ
= κ− w

κ(1 + w) .

Therefore if 1
γ ̸=

κ−w
κ(1+w) , the eigenvalues of Df(ξ∗) are not on the unit circle

and at least one of them is inside, so Theorem 8.9 implies that for sufficiently
large T (so that ξ2T = D/(aGT ) is sufficiently close to the steady state value
0), there exists ξ1T > 0 such that the sequence {ξt}∞

t=T defined by ξt+1 = f(ξt)
for all t ≥ T converges to ξ∗. Once we construct such a sequence for t ≥ T , it is
straightforward to extend it backwards to t ≥ 0. To see why, since (8.21) holds,
using (8.22b) we obtain ξ2t = Gt−T ξ2T for t = 0, 1, . . . , T . Using (8.22a), we
see that F1(ξ, η) is strictly decreasing in ξ1,

F1(0, ξ2, η1, η2) > 0,

F1(1, ξ2, η1, η2) = −1 < 0.

Therefore given ξ2t, ξ1,t+1, ξ2,t+1, we can uniquely solve

F1(ξ1t, ξ2t, ξ1,t+1, ξ2,t+1) = 0

for ξ1t. Apply this argument backwards for t = T − 1, . . . , 0, we obtain the
entire sequence {ξt}∞

t=0.
Finally, if (8.25) holds, then |λ1| > 1 > λ2 > 0, so we have dim Es(A) =

1 using the notation in Theorem 8.6. Since the stable manifold is one-
dimensional, given ξ2T = D/(aGT ), the choice of ξ1T is unique. Therefore
the equilibrium path {ξt}∞

t=0 is unique.

Using the local stable manifold theorem
(i) Compute the steady state x∗ of F (xt, xt+1) = 0.

(ii) Apply the implicit function theorem to locally solve as xt+1 = f(xt) and
compute Df(x∗).

(iii) Count the numbers Ns, Nu of stable (inside the unit circle) and unstable (out-
side the unit circle) eigenvalues of Df(x∗).
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(iv) If the number of exogenous initial conditions is at most Ns, then there exists
a local solution {xt}∞

t=0 converging to x∗; if the number of exogenous initial
conditions equals Ns, then the local solution is unique.

PROBLEMS

8.1. Consider the optimal savings problem in §8.4.

(i) Applying the implicit function theorem, compute ∂s/∂R.

(ii) Show that if v(c) = c1−γ

1−γ with 0 < γ < 1, then ∂s/∂R > 0.

8.2. Fill in the details of the proof of Proposition 8.7.

8.3. Show through a 2×2 example that the matrix P in Proposition 8.7 need
not be orthogonal.





CHAPTER 9

Nonnegative Matrices

9.1 INTRODUCTION

Nonnegative matrices, although not usually treated in introductory textbooks
on linear algebra, play an important role in economics. This chapter provides a
brief introduction. For a more comprehensive treatment, see Horn and Johnson
(2013, Ch. 8), Berman and Plemmons (1994), or Bapat and Raghavan (1997).

We first present a motivating example. Suppose a worker can be either
employed or unemployed. If employed, the worker will be unemployed with
probability p ∈ (0, 1) next period. If unemployed, the worker will be employed
with probability q ∈ (0, 1) next period. Let xt = (et, ut) be the (row) proba-
bility vector of being employed and unemployed at time t, where ut = 1− et.
Then by assumption we have

et+1 = (1− p)et + qut,

ut+1 = pet + (1− q)ut.

Collecting these equations into a vector, we obtain xt+1 = xtP , where

P =
[
1− p p

q 1− q

]
.

Given the initial probability x0, one might be interested in the probability
vector xt at time t and its behavior as t→∞. For this example we can easily
calculate these as follows. First, note that xt = x0P t, so it suffices to compute
P t. The characteristic polynomial of P is

ΦP (x) = |xI − P | =
∣∣∣∣x− 1 + p −p
−q x− 1 + q

∣∣∣∣
= x2 + (p + q − 2)x + 1− p− q = (x− 1)(x + p + q − 1).

Therefore P has two eigenvalues 1 and 1 − p − q ∈ (−1, 1). We can find the
eigenvectors as

P

[
1
1

]
=
[
1
1

]
and P

[
p
−q

]
= (1− p− q)

[
p
−q

]
.

123
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Therefore if we define the matrix of eigenvectors

S =
[
1 p
1 −q

]
,

by Proposition 6.3 we have

D := S−1PS =
[
1 0
0 1− p− q

]
.

Therefore

P t = SDtS−1 = 1
p + q

[
1 p
1 −q

] [
1 0
0 (1− p− q)t

] [
q p
1 −1

]
= 1

p + q

[
q + p(1− p− q)t p(1− (1− p− q)t)

q(1− (1− p− q)t) p + q(1− p− q)t

]
.

Since |1− p− q| < 1, letting t→∞, we obtain

P t → 1
p + q

[
q p
q p

]
.

Noting that e0 +u0 = 1, regardless of the initial value x0 = (e0, u0), we obtain

xt = x0P t →
[
e0 u0

] 1
p + q

[
q p
q p

]
= 1

p + q

[
q p

]
,

so the worker eventually becomes unemployed with probability p
p+q .

9.2 MARKOV CHAIN

When a random variable is indexed by time, it is called a stochastic process.
Let {Xt}∞

t=0 be a stochastic process. When the distribution of Xt conditional
on the past information Xt−1, Xt−2, . . . depends only on the most recent past
(i.e., Xt−1), {Xt} is called a Markov process. For example, a vector autore-
gression (VAR)

Xt = AXt−1 + ut

(where A is a matrix and the shock ut is independent and identically dis-
tributed over time) is a Markov process. When the Markov process {Xt} takes
on finitely many values, it is called a finite-state Markov chain. Let {Xt} be
a (finite-state) Markov chain and n = 1, . . . , N index the values {xn}N

n=1 the
process can take. (We write Xt = xn when the state at t is n.) Since there are
finitely many states, the distribution of Xt conditional on Xt−1 is just a multi-
nomial distribution. Therefore the Markov chain is completely characterized
by the transition probability (stochastic) matrix P = (pnn′), where pnn′ is the
probability of transitioning from state n to n′. Clearly, we have pnn′ ≥ 0 and∑N

n′=1 pnn′ = 1.
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Suppose that X0 is distributed according to the distribution represented by
the row vector µ = (µ1, . . . , µN ), where µn is the probability of being in state
n. Then what is the distribution of X1? Using transition probabilities, the
probability of being in state n′ at t = 1 is

∑N
n=1 µnpnn′ , because the process

must be in some state (say n) at t = 0 (which happens with probability µn)
and conditional on being in state n at t = 0, the probability of moving to
state n′ at t = 1 is pnn′ . By the definition of matrix multiplication,

N∑
n=1

µnpnn′ = (µP )n′

is the n′-th entry of the row vector µP , so µP is the distribution of X1. Sim-
ilarly, the distribution of X2 is (µP )P = µP 2, and in general the distribution
of Xt is µP t.

As we let the system run for a long time, does the distribution settle
down to some fixed distribution? That is, does limt→∞ µP t exist, and if so,
is it unique? We can answer this question by using the contraction mapping
theorem.

Theorem 9.1. Let P = (pnn′) be a stochastic matrix such that pnn′ > 0 for
all n, n′. Then there exists a unique invariant distribution π such that π = πP ,
and limt→∞ µP t = π for all initial distribution µ.

Proof. Let ∆ =
{

x ∈ RN
+ :

∑N
n=1 xn = 1

}
be the set of all multinomial distri-

butions. Since ∆ ⊂ RN is closed and RN is a complete metric space with the
ℓ1 norm (that is, d(x, y) = ∥x− y∥ for ∥x∥ =

∑N
n=1 |xn|), ∆ is also a complete

metric space.
View x ∈ RN as a row vector and define T : ∆ → ∆ by T (x) = xP . To

show that T (x) ∈ ∆, note that if x ∈ ∆, since pnn′ ≥ 0 for all n, n′, we have
xP ≥ 0, and since

∑N
n′=1 pnn′ = 1, we have

N∑
n′=1

(xP )n′ =
N∑

n′=1

N∑
n=1

xnpnn′ =
N∑

n=1
xn

N∑
n′=1

pnn′ =
N∑

n=1
xn = 1.

Therefore T (x) = xP ∈ ∆.
Next, let us show that T is a contraction. Since pnn′ > 0 and the number of

states is finite, there exists ϵ > 0 such that pnn′ > ϵ for all n, n′. Without loss
of generality, we may assume Nϵ < 1. Let qnn′ = pnn′ −ϵ

1−Nϵ > 0 and Q = (qnn′).
Since

∑
n′ pnn′ = 1, we obtain

∑
n′ qnn′ = 1, so Q is also a stochastic matrix.

Letting J be the matrix with all entries equal to 1, we have P = (1−Nϵ)Q+ϵJ .
Now let µ, ν ∈ ∆. Then

µP − νP = (1−Nϵ)(µQ− νQ) + ϵ(µJ − νJ).

Since all entries of J are 1 and the vectors µ, ν sum to 1, we have µJ = νJ =
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1 = (1, . . . , 1). Therefore letting 0 < β = 1−Nϵ < 1, we get

∥T (µ)− T (ν)∥ = ∥µP − νP∥ = β ∥µQ− νQ∥

= β

N∑
n′=1
|(µQ)n′ − (νQ)n′ | = β

N∑
n′=1

∣∣∣∣∣
N∑

n=1
(µn − νn)qnn′

∣∣∣∣∣
≤ β

N∑
n′=1

N∑
n=1
|µn − νn| qnn′ = β

N∑
n=1
|µn − νn|

N∑
n′=1

qnn′

= β

N∑
n=1
|µn − νn| = β ∥µ− ν∥ .

Therefore T is a contraction. By the contraction mapping theorem, there exists
a unique π ∈ ∆ such that πP = π, and limt→∞ µP t = π for all µ ∈ ∆.

Remark. By applying Theorem 7.4, the same conclusion holds if there exists
m ∈ N such that P m is a positive matrix.

The employment-unemployment example at the beginning of this chapter
is clearly a special case of Theorem 9.1.

9.3 PERRON'S THEOREM

Recall the convention for vector inequalities: for real matrices A = (amn) and
B = (bmn) of the same size, we write A ≤ B (A ≪ B) if amn ≤ bmn (amn <
bmn) for all m, n. The reverse inequalities ≥,≫ are defined analogously. If
A ≥ 0 (A ≫ 0), we say that A is nonnegative (positive).1 The set of M ×N
nonnegative (positive) matrices is denoted by RM×N

+ (RM×N
++ ). For example,

stochastic matrices are nonnegative.
The following proposition provides inequalities for the spectral radius of

nonnegative matrices. In what follows, for A = (amn) ∈ CM×N , let |A| =
(|amn|) denote the matrix of absolute values.

Proposition 9.2. For A, B ∈ CN×N , the following statements are true.

(i) If 0 ≤ |A| ≤ B, then ρ(A) ≤ ρ(|A|) ≤ ρ(B).

(ii) If 0≪ A, then ρ(A) > 0.

Proof. (i) Let ∥·∥ denote the supremum norm on CN as well as the operator
norm induced by it on CN×N . Then by Example 6.4 and the triangle inequality
for complex numbers, we have

∥∥Ak
∥∥ ≤ ∥∥∥|A|k∥∥∥ ≤ ∥∥Bk

∥∥. Taking the 1/k-th

1Positive and positive definite matrices should not be confused. Positive matrices are
matrices whose entries are all positive and need not be symmetric. Positive definite matrices
are real symmetric matrices whose eigenvalues are all positive (Proposition 6.8) and may
have negative entries.
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power and letting k → ∞, by the Gelfand spectral radius formula (Theorem
6.15) we obtain ρ(A) ≤ ρ(|A|) ≤ ρ(B).

(ii) Suppose A ≫ 0. Then we can take ϵ > 0 such that A ≥ ϵI. Applying
(i), we obtain ρ(A) ≥ ρ(ϵI) = ϵ > 0.

We can now generalize Theorem 9.1 as follows.

Theorem 9.3 (Perron’s theorem). If A ∈ RN×N
++ , the following statements

are true.

(i) ρ(A) > 0, which is an eigenvalue of A (called the Perron root).

(ii) There exist x, y ≫ 0 (called the right and left Perron vectors) such that
Ax = ρ(A)x and y′A = ρ(A)y′.

(iii) The vectors x, y are unique up to scalar multiplication (in CN ).

(iv) If x, y are chosen such that y′x = 1, then limk→∞[ 1
ρ(A) A]k = xy′.

Proof. (i)(ii) ρ(A) > 0 follows from Proposition 9.2. Let α = ρ(A). Let λ
be an eigenvalue of A with |λ| = α > 0 and u = (u1, . . . , uN )′ ̸= 0 be a
corresponding eigenvector. Let v = (|u1| , . . . , |uN |)′ > 0 be the vector of
absolute values. Since Au = λu, taking the absolute value of each entry and
noting that A is positive, we obtain

α |um| =

∣∣∣∣∣
N∑

n=1
amnun

∣∣∣∣∣ ≤
N∑

n=1
amn |un| ⇐⇒ αv ≤ Av.

Let us show that Av = αv. Suppose to the contrary that w := Av > αv.
Then w − αv > 0, so multiplying A from the left and noting that A≫ 0, we
obtain

A(w − αv)≫ 0 ⇐⇒ Aw ≫ αAv = αw.

Since A is finite-dimensional, we can take ϵ > 0 such that Aw ≥ (1 + ϵ)αw.
Multiplying both sides from left by Ak−1, we obtain

Akw ≥ (1 + ϵ)αAk−1w ≥ · · · ≥ [(1 + ϵ)α]kw. (9.1)

Let ∥·∥ denote the supremum norm as well as the operator norm induced by
it. Applying ∥·∥ to (9.1), we obtain∥∥Ak

∥∥ ∥w∥ ≥ ∥∥Akw
∥∥ ≥ [(1 + ϵ)α]k ∥w∥ =⇒

∥∥Ak
∥∥1/k ≥ (1 + ϵ)α.

Letting k → ∞, by the Gelfand spectral radius formula (Theorem 6.15), we
obtain α ≥ (1 + ϵ)α, which is a contradiction since α > 0. Therefore Av = αv.
Since v > 0, we have Av ≫ 0, so v = 1

α Av ≫ 0. The same argument applies
to the left Perron vector.

(iv) Let x ≫ 0 be a right Perron vector of A. Then for each m we have
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∑N
n=1 amnxn = αxm. Define the diagonal matrix D = diag[x1, . . . , xN ], which

is invertible. Let P = 1
α D−1AD ≫ 0. Comparing the (m, n) entry, we obtain

pmn = amnxn

αxm
, so

N∑
n=1

pmn =
N∑

n=1

amnxn

αxm
= 1.

Thus P is a positive stochastic matrix. By Theorem 9.1, there exists a unique
row vector π ≫ 0 with

∑N
n=1 πn = 1 such that

π = πP = π
1
α

D−1AD ⇐⇒ y′A = αy′,

where y′ := πD−1 ≫ 0. Thus y is a left Perron vector. Letting 1 = (1, . . . , 1)′,
we obtain

y′x = πD−1x = π diag[x1, . . . , xN ]−1x = π1 = 1.

In Theorem 9.1, set µ = e′
n for each n to obtain

1π = lim
k→∞

P k = lim
k→∞

D−1
[

1
α

A

]k

D

⇐⇒ lim
k→∞

[
1

ρ(A)A

]k

= D1πD−1 = xy′.

(iii) Let x be a right Perron vector of A, so Ax = αx. Suppose there exists
u ∈ CN such that Au = αu. Since A, α are both real, by taking the real and
imaginary parts, v = Re u, Im u both satisfy Av = αv. Then

v =
[

1
α

A

]k

v → xy′v = (y′v)x,

so v is a scalar multiple of x. Therefore u is a scalar multiple of x.

9.4 IRREDUCIBLE NONNEGATIVE MATRICES

Some properties of positive matrices generalize to nonnegative matrices.

Proposition 9.4. If A ∈ RN×N
+ , then the spectral radius ρ(A) is an eigen-

value of A and there exist x, y > 0 such that Ax = ρ(A)x and y′A = ρ(A)y′.

Proof. Let A = (amn) and A(ϵ) := (amn + ϵ) for ϵ > 0. Then A(ϵ) is positive,
so by Theorem 9.3 ρ(A(ϵ)) is an eigenvalue of A and there exists x(ϵ) ≫ 0
such that A(ϵ)x(ϵ) = ρ(A(ϵ))x(ϵ). Letting ϵ ↓ 0, applying Corollary 6.13, and
passing to a subsequence, we obtain the claim.

If A is nonnegative but not positive, the uniqueness of the eigenvector
corresponding to ρ(A) need not hold. For example, let

A(ϵ) =
[
1 + ϵ ϵ

ϵ 1 + ϵ

]
.
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If ϵ > 0, then A(ϵ) is positive and we can easily see that ρ(A(ϵ)) = 1 + 2ϵ and
(1, 1)′ is the right Perron vector. Letting ϵ ↓ 0, we obtain A(ϵ) → A(0) = I,
and any x ∈ R2 is an eigenvector of A(0) = I.

However, the following proposition shows that if we can find a positive
eigenvector, the eigenvalue must equal the spectral radius.

Proposition 9.5. Let A ∈ RN×N
+ . If v ≫ 0 satisfies Av = αv for some

eigenvalue α, then α = ρ(A).

Proof. By Proposition 9.4, we can take a left eigenvector y > 0 with y′A =
ρ(A)y′. Multiplying v from right, we obtain

ρ(A)y′v = y′Av = y′(αv) = αy′v. (9.2)

Since v ≫ 0 and y′ > 0, dividing both sides of (9.2) by the scalar y′v > 0, we
obtain α = ρ(A).

To recover the uniqueness of the Perron vector, we introduce the notion of
irreducible matrices. Irreducibility is best understood with stochastic matrices.
Let {Xt}∞

t=0 be a finite-state Markov chain with state space {x1, . . . , xN}
and transition probability matrix P = (pmn). Then for each (m, n) pair, by
definition we have

Pr(Xt+1 = xn | Xt = xm) = pmn.

If we write P k = (p(k)
mn) for k = 1, 2, . . . , by the same calculation as before, we

obtain
Pr(Xt+k = xn | Xt = xm) = p(k)

mn.

We say that the Markov chain is irreducible if for each (m, n) pair, we have
p

(k)
mn > 0 for some k. In other words, irreducibility means that starting from

any state m, we may transition to any other state n some time in the future
with positive probability. Clearly this definition depends only on the transition
probability matrix P and not on the Markov chain itself, so we use expressions
like “P is irreducible”.

More generally, irreducibility is related to directed graphs or networks. Let
{1, . . . , N} be a finite set, and for each (m, n) pair, suppose we can determine
whether a property holds or not. For instance, the property may be “person
m likes person n”, “chapter m is required to understand chapter n”, or “in a
Markov chain, it is possible to transition from state m to n in one step”, etc.
For each (m, n) pair, define amn = 1 (0) if the property holds (does not hold).
Mathematically, a directed graph is defined by a matrix (called adjacency
matrix) A = (amn) such that amn ∈ {0, 1} for all m, n: intuitively, we draw
an arrow from point m to n if and only if amn = 1.

Example 9.1. Let {1, 2, 3, 4} denote the four seasons (spring, summer, fall,
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winter). Let amn = 1 if season n immediately follows season m, and set amn =
0 otherwise. Thus the adjacency matrix is given by

A =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


and the directed graph is shown in Figure 9.1a.

Example 9.2. Suppose an animal randomly crosses a river. Conditional on
being on the left (right) side of the river, it attempts to cross the river with
probability p (q). Each time the animal crosses the river, it drowns with prob-
ability r. Let {L, R, D} denote the states left, right, and drown. The transition
probability matrix P and the adjacency matrix A are given by

P =

 1− p p(1− r) pr
q(1− r) 1− q qr

0 0 1

 and A =

1 1 1
1 1 1
0 0 1

 ,

and the directed graph is shown in Figure 9.1b.

1 2

34

(a) Graph of four seasons.

L R

D

1− p 1− q

p(1− r)

q(1− r)

pr qr

(b) Graph of river crossing.

FIGURE 9.1: Directed graphs.

We say that an adjacency matrix A is irreducible if in the corresponding
graph, for any (m, n) pair, we can draw a path from m to n. More formally,
for A ∈ CN×N , we say that A = (amn) is irreducible if for all m ̸= n, there
exist k ∈ N and indices m = i0, i1, . . . , ik = n such that ailil+1 ̸= 0 for all
l = 0, . . . , k − 1. Otherwise, we say that A is reducible.

There are many ways to characterize irreducibility.

Proposition 9.6. For A ∈ CN×N , the following conditions are equivalent.

(i) The complex matrix A is irreducible.

(ii) The nonnegative matrix |A| is irreducible.
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(iii) For all m ̸= n, there exist k ∈ {1, . . . , N − 1} and indices m = i0 ̸= i1 ̸=
· · · ̸= ik = n such that ailil+1 ̸= 0 for all l = 0, . . . , k − 1.

(iv)
∑N−1

k=0 |A|
k ≫ 0.

(v) (I + |A|)N−1 ≫ 0.

Proof. (i) ⇐⇒ (ii) is obvious because amn ̸= 0 ⇐⇒ |amn| ≠ 0.
Obviously (iii) =⇒ (i). To show (i) =⇒ (iii), suppose A is irreducible

and for each m ̸= n take indices m = i0, i1, . . . , ik = n such that ailil+1 ̸= 0
for all l = 0, . . . , k − 1. If these indices contain i twice, say il1 = il2 = i and
l1 < l2, we may drop il1+1, . . . , il2 from the list. Therefore without loss of
generality we may assume that i0, . . . , ik are all distinct. Since there are at
most N distinct indices, we obtain k + 1 ≤ N ⇐⇒ k ≤ N − 1. Thus (iii)
holds.

To show (iii) =⇒ (iv), suppose (iii) holds. Then we may replace the
condition ailil+1 ̸= 0 with

∣∣ailil+1

∣∣ > 0. However, the condition m = i0 ̸= · · · ̸=
ik = n and

∣∣ailil+1

∣∣ > 0 for all l implies that the (m, n) entry of |A|k is positive.
By taking such k for each m ̸= n, it follows that I +|A|+· · ·+|A|k ≫ 0, so (iv)
holds. Conversely, if (iv) holds, for each m ̸= n we can take k ∈ {1, . . . , N − 1}
such that the (m, n) entry of |A|k is positive, which implies (iii).

(iv) ⇐⇒ (v) is obvious by the binomial theorem (I + |A|)N−1 =∑N−1
k=0

(
N−1

k

)
|A|k and the fact that the coefficient

(
N−1

k

)
does not affect pos-

itivity.

We can now generalize Perron’s theorem to nonnegative matrices as fol-
lows.

Theorem 9.7 (Perron-Frobenius theorem). If A ∈ RN×N
+ is irreducible, the

following statements are true.

(i) ρ(A) is an eigenvalue of A (called the Perron root).

(ii) There exist x, y ≫ 0 (called the right and left Perron vectors) such that
Ax = ρ(A)x and y′A = ρ(A)y′.

(iii) The vectors x, y are unique up to scalar multiplication (in CN ).

Proof. Let α = ρ(A). By Proposition 9.4, α is an eigenvalue of A and we can
take x > 0 such that Ax = αx. Define the matrix B = I + A + · · · + AN−1.
Since A is nonnegative and irreducible, by Proposition 9.6, we have B ≫ 0.
Therefore

0≪ Bx = (I + A + · · ·+ AN−1)x = (1 + α + · · ·+ αN−1)x =: βx,

so x≫ 0. Furthermore, since x is a positive eigenvector of B with eigenvalue
β, by Proposition 9.5 it must be ρ(B) = β and x is the right Perron vector
of B, which is unique. The proof of the uniqueness of x in CN is the same as
Theorem 9.3.



132 ■ Essential Mathematics for Economics

Corollary 9.8. An irreducible finite-state Markov chain has a unique invari-
ant distribution.

Proof. Let P be an irreducible stochastic matrix. Since P is a stochastic ma-
trix, for 1 = (1, . . . , 1)′, we have P1 = 1. Hence by Proposition 9.5, we have
ρ(P ) = 1. By Theorem 9.7, there exists a unique left Perron vector y ≫ 0, so
y′P = ρ(P )y′ = y′. Without loss of generality, we may assume

∑N
n=1 yn = 1,

which is the unique invariant distribution.

Example 9.3 (PageRank). Suppose that there are N websites indexed by
n = 1, . . . , N . Define the adjacency matrix A = (amn) by amn = 1 if there is a
link from site m to n and zero otherwise. From the adjacency matrix A, define
the stochastic matrix P by pmn = amn/

∑N
n=1 amn. If a Web surfer randomly

clicks links on each page, then the location will evolve according to a Markov
chain with transition probability matrix P . Assuming P is irreducible, by
Corollary 9.8 the Markov chain has a unique invariant distribution π, which
is the probability distribution of the location of the random Web surfer. The
magnitude of πn can be interpreted as the importance of site n. This method
is exactly the PageRank algorithm proposed by Page et al. (1998).

9.5 METZLER MATRICES

In some applications, we need to deal with square matrices A = (amn) with
nonnegative off-diagonal entries (so amn ≥ 0 if m ̸= n), although A may
have negative diagonal entries. We call such matrices essentially nonnegative
or Metzler. If A is Metzler, since by definition its off-diagonal entries are
nonnegative, the matrix A + dI becomes nonnegative if d ≥ 0 is large enough.
This observation enables us to establish properties of Metzler matrices using
the Perron-Frobenius theorem. For Metzler matrices, the role of the spectral
radius ρ(A) is replaced with the spectral abscissa

ζ(A) := max {Re α : α is an eigenvalue of A} ,

which is the maximum real part of all eigenvalues.
The following theorem is the analogue of the Perron-Frobenius theorem

for Metzler matrices.

Theorem 9.9. Let A be a Metzler matrix. Then the spectral abscissa ζ(A) is
an eigenvalue of A, and there exist nonnegative vectors x, y such that Ax =
ζ(A)x and y′A = ζ(A)y′. If in addition A is irreducible, then x, y are positive
vectors and unique up to scalar multiplication.

PROBLEMS

9.1. Let A be a square nonnegative matrix. Show that if z > ρ(A), then the
matrix zI −A is invertible and (zI −A)−1 is nonnegative. (Hint: let B = 1

z A
and consider the identity (I −B)(I + · · ·+ Bk−1) = I −Bk.)
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9.2. Prove that A ∈ CN×N is reducible if and only if there exists a permuta-
tion matrix P such that

P ′AP =
[
A11 A12
0 A22

]
is block upper triangular.

9.3. Prove that for any A ∈ CN×N , there exists a permutation matrix P such
that

P ′AP =

A11 · · · A1M

...
. . .

...
0 · · · AMM


is block upper triangular with M ≥ 1 diagonal blocks, where each Amm is
irreducible.

9.4. If α1, . . . , αN are eigenvalues of a square matrix A, for any scalar z, show
that the eigenvalues of A + zI are α1 + z, . . . , αN + z. Use this property to fill
in the details of the proof of Theorem 9.9.

9.5. Let A = (ann′) be a Metzler matrix d = (d1, . . . , dN )′ ≫ 0 such that

ann = − 1
dn

∑
n′ ̸=n

ann′dn′

for all n.

(i) Show that Ad = 0.

(ii) Show that the spectral abscissa of A is ζ(A) = 0. (Hint: let y > 0 be a
left eigenvector corresponding to ζ(A), and multiply y′ from left to the
identity (A− ζ(A)I)d = −ζ(A)d.)
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CHAPTER 10

Convex Sets

10.1 CONVEX SETS

A subset C of RN (or of any vector space) is said to be convex if the line
segment joining any two points in C is entirely included in C. More formally,
C is convex if for any x, y ∈ C and α ∈ [0, 1], we have (1 − α)x + αy ∈ C
(Figure 10.1). For example, a circle, a triangle, and a square are convex but a
star shape is not (Figure 10.2).

x

y

(1− α)x + αy

FIGURE 10.1: Definition of a convex set.

Rectangle Circle Ellipse Convex

Convex

Non-convex

FIGURE 10.2: Examples of convex and non-convex sets.
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10.2 CONVEX HULL

Let A ⊂ RN be any set. The smallest convex set that includes A is called
the convex hull of A and is denoted by co A. To see that co A is well defined,
let {Ci}i∈I be the collection of all convex sets including A. There is at least
one such Ci, namely the entire space RN . Define C =

⋂
i∈I Ci. Take any

x, y ∈ C and α ∈ [0, 1]. Since in particular x, y ∈ Ci and Ci is convex, we have
(1 − α)x + αy ∈ Ci. Since this is true for any i, we have (1 − α)x + αy ∈ C.
Therefore C is convex. But clearly A ⊂ C, and C was the intersection of all
such convex sets, so C is the smallest convex set including A.

For example, in the left panel of Figure 10.3, the set A is not convex. (The
shape of this set is the Chinese character for “convex”, which is my favorite
mathematical joke.) Its convex hull includes the light shaded region in the
right panel.

A A

co A

FIGURE 10.3: Non-convex set and convex hull.

Let xk ∈ RN for k = 1, . . . , K. Take any numbers αk for k = 1, . . . , K such
that αk ≥ 0 and

∑K
k=1 αk = 1. A point of the form

x =
K∑

k=1
αkxk (10.1)

is called a convex combination of the points {xk}K
k=1 with weights (or coeffi-

cients) {αk}K
k=1. The following lemma provides a constructive way to obtain

the convex hull of a set.

Lemma 10.1. Let A ⊂ RN be any set. Then co A consists of all convex
combinations (10.1) of points of A.

Proof. Problem 10.1.

Actually, in Lemma 10.1 we may set K = N + 1 (so the number of points
is at most the dimension plus one) when forming the convex combination as
in (10.1). This result is known as the Carathéodory theorem, though it will
not be used in this book.
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10.3 HYPERPLANES AND HALF SPACES

As we know from analytic geometry, the equation of a line in R2 is

a1x1 + a2x2 = c

for some real numbers a1, a2, c, and the equation of a plane in R3 is

a1x1 + a2x2 + a3x3 = c.

Letting a = (a1, . . . , aN ) and x = (x1, . . . , xN ) be vectors in RN , the equation
⟨a, x⟩ = c is a line if N = 2 and a plane if N = 3, where

⟨a, x⟩ = a1x1 + · · ·+ aN xN

is the inner product of the vectors a and x. In general, we say that the set{
x ∈ RN : ⟨a, x⟩ = c

}
is a hyperplane if a ̸= 0. The vector a is orthogonal to this hyperplane and is
called a normal vector . To see this, let x0 be a point in the hyperplane. Since
⟨a, x0⟩ = c, by subtraction and linearity of inner product we get ⟨a, x− x0⟩ =
0. This means that the vector a is orthogonal to the vector x− x0, which can
point to any direction in the plane by moving x. So it makes sense to say that
a is orthogonal to the hyperplane ⟨a, x⟩ = c.

The sets

H+ =
{

x ∈ RN : ⟨a, x⟩ ≥ c
}

,

H− =
{

x ∈ RN : ⟨a, x⟩ ≤ c
}

are called half spaces, since H+ (H−) is the portion of RN separated by the
hyperplane ⟨a, x⟩ = c towards the direction of a (−a). It is easy to show that
hyperplanes and half spaces are convex (Problem 10.2).

10.4 SEPARATION OF CONVEX SETS

Let C, D be two (not necessarily convex) sets. We say that the hyperplane H:
⟨a, x⟩ = c separates C, D if C ⊂ H− and D ⊂ H+ (Figure 10.4), that is,

x ∈ C =⇒ ⟨a, x⟩ ≤ c,

x ∈ D =⇒ ⟨a, x⟩ ≥ c.

(The inequalities may be reversed.) When these inequalities hold, we call the
hyperplane ⟨a, x⟩ = c a separating hyperplane.

Clearly C, D can be separated if and only if

sup
x∈C
⟨a, x⟩ ≤ inf

x∈D
⟨a, x⟩ , (10.2)



140 ■ Essential Mathematics for Economics

C

D

H−

H+

⟨a, x⟩ = c

a

FIGURE 10.4: Separation of convex sets.

since we can take c between these two numbers. We say that C, D can be
strictly separated if the inequality in (10.2) is strict, so

sup
x∈C
⟨a, x⟩ < inf

x∈D
⟨a, x⟩ . (10.3)

The remarkable property of convex sets is that two disjoint convex sets can
always be separated. This separating hyperplane theorem is one of the most
important theorems applied in economics.

Theorem 10.2 (Separating hyperplane theorem). Let C, D ⊂ RN be
nonempty, convex, and C ∩D = ∅. Then there exists a hyperplane that sep-
arates C, D, that is, there exists 0 ̸= a ∈ RN such that (10.2) holds. If in
addition C, D are closed and one of them is bounded, then they can be strictly
separated, so (10.3) holds.

Before proving the separating hyperplane theorem, we discuss why each
assumption is necessary. In Figure 10.5, D is not convex, and it engulfs the
(convex) set C. It is clear that C, D cannot be separated.

C

D

FIGURE 10.5: Necessity of convexity for separation.

In Figure 10.6, C, D are both straight lines (hence convex) but they inter-
sect. It is clear that C, D cannot be separated.
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C

D

FIGURE 10.6: Necessity of empty intersection for separation.

In Figure 10.7, the sets C, D are defined by

C =
{

(x, y) ∈ R2 : y ≥ ex
}

,

D =
{

(x, y) ∈ R2 : y ≤ 0
}

,

which are both nonempty, closed, convex, and do not intersect. Therefore
C, D satisfy the weak form of the separating hyperplane theorem and can be
separated (by the horizontal line y = 0). However, they cannot be strictly sep-
arated because D includes this horizontal line. Strict separation fails because
C, D are both unbounded.

C

D

FIGURE 10.7: Necessity of boundedness for strict separation.

We prove Theorem 10.2 by establishing several intermediate results. In
this chapter, ∥·∥ denotes the ℓ2 (Euclidean) norm.

Lemma 10.3. Let C ⊂ RN be nonempty, closed, and convex. Then for any
x0 ∈ RN , the minimum distance problem

min
x∈C
∥x− x0∥ (10.4)

has a unique solution x = x̄. Furthermore, for any x ∈ C we have

⟨x0 − x̄, x− x̄⟩ ≤ 0. (10.5)

The content of Lemma 10.3 can be understood from Figure 10.8.
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δ

x0

x̄

x

C

FIGURE 10.8: Projection on a convex set.

Proof. Let δ = infx∈C ∥x− x0∥ ≥ 0. Take a sequence {xk} ⊂ C such that
∥xk − x0∥ → δ. Then by simple algebra (Problem 10.4) we get

∥xk − xl∥2 = 2 ∥x0 − xk∥2 + 2 ∥x0 − xl∥2 − 4
∥∥∥∥x0 −

1
2(xk + xl)

∥∥∥∥2
.

Since C is convex, we have 1
2 (xk + xl) ∈ C, so by the definition of δ we get

∥xk − xl∥2 ≤ 2 ∥x0 − xk∥2 + 2 ∥x0 − xl∥2 − 4δ2

→ 2δ2 + 2δ2 − 4δ2 = 0 (10.6)

as k, l→∞. Since {xk} ⊂ C is Cauchy and C is closed, by Problem 1.10 and
Proposition 1.6, {xk} converges to some x̄ ∈ C. Then

δ ≤ ∥x̄− x0∥ ≤ ∥x̄− xk∥+ ∥xk − x0∥ → 0 + δ = δ,

so ∥x̄− x0∥ = δ and x̄ solves (10.4).
To show uniqueness, suppose there are two solutions x1, x2. Then setting

(k, l) = (1, 2) in (10.6) yields

0 ≤ ∥x1 − x2∥2 ≤ 2δ2 + 2δ2 − 4δ2 = 0,

so x1 = x2.
Finally, take any x ∈ C. Since C is convex, for any 0 < α ≤ 1 we have

(1− α)x̄ + αx ∈ C. Therefore by the definition of δ we have

δ2 = ∥x0 − x̄∥2 ≤ ∥x0 − (1− α)x̄− αx∥2
.

Expanding both sides, dividing by α > 0, and letting α → 0, we obtain
(10.5).
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The following proposition shows that a point that is not an interior point
of a convex C can be separated from C.

Proposition 10.4. Let C ⊂ RN be nonempty and convex and x0 /∈ int C.
Then there exist 0 ̸= a ∈ RN and c ∈ R such that

⟨a, x⟩ ≤ c ≤ ⟨a, x0⟩ (10.7)

for any x ∈ C. If x0 /∈ cl C, then the above inequalities can be made strict.

Proof. Suppose that x0 /∈ cl C. Using Lemma 10.3, let x̄ achieve the minimum
distance to x0 on cl C. Then x0 ̸= x̄ because x̄ ∈ cl C and x0 /∈ cl C. Let
a = x0 − x̄ ̸= 0. Then (10.5) implies

⟨a, x− x̄⟩ ≤ 0 ⇐⇒ ⟨a, x⟩ ≤ ⟨a, x̄⟩

for all x ∈ cl C. The definition of a implies

0 < ∥a∥2 = ⟨a, x0 − x̄⟩ ⇐⇒ ⟨a, x0⟩ = ⟨a, x̄⟩+ ∥a∥2
.

Therefore (10.7) holds with strict inequalities if for example we set c = ⟨a, x̄⟩+
∥a∥2

/2.
If x0 ∈ cl C, since by assumption x0 /∈ int C, we can take a sequence {xk}

such that xk /∈ cl C and xk → x0. Then for each k we can find a vector ak ̸= 0
and a number ck ∈ R such that

⟨ak, x⟩ ≤ ck ≤ ⟨ak, xk⟩

for all x ∈ C. By dividing both sides by ∥ak∥ ̸= 0, without loss of generality
we may assume ∥ak∥ = 1. Since xk → x0, the sequence {ck} is bounded.
Therefore we can find a convergent subsequence (akl

, ckl
) → (a, c). Letting

l→∞, obtain (10.7).

We can now prove the separating hyperplane theorem.

Proof of Theorem 10.2. Define the set

E = C −D := {z = x− y : x ∈ C, y ∈ D} .

Since C, D are nonempty and convex, so is E. Since C ∩ D = ∅, we have
0 /∈ E. In particular, 0 /∈ int E. By Proposition 10.4, there exists a ̸= 0 such
that ⟨a, z⟩ ≤ 0 = ⟨a, 0⟩ for all z ∈ E. By the definition of E, we have

⟨a, x− y⟩ ≤ 0 ⇐⇒ ⟨a, x⟩ ≤ ⟨a, y⟩

for all x ∈ C and y ∈ D. Taking the supremum over x ∈ C and infimum over
y ∈ D, we obtain (10.2).

To show strict separation, suppose that C is closed and D is closed and
bounded. Let us show that E = C − D is closed. To this end, suppose that
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{zk} ⊂ E and zk → z. Then we can take {xk} ⊂ C and {yk} ⊂ D such
that zk = xk − yk. Since D is closed and bounded and hence sequentially
compact by Theorem 1.10, there is a subsequence such that ykl

→ y ∈ D.
Then xkl

= ykl
+ zkl

→ y + z, but since C is closed, x = y + z ∈ C. Therefore
z = x− y ∈ E, so E is closed.

Since E = C − D is closed and 0 /∈ E, by Proposition 10.4 there exists
a ̸= 0 such that ⟨a, 0⟩ = 0 > ⟨a, z⟩ for all z ∈ E. The rest of the proof is
similar.

10.5 CONE AND DUAL CONE

A set C ⊂ RN is said to be a cone if, whenever x ∈ C, the ray originating
from 0 and passing through x is included in C. Formally, C is a cone if x ∈ C
and λ > 0 implies λx ∈ C. An example is the nonnegative orthant

RN
+ :=

{
x = (x1, . . . , xN ) ∈ RN : (∀n)xn ≥ 0

}
.

Another example is the set

C :=
{

x =
K∑

k=1
αkak : (∀k)αk ≥ 0

}
, (10.8)

where a1, . . . , aK ∈ RN . The set C in (10.8) is called the polyhedral cone gen-
erated by vectors a1, . . . , aK and is denoted by C = cone[a1, . . . , aK ] (Figure
10.9). Clearly RN

+ = cone[e1, . . . , eN ], where e1, . . . , eN are unit vectors of RN .
When a cone is closed (convex), we say that it is a closed (convex) cone. A
polyhedral cone is a closed convex cone (Problem 10.8).

a1

a2

0

cone[a1, a2]

FIGURE 10.9: Polyhedral cone.

Let C ⊂ RN be any nonempty set. The set

C∗ =
{

y ∈ RN : (∀x ∈ C) ⟨x, y⟩ ≤ 0
}

(10.9)
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is called the dual cone of C. Thus the dual cone C∗ consists of all vectors that
make an obtuse angle with any vector in C (Figure 10.10).

0

C

C∗

FIGURE 10.10: Cone and its dual.

Note that in the definition of the dual cone (10.9), the set C is arbitrary
(not necessarily a cone). Yet, C∗ is called the dual cone, which suggests that
C∗ is always a cone. The following proposition shows that this is indeed true.

Proposition 10.5. Let ∅ ≠ C ⊂ D. Then (i) the dual cone C∗ is a nonempty
closed convex cone, (ii) C∗ ⊃ D∗, and (iii) C∗ = (co C)∗.

Proof. (i) C∗ is nonempty since 0 ∈ C∗. If y ∈ C∗, then by definition ⟨x, y⟩ ≤ 0
for all x ∈ C. Then for any λ > 0 and x ∈ C, we have ⟨x, λy⟩ = λ ⟨x, y⟩ ≤ 0,
so λy ∈ C∗. Therefore C∗ is a cone. To show that C∗ is closed and convex,
note that (10.9) implies

C∗ =
⋂

x∈C

{
y ∈ RN : ⟨x, y⟩ ≤ 0

}
.

Since C∗ is the intersection of half spaces (which are closed convex sets), by
Corollary 1.5 and the remark in §10.2, it is a closed convex set.

(ii) If y ∈ D∗, then ⟨x, y⟩ ≤ 0 for all x ∈ D. Since C ⊂ D, we have
⟨x, y⟩ ≤ 0 for all x ∈ C. Therefore y ∈ C∗.

(iii) Since C ⊂ co C, we have C∗ ⊃ (co C)∗ by letting D = co C in (ii). To
prove the reverse inclusion, take any x ∈ co C. By Lemma 10.1, there exists a
convex combination x =

∑K
k=1 αkxk such that xk ∈ C for all k. If y ∈ C∗, it

follows that
⟨x, y⟩ =

〈∑
αkxk, y

〉
=
∑

αk ⟨xk, y⟩ ≤ 0,

so y ∈ (co C)∗. Therefore C∗ ⊂ (co C)∗.
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The dual cone of the dual cone C∗, namely (C∗)∗, is denoted by C∗∗. The
following proposition shows that C∗∗ is closely related to C.

Proposition 10.6. Let C ⊂ RN be a nonempty cone. Then C∗∗ = cl co C.

Proof. Let x ∈ C. For any y ∈ C∗, we have ⟨x, y⟩ ≤ 0. This implies x ∈ C∗∗.
Hence C ⊂ C∗∗. Since by Proposition 10.5 the dual cone is closed and convex,
we have cl co C ⊂ C∗∗.

To show the reverse inclusion, suppose that x /∈ cl co C. Then by the strict
version of the separating hyperplane theorem (Theorem 10.2), there exist a
nonzero vector a and a constant c such that

sup
z∈cl co C

⟨a, z⟩ < c < ⟨a, x⟩ .

In particular,
sup
z∈C
⟨a, z⟩ < c < ⟨a, x⟩ .

Take any z ∈ C. Since C is a cone, we have λz ∈ C for any λ > 0, so

λ ⟨a, z⟩ = ⟨a, λz⟩ < c < ⟨a, x⟩ . (10.10)

Letting λ → ∞ in (10.10), it must be ⟨a, z⟩ ≤ 0. Therefore a ∈ C∗. Letting
λ→ 0, we obtain ⟨a, x⟩ > c ≥ 0, so x /∈ C∗∗. Therefore C∗∗ ⊂ cl co C.

The following proposition plays an important role in optimization theory.

Proposition 10.7 (Farkas’ lemma). Let {ak}K
k=1 ⊂ RN be vectors and define

the sets C, D ⊂ RN by

C = cone[a1, . . . , aK ],
D =

{
y ∈ RN : (∀k) ⟨ak, y⟩ ≤ 0

}
.

Then D = C∗ and C = D∗ (Figure 10.11).

Proof. Let y ∈ D. For any x ∈ C, by the definition of the polyhedral cone, we
can take {αk}K

k=1 ⊂ R+ such that x =
∑

k αkak. Then

⟨x, y⟩ =
∑

k

αk ⟨ak, y⟩ ≤ 0,

so y ∈ C∗. Conversely, let y ∈ C∗. Since ak ∈ C, we get ⟨ak, y⟩ ≤ 0 for all k,
so y ∈ D. Therefore D = C∗.

Since C is a closed convex cone, by Proposition 10.6, we get

C = cl co C = C∗∗ = (C∗)∗ = D∗.
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a1

a2

0

C = D∗

D = C∗

FIGURE 10.11: Farkas’ lemma.

10.6 NO-ARBITRAGE ASSET PRICING

As an application of the separating hyperplane theorem, we briefly present
the no-arbitrage asset pricing theory.

Consider an economy with two dates denoted by t = 0, 1. The economy
features uncertainty, and let s = 1, . . . , S index the states that can realize at
t = 1. Investors can trade J assets indexed by j = 1, . . . , J . Asset j trades
at price qj at t = 0 and pays dividend dsj ∈ R if state s realizes at t = 1.
Let q = (q1, . . . , qJ) be the vector of asset prices and D = (dsj) the matrix of
dividends. Let

A = (asj) :=
[
−q′

D

]
(10.11)

be the (1 + S) × J payoff matrix. The (s, j) entry of the payoff matrix A in
(10.11), denoted asj , is the payoff of one share of asset j in state s, where we
define state 0 by the date t = 0. Note that because investors need to pay qj

to purchase one share of asset j at t = 0, the payoff is a0j = −qj .
Let x = (x1, . . . , xJ) ∈ RJ be a portfolio, where xj denotes the number

of shares of asset j an investor purchases. We allow shortsales, so xj < 0 is
possible. The net payments of the portfolio x is the vector

Ax =
[
−q′x
Dx

]
∈ R1+S .

Here the investor pays q′x at t = 0 for buying the portfolio x and receives
(Dx)s in state s at t = 1. We call the portfolio x an arbitrage if Ax > 0, because
such a portfolio costs nothing at t = 0 (q′x ≤ 0) and pays nonnegative amounts
at t = 1 (Dx ≥ 0), with at least one strict inequality. Thus an arbitrage is like
a free lunch, which we expect not to happen under normal circumstances.

We define the asset span by the range of the payoff matrix A, or

V = range A =
{

Ax : x ∈ RJ
}
⊂ R1+S ,
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which is the set of payoffs generated by all portfolios. We say that the asset
span V exhibits no-arbitrage if no x ∈ V is an arbitrage, or equivalently,

V ∩ R1+S
+ = {0} . (10.12)

The idea of no-arbitrage is that it is impossible to find a portfolio that pays
a nonnegative amount in every state and a positive amount in at least one
state. With these definitions, we obtain the following result.

Theorem 10.8 (Fundamental Theorem of Asset Pricing). The asset span V
exhibits no-arbitrage if and only if there exists p = (p1, . . . , pS) ∈ RS

++ such
that the asset pricing equation

qj =
S∑

s=1
psdsj (10.13)

holds for all j.

Proof. Suppose that there exists p ∈ RS
++ such that the asset pricing equation

(10.13) holds, or equivalently −qj +
∑S

s=1 psdsj = 0. Collecting this equation
into a row vector and using the definition of the payoff matrix A in (10.11),
we obtain [1, p′]A = 0. Suppose to the contrary that the asset span V exhibits
arbitrage. Then we can take x ∈ RJ such that v = Ax > 0. Multiplying the
positive row vector [1, p′] from left, we obtain

0 < v0 +
S∑

s=1
psvs = [1, p′]v = [1, p′]Ax = 0,

which is a contradiction. Therefore there is no arbitrage.
Conversely, suppose that there is no arbitrage. Letting

∆ :=
{

v ∈ R1+S
+ :

S∑
s=0

vs = 1
}

denote the unit simplex and noting that 0 /∈ ∆ ⊂ R1+S
+ , we have V ∩∆ = ∅.

Clearly V, ∆ are nonempty, closed, convex, and ∆ is bounded. By the (strong
version of) separating hyperplane theorem (Theorem 10.2), there exists a vec-
tor 0 ̸= a ∈ R1+S such that

sup
u∈V
⟨a, u⟩ < inf

v∈∆
⟨a, v⟩ . (10.14)

Let us show that a′A = 0. Suppose not. Consider the portfolio x = λA′a ∈ RJ ,
where λ > 0. Then by (10.14), for u = Ax we obtain

⟨a, v⟩ > ⟨a, u⟩ = ⟨a, A(λA′a)⟩ = λa′AA′a = λ ∥a′A∥2 →∞
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as λ → ∞ because a′A ̸= 0, which is a contradiction. Therefore a′A = 0, so
⟨a, u⟩ = 0 for all u ∈ V. Then (10.14) becomes

0 < inf
v∈∆
⟨a, v⟩ .

Letting v = es (the s-th unit vector) for s = 0, 1, . . . , S, we get as > 0. Dividing
both sides of a′A = 0 by a0 > 0 and letting ps = as/a0 for s = 1, . . . , S,
the vector p = (p1, . . . , pS) satisfies p ≫ 0 and [1, p′]A = 0, which implies
(10.13).

Remark. The number ps > 0 in Theorem 10.8 is called the state price of
state s. It can be interpreted as the price of an insurance contract that pays
1 if state s realizes and 0 otherwise. The no-arbitrage asset pricing theory is
fundamental for computing prices of derivatives.

NOTES

A classic reference for convex analysis is Rockafellar (1970). Much of the
theory of separation of convex sets can be generalized to infinite-dimensional
spaces. The proof in this chapter generalizes to Hilbert spaces (spaces with
an inner product), but for more general spaces (topological vector spaces) we
need the Hahn-Banach theorem. See Berge (1963) and Luenberger (1969). The
Fundamental Theorem of Asset Pricing (Theorem 10.8) is due to Harrison and
Kreps (1979).

PROBLEMS

10.1. Let A ⊂ RN be any set. Prove that co A consists of all convex combi-
nations of points of A.

10.2. (i) Let 0 ̸= a ∈ RN and c ∈ R. Show that the hyperplane and the
half space defined by

H =
{

x ∈ RN : ⟨a, x⟩ = c
}

,

H− =
{

x ∈ RN : ⟨a, x⟩ ≤ c
}

are convex.

(ii) Let A be an M ×N matrix and b ∈ RM . The set of the form

P =
{

x ∈ RN : Ax ≤ b
}

is called a polytope. Show that a polytope is convex.

10.3. Let A ⊂ RN be any nonempty set.

(i) Show that cl co A (the closure of the convex hull of A) is a closed convex
set.
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(ii) Show by example that co cl A (the convex hull of the closure of A) need
not be closed.

10.4. Let a, b ∈ RN . Prove the following parallelogram law:

∥a + b∥2 + ∥a− b∥2 = 2 ∥a∥2 + 2 ∥b∥2
.

10.5. Define the sets A, B by

A =
{

(x, y) ∈ R2 : y > x3} ,

B =
{

(x, y) ∈ R2 : x ≥ 1, y ≤ 1
}

.

(i) Draw a picture of the sets A, B on the xy plane.

(ii) Can A, B be separated? If so, provide an equation of a straight line that
separates them. If not, explain why.

10.6. Define the sets C, D by

C =
{

(x, y) ∈ R2 : y > ex
}

,

D =
{

(x, y) ∈ R2 : y ≤ 0
}

.

(i) Draw a picture of the sets C, D on the xy plane.

(ii) Provide an equation of a straight line that separates C, D.

(iii) Can C, D be strictly separated? Answer yes or no, then explain why.

10.7. This problem asks you to prove Stiemke’s theorem: if A is an M × N
matrix, then exactly one of the following statements is true:

(a) There exists x ∈ RN
++ such that Ax = 0.

(b) There exists y ∈ RM such that A′y > 0.

Prove Stiemke’s theorem using the following hints.

(i) Show that statements (a) and (b) cannot both be true.

(ii) Define the sets C, D ⊂ RN by

C =
{

A′y : y ∈ RM
}

,

D =
{

x ∈ RN : x ≥ 0,

N∑
n=1

xn = 1
}

.

Show that C, D are nonempty, closed, convex, and D is bounded.

(iii) Show that if statement (b) does not hold, then statement (a) holds.

10.8. Let a1, . . . , aK be vectors. This problem asks you to prove that the
polyhedral cone C = cone[a1, . . . , aK ] is a closed convex cone.
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(i) Prove that C is a nonempty convex cone.

(ii) Prove that if x ∈ C, then x can be expressed as x =
∑J

j=1 αjakj
, where

αj ≥ 0 and ak1 , . . . , akJ
are linearly independent. (Hint: among ways to

express x =
∑K

k=1 αkak, consider the one with the minimum number of
k’s with αk > 0.)

(iii) Prove that C is closed. (Hint: use Problem 5.3.)





CHAPTER 11

Convex Functions

11.1 CONVEX AND QUASI-CONVEX FUNCTIONS

In Chapter 2 we introduced convex functions of a single variable and showed
that the first-order necessary condition for optimality is actually sufficient
(Proposition 2.5). In this chapter we discuss the properties of convex and
quasi-convex functions in a general setting.

Let f : RN → (−∞,∞] be a function. The set

epi f :=
{

(x, y) ∈ RN × R : f(x) ≤ y
}

is called the epigraph of f , for the obvious reason that epi f is the set of points
that lie on or above the graph of f . A function f is said to be convex if epi f
is a convex set. It is straightforward to show (Problem 11.1) that a function
f is convex if and only if for any x1, x2 ∈ RN and α ∈ [0, 1], we have

f((1− α)x1 + αx2) ≤ (1− α)f(x1) + αf(x2). (11.1)

This inequality, sometimes called the convex inequality, is often used as the
definition of a convex function. Note that because we adopt the convention
0×∞ = 0, the right-hand side of (11.1) is unambiguous.

Figure 11.1 shows an example. The smooth curve is the graph of f . The
epigraph is the region above the graph. The convex inequality (11.1) implies
that the line segment joining the two points on the graph (x1, f(x1)) and
(x2, f(x2)) is included in the epigraph.

The astute reader may wonder why we wrote f : RN → (−∞,∞], namely
(i) why we let the domain of f to be the entire RN , and (ii) why we allow f to
take the value ∞ but not −∞. There are good reasons for doing so. Suppose
for the moment that f : C → R is a function in the usual sense, where C ⊂ RN

is the domain of f . If we require the convex inequality (11.1) to hold, for any
x1, x2 ∈ C and α ∈ [0, 1], the point (1−α)x1 + αx2 must be in the domain of
f . Therefore C must be a convex set. For x /∈ C, define f(x) =∞. Then f is
defined on the entire RN . By the convention 0 ×∞ = 0, clearly (11.1) holds
if α = 0, 1, so assume α ∈ (0, 1). Then whenever f(x1) = ∞ or f(x2) = ∞

153
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x

y = f(x)
epi f

x1 x2

f(x1)

f(x2)

FIGURE 11.1: Convex function and its epigraph.

(so x1 /∈ C or x2 /∈ C), (11.1) holds. Therefore starting from any real-valued
convex function f defined on a convex set C, we may extend it to the entire
RN by letting f take the value ∞ outside the domain C. Finally, we exclude
the value −∞ from the range of the convex function to avoid the undefined
expression∞−∞ on the right-hand side of (11.1). This argument shows why
letting f : RN → (−∞,∞] is without loss of generality.

The set on which f takes finite values,

dom f :=
{

x ∈ RN : f(x) <∞
}

,

is called the effective domain of f . If f is convex and x1, x2 ∈ dom f , then

f((1− α)x1 + αx2) ≤ (1− α)f(x1) + αf(x2) <∞,

so (1 − α)x1 + αx2 ∈ dom f . Therefore the effective domain of a convex
function is a convex set. If the convex inequality (11.1) is strict whenever
x1, x2 ∈ dom f , x1 ̸= x2, and α ∈ (0, 1), we say that f is strictly convex. A
convex function is proper if f(x) <∞ for some x, or equivalently, dom f ̸= ∅.

Another useful but weaker concept is quasi-convexity. The set

Lf (y) :=
{

x ∈ RN : f(x) ≤ y
}

(11.2)

is called the lower contour set of f at level y. We say that f is quasi-convex if
lower contour sets are convex for all values of y. It is straightforward to show
(Problem 11.2) that f is quasi-convex if and only if for any x1, x2 ∈ RN and
α ∈ [0, 1], we have

f((1− α)x1 + αx2) ≤ max {f(x1), f(x2)} . (11.3)

Again, if the inequality (11.3) is strict whenever x1, x2 ∈ dom f , x1 ̸= x2, and
α ∈ (0, 1), we say that f is strictly quasi-convex.
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One reason why convex and quasi-convex functions are useful is that they
guarantee the uniqueness of the solution to minimization problems.

Proposition 11.1. If C ⊂ RN is nonempty and convex and f : C → R is
strictly quasi-convex, then the solution to minx∈C f(x) is unique.

Proof. Suppose to the contrary that there are two solutions x1 ̸= x2. Take
any α ∈ (0, 1) and let x = (1−α)x1 + αx2. Since C is convex, we have x ∈ C.
Since f is strictly quasi-convex, using (11.3) we obtain

f(x) = f((1− α)x1 + αx2) < max {f(x1), f(x2)} = f(x1) = min
x∈C

f(x),

which is a contradiction.

A function f is said to be concave if −f is convex, that is, f is a convex
function flipped upside down. The definitions for strict concavity or quasi-
concavity are similar. The algebraic definitions of concave and quasi-concave
functions are given by flipping the inequalities (11.1) and (11.3).

Note that all convex functions are quasi-convex, but not vice versa. To see
that all convex functions are quasi-convex, let f : RN → (−∞,∞] be convex.
Take any y ∈ (−∞,∞] and consider the lower contour set Lf (y) in (11.2).
Then if x1, x2 ∈ Lf (y) and α ∈ [0, 1], we have

f((1− α)x1 + αx2) ≤ (1− α)f(x1) + αf(x2)
≤ (1− α)y + αy = y,

so by definition (1 − α)x1 + αx2 ∈ Lf (y). Therefore Lf (y) is convex, and
hence f is quasi-convex. To see that not all quasi-convex functions are convex,
consider the function f : R→ R defined by f(x) = x3. Then it is easy to see
by drawing the graph that f is quasi-convex but not convex (Figure 11.2).

x

FIGURE 11.2: Quasi-convex but non-convex function.

If f : RN → R is linear, then f(x) = ⟨a, x⟩ for some a ∈ RN (Proposition
1.2). This f clearly satisfies the convex inequality (11.1) with equality, so all
linear functions are convex. They are also concave.
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11.2 CONVEXITY-PRESERVING OPERATIONS

There are certain operations that preserve the convexity of functions. These
results allow us to construct many convex functions from functions that are
already known to be convex (such as linear functions).

The following proposition shows that convexity is preserved by taking the
weighted sum of functions.

Proposition 11.2. For each i = 1, . . . , I, let fi : RN → (−∞,∞] be convex.
Then for any βi ≥ 0, the function f :=

∑I
i=1 βifi is convex.

Proof. Take any x1, x2 and α ∈ [0, 1]. Since fi is convex, we have

fi((1− α)x1 + αx2) ≤ (1− α)fi(x1) + αfi(x2). (11.4)

Multiplying both sides by βi ≥ 0 and summing across i, we obtain

f((1− α)x1 + αx2) =
I∑

i=1
βifi((1− α)x1 + αx2)

≤
I∑

i=1
βi((1− α)fi(x1) + αfi(x2))

= (1− α)f(x1) + αf(x2),

so f is convex.

Similarly, if f(x, y) is convex in y and a < b, then

F (y) :=
∫ b

a

f(x, y) dx

is convex in y. This is because integration can be thought of as the limit of
summation. The proof of this statement is identical to Proposition 11.2.

The following proposition shows that (quasi-)convexity is preserved by
taking the pointwise supremum of functions.

Proposition 11.3. Let I be a nonempty set, and for each i ∈ I, suppose that
fi : RN → (−∞,∞] is (quasi-)convex. Then f := supi∈I fi is (quasi-)convex.

Proof. Suppose that each fi is convex, so (11.4) holds. Since fi ≤ f , it follows
that

fi((1− α)x1 + αx2) ≤ (1− α)f(x1) + αf(x2).

Taking the supremum over i ∈ I in the left-hand side, we obtain

f((1− α)x1 + αx2) ≤ (1− α)f(x1) + αf(x2),

so f is convex. The proof for quasi-convexity is similar.
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Example 11.1. Let ∅ ̸= A ⊂ RN . For each a ∈ A, the linear function
fa(x) := ⟨a, x⟩ is clearly convex. Hence by Proposition 11.3, the function
hA := supa∈A fa defined by hA(x) = supa∈A ⟨a, x⟩ is convex, which is called
the support function of the set A.

The following proposition shows that (quasi-)convexity is preserved by a
certain monotone transformation. We introduce some definitions to state this
result. We say that ϕ : RN → RM is a monotone map if

x1 ≤ x2 =⇒ ϕ(x1) ≤ ϕ(x2). (11.5)

When ϕ : RN → R, we say ϕ is a monotone function or simply increasing. We
say that f : RN → RM is a convex map if α ∈ [0, 1] implies

f((1− α)x1 + αx2) ≤ (1− α)f(x1) + αf(x2). (11.6)

The inequalities in (11.5) and (11.6) are all vector inequalities.

Proposition 11.4. If f : RN → RM is a convex map and ϕ : RM → R is a
monotone (quasi-)convex function, then g := ϕ ◦ f is (quasi-)convex.

Proof. Suppose that ϕ is convex. Take any x1, x2 ∈ RN and α ∈ [0, 1]. Since
f is a convex map, (11.6) holds. Applying ϕ to both sides, we obtain

g((1− α)x1 + αx2)) = ϕ(f((1− α)x1 + αx2))
≤ ϕ((1− α)f(x1) + αf(x2)) (∵ ϕ monotone)
≤ (1− α)ϕ(f(x1)) + αϕ(f(x2)) (∵ ϕ convex)
= (1− α)g(x1) + αg(x2),

so g is convex. The proof when ϕ is quasi-convex is similar.

Remark. Obviously, the domains of f or ϕ need not be the entire RN or RM .
All we need is that the expressions appearing in the proof of Proposition 11.4
are well defined. The statements also hold for arbitrary vector spaces, not
necessarily RN .
Remark. Proposition 11.2 is a special case of Proposition 11.4 by setting
ϕ(y) =

∑I
i=1 βiyi. Proposition 11.3 (with finite I) is also a special case by

setting ϕ(y) = maxi yi.
Remark. There are many variants of Proposition 11.4. For instance, the right
inequality of (11.5) could be flipped (so ϕ is monotone decreasing) and/or f or
ϕ could be (quasi-)convex/concave. Depending on the specification, g = ϕ ◦ f
could be (quasi-)convex/concave. We shall not exhaust all possibilities but the
statement of the proposition and its proof are analogous.

If ϕ : R→ R is increasing, then it is quasi-convex. To see this, noting that
(1− α)x1 + αx2 ≤ max {x1, x2} and applying ϕ to both sides, we obtain

ϕ((1− α)x1 + αx2) ≤ ϕ(max {x1, x2}) = max {ϕ(x1), ϕ(x2)} ,
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so ϕ is quasi-convex by (11.3). Therefore by setting M = 1 in Proposition
11.4, we obtain the following corollary, which states that quasi-convexity is
preserved by monotonic transformations.

Corollary 11.5. Let f : RN → (−∞,∞] be quasi-convex and ϕ : (−∞,∞]→
(−∞,∞] be increasing. Then g = ϕ ◦ f is quasi-convex.

In contrast, convexity is not necessarily preserved by monotonic transfor-
mations. For instance, define f : R→ R by f(x) = |x| and ϕ : [0,∞)→ R by
ϕ(y) = √y. Then f is convex and ϕ is increasing, but g(x) = ϕ(f(x)) =

√
|x|

is not convex, as we see in Figure 11.2. To preserve convexity, we need addi-
tional assumptions as in Proposition 11.4. We shall see many applications of
Proposition 11.4 and Corollary 11.5 later.

Proposition 11.3 shows that taking the pointwise supremum of functions
preserves convexity. This is not true for pointwise infimum. For example, if
we define f1, f2 : R → R by f1(x) = x and f2(x) = −x, then f1, f2 are both
linear and hence convex, but f(x) = min {f1(x), f2(x)} = − |x| is not convex.
However, the following propositions show that functions obtained as a certain
parametric minimization problem are convex.

Proposition 11.6. Let X, Y be vector spaces, f : X × Y → (−∞,∞] be
(quasi-)convex, and let g(y) := infx∈X f(x, y). If g(y) > −∞ for all y ∈ Y ,
then g : Y → (−∞,∞] is (quasi-)convex.

Proof. Suppose f is convex. Take y1, y2 ∈ Y and α ∈ [0, 1]. For each j = 1, 2,
take any uj > g(yj). By the definition of g, we can take xj such that g(yj) ≤
f(xj , yj) ≤ uj . Define x = (1 − α)x1 + αx2 and similarly for y. Using the
definition of g and the convexity of f , we obtain

g(y) ≤ f(x, y) ≤ (1− α)f(x1, y1) + αf(x2, y2) ≤ (1− α)u1 + αu2.

Letting uj ↓ g(yj), we obtain

g(y) ≤ (1− α)g(y1) + αg(y2),

so g is convex. The proof of quasi-convexity is left as Problem 11.4.

11.3 DIFFERENTIAL CHARACTERIZATION

The inequalities (11.1) and (11.3) that define convexity and quasi-convexity
involve three parameters x1, x2, α, which may not be easy to verify directly. In
this section we provide first-order and second-order characterization of convex
and quasi-convex functions, which involve fewer parameters.

The following proposition provides a first-order characterization of convex
functions.

Proposition 11.7 (First-order characterization of convexity). Let U ⊂ RN



Convex Functions ■ 159

be an open convex set and f : U → R be differentiable. Then f is (strictly)
convex if and only if

f(y)− f(x) ≥ (>) ⟨∇f(x), y − x⟩ (11.7)

for all x ̸= y.

Proof. Suppose that f is (strictly) convex. Let x ̸= y ∈ U and define g :
[0, 1] → R by g(t) = f(x + t(y − x)). Then g is (strictly) convex, so for any
0 < s < t ≤ 1, if we let α := s/t ∈ (0, 1), we obtain

g(s) = g((1− α)0 + αt) ≤ (<)(1− α)g(0) + αg(t)

⇐⇒ g(s)− g(0)
s

≤ (<)g(t)− g(0)
t

.

Therefore the function h(t) := (g(t)−g(0))/t is (strictly) increasing, so letting
s ↓ 0 and t ↑ 1, we obtain

⟨∇f(x), y − x⟩ = g′(0) ≤ (<)g(1)− g(0) = f(y)− f(x),

which is (11.7).
Conversely, suppose (11.7) holds for all x ̸= y. Take any x1 ̸= x2 and

α ∈ (0, 1). Setting y = x1, x2 and x = (1− α)x1 + αx2 in (11.7), we get

f(x1)− f((1− α)x1 + αx2) ≥ (>) ⟨∇f(x), x1 − x⟩
f(x2)− f((1− α)x1 + αx2) ≥ (>) ⟨∇f(x), x2 − x⟩ .

Multiplying both sides by 1 − α and α respectively and adding the two in-
equalities, we get

(1− α)f(x1) + αf(x2)− f((1− α)x1 + αx2) ≥ (>)0,

so f is (strictly) convex by the convex inequality (11.1).

Figure 11.3 shows the geometric intuition of Proposition 11.7. Since QR =
f(y)− f(x) and SR = ⟨∇f(x), y − x⟩, we have f(y)− f(x) ≥ ⟨∇f(x), y − x⟩.

In Chapter 2, we showed that the first-order necessary condition is actually
sufficient for minimizing a one-variable convex function (Proposition 2.5). This
remarkable property of convex minimization problems is true in general, as
the following proposition shows.

Proposition 11.8 (Sufficiency of first-order condition for convex minimiza-
tion). Let U ⊂ RN be an open convex set and f : U → R be convex and
differentiable. If ∇f(x̄) = 0, then f(x̄) = minx∈U f(x).

Proof. Take any x ∈ U . Since f is convex and ∇f(x̄) = 0, by Proposition
11.7, we have

f(x)− f(x̄) ≥ ⟨∇f(x̄), x− x̄⟩ = 0,

so f(x̄) ≤ f(x). Hence f(x̄) = minx∈U f(x).
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⟨∇f(x), y − x⟩

Slope = ∇f(x)

FIGURE 11.3: Characterization of a convex function.

Remark. Proposition 11.8 does not hold for quasi-convex functions. For exam-
ple, f : R→ R defined by f(x) = x3 is quasi-convex (because it is increasing
as f ′(x) = 3x2 ≥ 0) and f ′(0) = 0, but x̄ = 0 is not a minimum.

As we discussed in Chapter 2, a twice differentiable function f : R→ R is
convex if and only if f ′′(x) ≥ 0 for all x. The following proposition generalizes
this result and provides a second-order characterization of convex functions.

Proposition 11.9 (Second-order characterization of convexity). Let U ⊂ RN

be an open convex set and f : U → R be C2. Then f is convex if and only if
the Hessian

∇2f(x) =
[

∂2f(x)
∂xm∂xn

]
is positive semidefinite for all x. Furthermore, if ∇2f is positive definite for
all x, then f is strictly convex.

Proof. Take any x ̸= y ∈ U and let v := y−x ̸= 0. Applying Taylor’s theorem
(Proposition 2.4) to g(t) = f(x + tv) for t ∈ [0, 1], there exists s ∈ (0, 1) such
that

f(y)− f(x) = g(1)− g(0) = g′(0) + 1
2g′′(s)

= ⟨∇f(x), v⟩+ 1
2
〈
v,∇2f(x + sv)v

〉
.

If f is convex, by Proposition 11.7 we obtain

1
2
〈
v,∇2f(x + sv)v

〉
= f(y)− f(x)− ⟨∇f(x), y − x⟩ ≥ 0. (11.8)

Since U is open and y ̸= x is arbitrary, for any 0 ̸= u ∈ RN , we have y =
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x + ϵu ∈ U if ϵ > 0 is small enough. Hence letting v = ϵu in (11.8), dividing
both sides by ϵ2/2 > 0, and letting ϵ→ 0, we obtain

0 ≤
〈
u,∇2f(x + sϵu)u

〉
→
〈
u,∇2f(x)u

〉
,

so ∇2f(x) is positive semidefinite.
Conversely, if ∇2f(x) is positive (semi)definite for all x, then

f(y)− f(x)− ⟨∇f(x), y − x⟩ = 1
2
〈
v,∇2f(x + sv)v

〉
≥ (>)0,

so by Proposition 11.7, f is (strictly) convex.

Remark. Even if f is strictly convex, ∇2f need not be positive definite for
all x. A counterexample is f : R → R defined by f(x) = x4, which is strictly
convex but f ′′(0) = 0.

The following proposition provides a first-order characterization of quasi-
convex functions.

Proposition 11.10 (First-order characterization of quasi-convexity). Let
U ⊂ RN be an open convex set and f : U → R be differentiable. Then f
is quasi-convex if and only if

f(y) ≤ f(x) =⇒ ⟨∇f(x), y − x⟩ ≤ 0 (11.9)

for all x ̸= y.

Proof. Suppose that f is quasi-convex and f(y) ≤ f(x). Then for any t ∈ (0, 1]
we have

f((1− t)x + ty) ≤ max {f(x), f(y)} = f(x)

=⇒ 1
t
(f(x + t(y − x))− f(x)) ≤ 0.

Letting t→ 0, we obtain ⟨∇f(x), y − x⟩ ≤ 0, so (11.9) holds.
If f is not quasi-convex, by the definition (11.3), there exist x1 ̸= x2 and

α ∈ (0, 1) such that

f((1− α)x1 + αx2) > max {f(x1), f(x2)} . (11.10)

Let v := x2 − x1 ̸= 0 and g(t) = f(x1 + tv). Since f is differentiable, it is
continuous, and so is g. By the extreme value theorem, the set of maximizers

T := arg max
t∈[0,1]

g(t)

is nonempty. Clearly T is closed and bounded, so T has a minimal element
t = min T (Figure 11.4). Since g(0) = f(x1) and g(1) = f(x2), (11.10) implies

g(t) > max {g(0), g(1)} ,
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so t ∈ (0, 1). Furthermore, by the definition of t, we have g(s) < g(t) for all
s ∈ [0, t). By the continuity of g, we can take ϵ > 0 such that g(1) < g(s) < g(t)
for all s ∈ [t− ϵ, t). By the mean value theorem, we can take s ∈ [t− ϵ, t) such
that

0 <
g(t)− g(t− ϵ)

ϵ
= g′(s)

= ⟨∇f(x1 + sv), v⟩ = 1
1− s

⟨∇f(x), y − x⟩ , (11.11)

where we set x = x1 + sv and y = x2. On the other hand, we also have

f(x) = f(x1 + sv) = g(s) > g(1) = f(y). (11.12)

Combining (11.11) and (11.12), the condition (11.9) does not hold.

t0 1s

f(x) = g(s)

g(1) = f(y)

FIGURE 11.4: Proof of Proposition 11.10.

The following proposition provides a second-order characterization of
quasi-convex functions.

Proposition 11.11 (Second-order characterization of quasi-convexity). Let
U ⊂ RN be an open convex set and f : U → R be C2. Then the following
statements are true.

(i) If f is quasi-convex, then for all x and v ̸= 0, we have

⟨∇f(x), v⟩ = 0 =⇒
〈
v,∇2f(x)v

〉
≥ 0. (11.13)

(ii) If for all x and v ̸= 0 we have

⟨∇f(x), v⟩ = 0 =⇒
〈
v,∇2f(x)v

〉
> 0, (11.14)

then f is strictly quasi-convex.
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Proof. (i) Let f be quasi-convex. To show (11.13), suppose ⟨∇f(x), v⟩ = 0
but

〈
v,∇2f(x)v

〉
< 0. Let g(t) := f(x + tv). Then g is quasi-convex, g′(0) =

⟨∇f(x), v⟩ = 0, and g′′(0) =
〈
v,∇2f(x)v

〉
< 0. By Proposition 2.6, t = 0 is a

strict local maximum. Then for sufficiently small ϵ > 0, we have g(±ϵ) < g(0),
which contradicts (11.3).

(ii) We prove the contrapositive. Suppose that f is not strictly quasi-
convex. Then we can take x ̸= y and t ∈ (0, 1) such that

f((1− t)x + ty) ≥ max {f(x), f(y)} . (11.15)

Let v = y − x ̸= 0 and g(t) := f(x + tv). Then (11.15) implies g(t) ≥
max {g(0), g(1)}. In particular, we may assume that t ∈ (0, 1) achieves the
maximum of g. Then by Proposition 2.6, we have

0 = g′(t) = ⟨∇f(x + tv)v⟩ ,
0 ≥ g′′(t) =

〈
v,∇2f(x + tv)v

〉
.

Replacing x + tv with x, the condition (11.14) fails.

11.4 CONTINUITY OF CONVEX FUNCTIONS

A nice property of convex functions is that they are continuous except at
boundary points of the domain.

Theorem 11.12. Let U ⊂ RN be an open convex set and f : U → R be
convex. Then f is continuous.

Proof. Equip RN with the supremum norm ∥x∥ = maxn |xn|. For any x ∈ RN

and r > 0, define the closed ball with center x and radius r by

B̄r(x) :=
{

y ∈ RN : ∥y − x∥ ≤ r
}

.

By the definition of the supremum norm, B̄r(x) is actually the hypercube

[x1 − r, x1 + r]× · · · × [xN − r, xN + r]

with 2N vertices (x1 ± r, . . . , xN ± r).
Take any x ∈ U . Since U is open, we can take r > 0 such that B̄r(x) ⊂ U .

Let the vertices of B̄r(x) be denoted by {x̄k}K
k=1, where K = 2N . Define

M := maxk f(x̄k) <∞. Since clearly any point of B̄r(x) can be expressed as
a convex combination of {x̄k}K

k=1 (the proof is by induction on N), we have

f(z) ≤M for all z ∈ B̄r(x). (11.16)

Now take any y ∈ B̄r(x)\ {x}, let 0 ̸= d = y − x, ϵ = ∥d∥ /r ∈ (0, 1], and
define the points z1, z2 by z1 = x + d/ϵ and z2 = x− d/ϵ (Figure 11.5). Then
clearly ∥zj − x∥ = ∥d∥ /ϵ = r for j = 1, 2, so zj ∈ B̄r(x).



164 ■ Essential Mathematics for Economics

x y z1z2

r r

ϵr

d

FIGURE 11.5: Proof of continuity of convex functions.

By the definition of zj , we have

y − x = d = ϵ(z1 − x) ⇐⇒ y = (1− ϵ)x + ϵz1,

y − x = d = −ϵ(z2 − x) ⇐⇒ x = 1
1 + ϵ

y + ϵ

1 + ϵ
z2.

Hence by the convex inequality (11.1) and the upper bound (11.16), we obtain

f(y) ≤ (1− ϵ)f(x) + ϵf(z1) =⇒ f(y)− f(x) ≤ ϵ(M − f(x)),

f(x) ≤ 1
1 + ϵ

f(y) + ϵ

1 + ϵ
f(z2) =⇒ f(x)− f(y) ≤ ϵ(M − f(x)).

Combining these two inequalities, we obtain

|f(y)− f(x)| ≤ ϵ(M − f(x)) = M − f(x)
r

∥y − x∥ . (11.17)

Therefore f(y)→ f(x) as y → x, so f is continuous.

A convex function need not be continuous at boundary points of the do-
main. For example, define f : [0, 1] → R by f(x) = 0 if x < 1 and f(1) = 1.
Then clearly f is convex but not continuous at x = 1.

A corollary of the proof of Theorem 11.12 is that convex functions are
actually locally Lipschitz continuous. Recall that f : U → R is Lipschitz
continuous with Lipschitz constant L ≥ 0 if for all x, y ∈ U , we have

|f(x)− f(y)| ≤ L ∥x− y∥ .

We say that f is locally Lipschitz on U if f is Lipschitz on compact (closed
and bounded) subsets of U .

Corollary 11.13. Let U ⊂ RN be a nonempty open convex set and f : U → R
be convex. Then f is locally Lipschitz.

Proof. Take any x ∈ U and r > 0 such that B̄r(x) ⊂ U , and define V =
B̄r/3(x). Let us show that f is Lipschitz on V . Since by Theorem 11.12 f is
continuous on the compact set B̄r(x), it attains a minimum m and a maximum
M . Take any x1, x2 ∈ V . Then

∥x1 − x2∥ ≤ ∥x1 − x∥+ ∥x− x2∥ ≤
2r

3 ,
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so x1 ∈ B̄2r/3(x2). If y ∈ B̄2r/3(x2), then

∥y − x∥ ≤ ∥y − x2∥+ ∥x2 − x∥ ≤ 2r

3 + r

3 = r,

so B̄2r/3(x2) ⊂ B̄r(x). Applying (11.17) to y = x1 and x = x2, we obtain

|f(x1)− f(x2)| ≤ M −m

2r/3 ∥x1 − x2∥ ,

which shows that f is Lipschitz on V with Lipschitz constant L := 3(M−m)
2r .

Unlike convex functions, quasi-convex functions need not be continuous.
For example, any strictly increasing function f : R → R is quasi-convex, but
there are many of them that are discontinuous.

11.5 HOMOGENEOUS QUASI-CONVEX FUNCTIONS

We have seen that all convex functions are quasi-convex but not all quasi-
convex functions are convex. The following theorem, which is slightly stronger
than Berge (1963, p. 208, Theorem 3), shows that quasi-convex (concave)
functions that are homogeneous and have constant signs are always convex
(concave). This result is sometimes useful because checking quasi-convexity is
easier than checking convexity.

We say that a function f : RN → [−∞,∞] is homogeneous (of degree 1) if
f(λx) = λf(x) for all x and λ > 0.

Theorem 11.14. Let C ⊂ RN be a nonempty convex cone. Let f : C →
(−∞,∞] be (i) quasi-convex, (ii) homogeneous, and (iii) either f(x) > 0 for
all x ∈ C\ {0} or f(x) < 0 for all x ∈ C\ {0}. Then f is convex.

Proof. Take any x1, x2 ∈ C and α ∈ [0, 1]. Let us show the convex inequality
(11.1). The claim is trivial if α = 0 or α = 1, so assume α ∈ (0, 1). Similarly,
(11.1) is trivial if f(x1) = ∞ or f(x2) = ∞, so assume f(x1) < ∞ and
f(x2) <∞.

If x1 = 0, using homogeneity for λ = 2 and f(x1) <∞, we obtain f(0) =
f(2 · 0) = 2f(0), implying f(0) = 0. Again using homogeneity for λ = α and
noting that x1 = 0 and f(x1) = f(0) = 0, we obtain

f((1− α)x1 + αx2) = f(αx2) = αf(x2) = (1− α)f(x1) + αf(x2),

so (11.1) holds. The case for x2 = 0 is similar.
Therefore we may assume x1, x2 ̸= 0. Since by assumption f has constant

sign on C\ {0}, it follows that (1−α)f(x1) and αf(x2) are both nonzero real
numbers with the same sign. Define k = αf(x2)

(1−α)f(x1) > 0 and x = (1− α)x1 +
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αx2. Using the homogeneity and quasi-convexity of f , we obtain

k

1 + k
f(x) = f

(
k

1 + k
x

)
= f

(
1

1 + k
k(1− α)x1 + k

1 + k
αx2

)
≤ max {f(k(1− α)x1), f(αx2)} = max {k(1− α)f(x1), αf(x2)} .

By construction, k(1− α)f(x1) = αf(x2), so the last expression is also equal
to

1
1 + k

k(1− α)f(x1) + k

1 + k
αf(x2) = k

1 + k
((1− α)f(x1) + αf(x2)).

Therefore
k

1 + k
f(x) ≤ k

1 + k
((1− α)f(x1) + αf(x2)),

and dividing both sides by k
1+k > 0, we obtain (11.1).

Remark. By replacing f with −f and “convex” by “concave”, etc., the state-
ment in Theorem 11.14 remains true.
Remark. In Theorem 11.14, the assumption that f has a constant sign on C
is essential (Problem 11.12).

Example 11.2. Let 1 ≤ p <∞ and define f : RN → R by

f(x) = ∥x∥p :=
(

N∑
n=1
|xn|p

)1/p

.

Then f is convex. To see this, note that f is nonnegative and homogeneous of
degree 1, with f(x) = 0 if and only if x = 0. Let ϕ(y) = 1

p yp for y ≥ 0. Then
ϕ′(y) = yp−1 ≥ 0 and ϕ′′(y) = (p− 1)yp−2 ≥ 0, so ϕ is increasing and convex.
Clearly the function x 7→ |xn| is convex. Hence by Proposition 11.4,

g(x) := ϕ(f(x)) = 1
p

N∑
n=1
|xn|p

is convex (in particular, quasi-convex). By Corollary 11.5, f = ϕ−1 ◦ g is
quasi-convex. Hence by Theorem 11.14, f is convex.

Setting α = 1/2 in (11.1) and recalling the definition of the ℓp norm in
(1.7c), for all x, y ∈ RN we obtain∥∥∥∥x + y

2

∥∥∥∥
p

≤ 1
2 ∥x∥p + 1

2 ∥y∥p ⇐⇒ ∥x + y∥p ≤ ∥x∥p + ∥y∥p . (11.18)

The inequality (11.18) is called the Minkowski inequality, which is a gen-
eralization of the Cauchy-Schwarz inequality (corresponding to p = 2) and
establishes that the ℓp norm ∥·∥p is indeed a norm.
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Example 11.3. Define f : RN
++ → R by f(x) = xα1

1 · · ·x
αN

N , where αn > 0
and

∑N
n=1 αn = 1. Then f is concave. To see this, note that f is positive and

homogeneous of degree 1. Furthermore,

log f(x) =
N∑

n=1
αn log xn

is concave, so its monotonic transformation f(x) = exp(log f(x)) is quasi-
concave by Corollary 11.5. Hence by Theorem 11.14, f is concave.

Example 11.4. Define f : RN
++ → R by

f(x) =
(

N∑
n=1

αnx1−γ
n

) 1
1−γ

,

where αn > 0 for all n and 0 < γ ̸= 1. Then f is concave. To see this, note
that f is positive and homogeneous of degree 1. Let ϕ(y) = y1−γ

1−γ for y > 0.
Then ϕ′(y) = y−γ > 0, so ϕ is increasing. Furthermore,

g(x) := ϕ(f(x)) =
N∑

n=1
αn

x1−γ
n

1− γ

is concave (compute the Hessian and apply Proposition 11.9), so f = ϕ−1 ◦ g
is quasi-concave. Hence by Theorem 11.14, f is concave. For an economic
application of this example, see Toda and Walsh (2020, Theorems 1, 2).

11.6 LOG-CONVEX FUNCTIONS

We say that a positive function f : RN → (0,∞] is log-convex if log f is
convex. If f is log-convex, since by definition g(x) = log f(x) is convex, f(x) =
exp(g(x)) is convex by setting ϕ(x) = ex (a monotone convex function) in
Proposition 11.4. Hence the set of log-convex functions is a subset of convex
functions.

The following proposition shows that the set of log-convex functions is
closed under addition, multiplication, and taking positive power. This propo-
sition allows us to construct many convex functions.

Proposition 11.15. Let f, g : RN → (0,∞] be log-convex and p > 0. Then
f + g, fg, max {f, g}, and fp are log-convex.

Proof. Since f, g are log-convex, by definition log f, log g are convex. Then
log(fg) = log f + log g and log(max {f, g}) = max {log f, log g} are convex by
Propositions 11.2 and 11.3, so fg and max {f, g} are log-convex. Similarly,
log(fp) = p log f is convex, so fp is log-convex.

To show that f +g is log-convex, take any x1, x2 and α ∈ (0, 1). To simplify



168 ■ Essential Mathematics for Economics

notation, let f1 = f(x1) and f = f((1−α)x1 +αx2) etc. Since f is log-convex,
log f is convex, so by definition

log f ≤ (1− α) log f1 + α log f2 ⇐⇒ f ≤ f1−α
1 fα

2 . (11.19)

The same inequality holds for g. Define the vectors in R2
++ by

u = (f1−α
1 , g1−α

1 ),
v = (fα

2 , gα
2 ).

Define p, q > 1 by 1/p = 1 − α and 1/q = α. Since 1/p + 1/q = 1, it follows
from the definition of the ℓp norm and Hölder’s inequality (2.12) that

(f1 + g1)1−α(f2 + g2)α = ∥u∥p ∥v∥q ≥ ⟨u, v⟩

= f1−α
1 fα

2 + g1−α
1 gα

2 ≥ f + g,

where the last inequality follows from (11.19). Taking the logarithm of both
sides, we obtain

log(f + g) ≤ (1− α) log(f1 + g1) + α log(f2 + g2),

so log(f + g) is convex. Hence f + g is log-convex.

Example 11.5. For each i = 1, . . . , I, let ai > 0 and bi ∈ RN . Then the
function

f(x) := log
(

I∑
i=1

aie⟨bi,x⟩

)
is convex. To see why, let gi(x) = aie⟨bi,x⟩. Then log gi(x) = ⟨bi, x⟩ + log ai

is an affine function and hence convex. Thus gi is log-convex, and so is g :=∑I
i=1 gi(x) by Proposition 11.15. Hence f = log g is convex.

PROBLEMS

11.1. Prove that epi f is a convex set if and only if

f((1− α)x1 + αx2) ≤ (1− α)f(x1) + αf(x2)

for all x1, x2 ∈ RN and α ∈ [0, 1].

11.2. Prove that f is quasi-convex if and only if

f((1− α)x1 + αx2) ≤ max {f(x1), f(x2)}

for all x1, x2 ∈ RN and α ∈ [0, 1].

11.3. Prove Proposition 11.4.

11.4. Prove Proposition 11.6 for the case of quasi-convexity.
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11.5. Let X be a vector space, Y a set, Γ : X ↠ Y a correspondence (so for
each x ∈ X, Γ(x) is a subset of Y ), and f : Y → [−∞,∞]. Suppose that Γ
satisfies

Γ((1− α)x1 + αx2) ⊂ Γ(x1) ∪ Γ(x2)

for all x1, x2 ∈ X and α ∈ [0, 1]. Define

ḡ(x) = sup
y∈Γ(x)

f(y),

g
¯
(x) = inf

y∈Γ(x)
f(y).

Prove that ḡ is quasi-convex and g
¯

is quasi-concave.

11.6. For real symmetric matrices A, B ∈ RN×N , define A ≥ B if ⟨x, Ax⟩ ≥
⟨x, Bx⟩ for all x ∈ RN .

(i) Show that ≥ is a partial order, that is, it satisfies

(a) (Reflexivity) A ≥ A for all A,
(b) (Antisymmetry) if A ≥ B and B ≥ A, then A = B,
(c) (Transitivity) if A ≥ B and B ≥ C, then A ≥ C.

(ii) Let A ∈ RN×N be symmetric and positive definite, ξ ∈ RN , and define

f(x) = ⟨ξ, x⟩ − 1
2 ⟨x, Ax⟩ .

Prove that f is strictly concave and find the maximum of f as well as
the maximum value.

(iii) Prove that if A, B ∈ RN×N are symmetric and positive definite, then
A ≥ B if and only if B−1 ≥ A−1.

11.7. Let C be a convex set of a vector space X. We say that x ∈ C is
an extreme point if there exist no x1 ̸= x2 ∈ C and α ∈ (0, 1) such that
x = (1−α)x1 + αx2. If f : C → R is strictly quasi-convex and x̄ ∈ C achieves
the maximum of f over C, prove that x̄ is an extreme point of C.

11.8. Let f : [a, b] → R be convex, continuous, and f(a) < 0 < f(b). Show
that there exists a unique x ∈ (a, b) such that f(x) = 0.

11.9. Let f : (a, b)→ R be convex.

(i) Show that for each x ∈ (a, b),

g±(x) := lim
h→±0

f(x + h)− f(x)
h

exist.
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(ii) Show that g−(x) ≤ g+(x) for each x ∈ (a, b).

(iii) Show that f is differentiable on (a, b) except at at most countably many
points.

11.10. Let ∅ ≠ X ⊂ RN and u : X → R. Define e : RN × R→ [−∞,∞] by

e(p, u) = inf {p · x : x ∈ X, u(x) ≥ u} ,

where by convention we define inf ∅ =∞. (Economically, X is a consumption
set, u is a utility function, p is a price vector, and e is the minimum expenditure
to achieve utility level u given the price vector p, which is called the expenditure
function.) Prove that e(p, u) is concave in p.

11.11. Let ∅ ≠ X ⊂ RN and u : X → R. Define v : RN × R→ [−∞,∞] by

v(p, w) = sup {u(x) : x ∈ X, p · x ≤ w} ,

where by convention we define sup ∅ = −∞. (Economically, X is a consump-
tion set, u is a utility function, p is a price vector, w is wealth, and v is the
maximum utility given the price vector p and wealth w, which is called the
indirect utility function.)

(i) Take any (pj , wj) ∈ RN × R and define p = (1 − α)p1 + αp2, w =
(1−α)w1 + αw2, where α ∈ [0, 1]. Show that if x ∈ X satisfies p ·x ≤ w,
then pj · x ≤ wj for at least one j.

(ii) Prove that v(p, w) is quasi-convex in (p, w).

11.12. Define the sets

C1 :=
{

(x1, x2) ∈ R2 : x1 > 0, x2 > 0
}

,

C2 :=
{

(x1, x2) ∈ R2 : x1 ≤ 0, x2 > 0
}

,

C := C1 ∪ C2 =
{

(x1, x2) ∈ R2 : x2 > 0
}

.

Define the function f : C → R by

f(x) =
{
− x1x2

x1+x2
, (x ∈ C1)

0. (x ∈ C2)

(i) Show that C1, C2, C are cones.

(ii) Show that f : C → R is homogeneous.

(iii) For each y ∈ R, characterize the lower contour set of f defined by

Lf (y) := {x ∈ C : f(x) ≤ y}

(iv) Prove that f : C → R is quasi-convex.

(v) Setting x1 = (1, 1), x2 = (−1, 1), and α = 1/2, show that the convex
inequality (11.1) does not hold and hence f is not convex.



CHAPTER 12

Nonlinear Programming

12.1 INTRODUCTION

In Chapter 4, we studied constrained optimization problems with linear con-
straints. However, the discussion was largely based on geometric intuition and
not necessarily mathematically rigorous. This chapter studies constrained op-
timization rigorously.

Consider the minimization problem

minimize f(x)
subject to x ∈ C. (12.1)

When the objective function f or the constraint set C do not have particu-
lar structure (such as linearity or convexity), the problem (12.1) is called a
nonlinear programming problem or a nonlinear program. Recall that x̄ ∈ C is
called a (global) solution if f(x̄) ≤ f(x) for all x ∈ C. We say that x̄ is a local
solution if there exists an open neighborhood U of x̄ such that f(x̄) ≤ f(x)
for all x ∈ C ∩ U . When the inequality is strict whenever x ̸= x̄, we say that
x̄ is a strict local solution.

12.2 NECESSARY CONDITION

In this section we derive the first-order necessary condition for optimality
using the tangent cone of the constraint set.

Let C ⊂ RN be any nonempty set and x̄ ∈ C be any point. The tangent
cone of C at x̄ is defined by

TC(x̄) :={
y ∈ RN : (∃) {αk} ≥ 0, {xk} ⊂ C, lim

k→∞
xk = x̄, y = lim

k→∞
αk(xk − x̄)

}
.

That is, we have y ∈ TC(x̄) if y points to the same direction as the limiting
direction of {xk − x̄} as xk approaches to x̄. Intuitively, the tangent cone of

171
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C at x̄ consists of all directions from which we can approach the point x̄ ∈ C,
starting from any point in C that is very close to x̄. Figure 12.1 shows an
example. Here C is the region in between the two curves, and the tangent
cone is the shaded area.

x̄

TC(x̄)

C

FIGURE 12.1: Tangent cone.

Lemma 12.1. TC(x̄) is a nonempty closed cone.

Proof. Setting αk = 0 for all k we get 0 ∈ TC(x̄), so TC(x̄) ̸= ∅. If y ∈
TC(x̄), then y = lim αk(xk − x̄) for some {αk} ≥ 0 and {xk} ⊂ C such that
lim xk = x̄. Then for β ≥ 0 we have βy = lim βαk(xk − x̄) ∈ TC(x̄), so
TC(x̄) is a cone. To show that TC(x̄) is closed, let {yl} ⊂ TC(x̄) and yl → ȳ.
For each l we can take a sequence such that αk,l ≥ 0, limk→∞ xk,l = x̄, and
yl = limk→∞ αk,l(xk,l − x̄). Hence we can take kl such that ∥xkl,l − x̄∥ < 1/l
and ∥yl − αkl,l(xkl,l − x̄)∥ < 1/l. Then xkl,l → x̄ and

∥ȳ − αkl,l(xkl,l − x̄)∥ ≤ ∥ȳ − yl∥+ ∥yl − αkl,l(xkl,l − x̄)∥ → 0,

so ȳ ∈ TC(x̄).

The dual cone of TC(x̄) is called the normal cone at x̄ and is denoted by
NC(x̄) (Figure 12.2). By the definition of the dual cone (see (10.9)), we have

NC(x̄) = (TC(x̄))∗ =
{

z ∈ RN : (∀y ∈ TC(x̄)) ⟨y, z⟩ ≤ 0
}

. (12.2)

The following theorem is fundamental for constrained optimization.

Theorem 12.2 (First-order necessary condition). If f is differentiable and x̄
is a local solution to (12.1), then −∇f(x̄) ∈ NC(x̄).

Proof. By the definition of the normal cone in (12.2), it suffices to show that
for all y ∈ TC(x̄), we have

⟨−∇f(x̄), y⟩ ≤ 0 ⇐⇒ ⟨∇f(x̄), y⟩ ≥ 0.

Let y ∈ TC(x̄) and take a sequence such that αk ≥ 0, xk → x̄, and αk(xk −
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x̄

NC(x̄)

C

FIGURE 12.2: Normal cone.

x̄)→ y. Since x̄ is a local solution, for sufficiently large k we have f(xk) ≥ f(x̄).
Since f is differentiable, we have

0 ≤ f(xk)− f(x̄) = ⟨∇f(x̄), xk − x̄⟩+ o(∥xk − x̄∥).1

Multiplying both sides by αk ≥ 0 and letting k →∞, we obtain

0 ≤ ⟨∇f(x̄), αk(xk − x̄)⟩+ ∥αk(xk − x̄)∥ · o(∥xk − x̄∥)
∥xk − x̄∥

→ ⟨∇f(x̄), y⟩+ ∥y∥ · 0 = ⟨∇f(x̄), y⟩ .

12.3 KARUSH-KUHN-TUCKER THEOREM

Theorem 12.2 is very general. Usually, we are interested in the case where the
constraint set C is given parametrically. Consider the minimization problem

minimize f(x)
subject to gi(x) ≤ 0 (i = 1, . . . , I),

hj(x) = 0 (j = 1, . . . , J). (12.3)

This problem is a special case of problem (12.1) by setting

C =
{

x ∈ RN : (∀i)gi(x) ≤ 0, (∀j)hj(x) = 0
}

.

Let x̄ ∈ C be a local solution. To study the shape of C around x̄, we introduce
some definitions. The set of indices for which the inequality constraints bind,

I(x̄) := {i : gi(x̄) = 0} ,

is called the active set. Assume that gi’s and hj ’s are differentiable. The set

LC(x̄) =
{

y ∈ RN : (∀i ∈ I(x̄)) ⟨∇gi(x̄), y⟩ ≤ 0, (∀j) ⟨∇hj(x̄), y⟩ = 0
}

(12.4)

1The notation o(h) represents any quantity q(h) such that q(h)/h → 0 as h → 0.
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is called the linearizing cone of the constraints gi’s and hj ’s. The reason why
LC(x̄) is called the linearizing cone is the following. Since

gi(x̄ + ty)− gi(x̄) = t ⟨∇gi(x̄), y⟩+ o(t),

the point x = x̄ + ty satisfies the constraint gi(x) ≤ 0 to the first-order
approximation if gi(x̄) = 0 (i is an active constraint) and ⟨∇gi(x̄), y⟩ ≤ 0. The
same holds for hj ’s. Thus y ∈ LC(x̄) implies that from x̄ we can move slightly
towards the direction of y and still (approximately) satisfy the constraints.
Thus we can expect that the linearizing cone is approximately equal to the
tangent cone. The following proposition makes this intuition precise.

Proposition 12.3. If x̄ ∈ C, then co TC(x̄) ⊂ LC(x̄).

Proof. Clearly the linearizing cone (12.4) is a closed convex cone, so it suffices
to prove TC(x̄) ⊂ LC(x̄). Let y ∈ TC(x̄). Take {xk} ⊂ C and {αk} ⊂ R+
such that xk → x̄ and αk(xk − x̄)→ y. Since gi(x̄) = 0 for i ∈ I(x̄) and gi is
differentiable, we get

0 ≥ gi(xk) = gi(xk)− gi(x̄) = ⟨∇gi(x̄), xk − x̄⟩+ o(∥xk − x̄∥).

Multiplying both sides by αk ≥ 0 and letting k →∞, we get

0 ≥ ⟨∇gi(x̄), αk(xk − x̄)⟩+ ∥αk(xk − x̄)∥ · o(∥xk − x̄∥)
∥xk − x̄∥

→ ⟨∇gi(x̄), y⟩+ ∥y∥ · 0 = ⟨∇gi(x̄), y⟩ .

A similar argument applies to hj . Hence y ∈ LC(x̄).

Remark. While the tangent cone is directly defined by the constraint set C,
the linearizing cone is defined through the functions that define the set C.
Therefore different parameterizations of the same set C may lead to different
linearizing cones (Problem 12.3).

The main result of this chapter is the following.

Theorem 12.4 (Karush-Kuhn-Tucker theorem for nonlinear programming).
Consider the minimization problem (12.3), where f, gi, hj’s are differentiable.
If x̄ is a local solution and LC(x̄) ⊂ co TC(x̄), then there exist λ ∈ RI

+ and
µ ∈ RJ such that

∇f(x̄) +
I∑

i=1
λi∇gi(x̄) +

J∑
j=1

µj∇hj(x̄) = 0, (12.5a)

(∀i) λi ≥ 0, gi(x̄) ≤ 0, λigi(x̄) = 0. (12.5b)

Proof. By Theorem 12.2, we have −∇f(x̄) ∈ NC(x̄) = (TC(x̄))∗. By Propo-
sition 12.3 and the assumption LC(x̄) ⊂ co TC(x̄), we have LC(x̄) =
co TC(x̄). Hence by Proposition 10.5, we obtain (TC(x̄))∗ = (co TC(x̄))∗ =
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(LC(x̄))∗. Now let K be the polyhedral cone generated by {∇gi(x̄)}i∈I(x̄) and
{±∇hj(x̄)}J

j=1. By Farkas’ lemma (Proposition 10.7), it follows that

K∗ =
{

y ∈ RN : (∀i ∈ I(x̄)) ⟨∇gi(x̄), y⟩ ≤ 0, (∀j) ⟨±∇hj(x̄), y⟩ ≤ 0
}

=
{

y ∈ RN : (∀i ∈ I(x̄)) ⟨∇gi(x̄), y⟩ ≤ 0, (∀j) ⟨∇hj(x̄), y⟩ = 0
}

,

which is precisely the linearizing cone LC(x̄) in (12.4). Again by Farkas’
lemma, we have (LC(x̄))∗ = K. Therefore −∇f(x̄) ∈ K, so there exist num-
bers λi ≥ 0 (i ∈ I(x̄)) and αj , βj ≥ 0 such that

−∇f(x̄) =
∑

i∈I(x̄)

λi∇gi(x̄) +
J∑

j=1
(αj − βj)∇hj(x̄).

Letting λi = 0 for i /∈ I(x̄) and µj = αj − βj , we get (12.5a). Finally, (12.5b)
holds for i ∈ I(x̄) since gi(x̄) = 0. It also holds for i /∈ I(x̄) since we defined
λi = 0 for such i.

Here is an easy way to remember the conditions in (12.5). Define the
Lagrangian of the minimization problem (12.3) by

L(x, λ, µ) = f(x) +
I∑

i=1
λigi(x) +

J∑
j=1

µjhj(x), (12.6)

which is the sum of the objective function f(x) and the constraint functions
gi(x), hj(x) weighted by the Lagrange multipliers λi, µj . Then (12.5a) implies
that the derivative of L(·, λ, µ) at x̄ is zero. (12.5a) is called the first-order
condition. (12.5b) is called the complementary slackness condition. Together,
(12.5a) and (12.5b) are called Karush-Kuhn-Tucker (KKT) conditions.

12.4 CONSTRAINT QUALIFICATIONS

Conditions of the form LC(x̄) ⊂ co TC(x̄) in Theorem 12.4 are called constraint
qualifications (CQ), which are prerequisites for applying the KKT theorem.
In general, we cannot omit such conditions, as the following example shows.

Example 12.1. Consider the minimization problem

minimize x

subject to x3 ≥ 0.

Because the constraint x3 ≥ 0 is equivalent to x ≥ 0, the solution is clearly
x̄ = 0. However, suppose we mechanically apply the KKT theorem. Let f(x) =
x be the objective function and g(x) = −x3. Then the problem is

minimize f(x)
subject to g(x) ≤ 0.
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The Lagrangian is

L(x, λ) = f(x) + λg(x) = x− λx3.

At x̄ = 0, we obtain

∇xL(x̄, λ) = 1− 3λx̄2 = 1 ̸= 0,

so the first-order condition does not hold. The reason is that the tangent cone
is TC(x̄) = {x ∈ R : x ≥ 0} but the linearizing cone is

LC(x̄) = {y ∈ R : g′(x̄)y ≤ 0} = {y ∈ R : 0y ≤ 0} = R,

so LC(x̄) ̸⊂ co TC(x̄).

There are many constraint qualifications in the literature.

Guignard (GCQ). LC(x̄) ⊂ co TC(x̄).

Abadie (ACQ). LC(x̄) ⊂ TC(x̄).

Mangasarian-Fromovitz (MFCQ). {∇hj(x̄)}J
j=1 are linearly indepen-

dent, and there exists y ∈ RN such that ⟨∇gi(x̄), y⟩ < 0 for all i ∈ I(x̄)
and ⟨∇hj(x̄), y⟩ = 0 for all j.

Slater (SCQ). gi’s are convex, hj(x) = ⟨aj , x⟩ − cj with {aj}J
j=1 linearly

independent, and there exists x0 ∈ RN such that gi(x0) < 0 for all i and
hj(x0) = 0 for all j.

Linear independence (LICQ). The set of vectors

{∇gi(x̄)}i∈I(x̄) ∪ {∇hj(x̄)}J
j=1

is linearly independent.

The point of listing these constraint qualifications is that some of them
are general but hard to verify (GCQ and ACQ), while others are special but
easy to verify (SCQ and LICQ). Users of the KKT theorem need to select the
appropriate constraint qualification for the problem under consideration. The
following theorem shows the relation between these constraint qualifications.

Theorem 12.5. The following implications hold for constraint qualifications:

LICQ or SCQ =⇒ MFCQ =⇒ ACQ =⇒ GCQ.

Proof. ACQ =⇒ GCQ: Trivial because TC(x̄) ⊂ co TC(x̄).
MFCQ =⇒ ACQ: By dropping non-binding constraints if necessary,

without loss of generality we may assume all constraints bind, so I(x̄) =
{1, . . . , I}. Define G : RN → RI by G(x) = (g1(x), . . . , gI(x))′ and H : RN →
RJ by H(x) = (h1(x), . . . , hJ(x))′. Then MFCQ holds if and only if the J ×
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N Jacobian DH(x̄) has full row rank and there exists y ∈ RN such that
[DG(x̄)]y ≪ 0 and [DH(x̄)]y = 0, where v ≪ 0 means that all entries of v are
strictly negative.

Define the set

L̃C(x̄) =
{

y ∈ RN : [DG(x̄)]y ≪ 0, [DH(x̄)]y = 0
}

.

Since MFCQ holds, by definition we have L̃C(x̄) ̸= ∅. Since cl L̃C(x̄) = LC(x̄)
by the definition of the linearizing cone (12.4), and since TC(x̄) is closed, it
suffices to show L̃C(x̄) ⊂ TC(x̄).

Since DH(x̄) has full row rank, by relabeling the variables if necessary,
we may assume that we can split the variables as x = (x1, x2) ∈ RN−J × RJ

and write DH(x̄) = [Dx1H, Dx2H], where Dx2H = Dx2H(x̄) is invertible. By
the implicit function theorem (Theorem 8.3), for x close enough to x̄, we can
write

0 = H(x) = H(x1, x2) ⇐⇒ x2 = ϕ(x1), (12.7)

where ϕ is C1 and Dϕ = −[Dx2H]−1Dx1H.
Take any y = (y1, y2) ∈ L̃C(x̄), where y1 ∈ RN−J and y2 ∈ RJ . For small

enough t > 0, define

x(t) = (x1(t), x2(t)) = (x̄1 + ty1, ϕ(x̄1 + ty1)).

Let us show that x(0) = x̄, x(t) ∈ C for sufficiently small t > 0, and x′(0) = y,
which imply that y ∈ TC(x̄).

Since H(x̄) = 0, by the implicit function theorem we have x(0) =
(x̄1, ϕ(x̄1)) = (x̄1, x̄2) = x̄.

Using the chain rule, we obtain x′(0) = (y1, [Dϕ]y1). Since y ∈ L̃C(x̄), it
follows that

0 = [DH(x̄)]y = [DHx1 ]y1 + [DHx2 ]y2

⇐⇒ y2 = −[DHx2 ]−1[DHx1 ]y1 = [Dϕ]y1

by the implicit function theorem. Therefore x′(0) = (y1, y2) = y.
Finally, by the chain rule and the definition of L̃C(x̄), at t = 0 we have

d
dt

G(x(t))
∣∣∣∣
t=0

= [DG(x̄)]x′(0) = [DG(x̄)]y ≪ 0.

Therefore for small enough t > 0, we have

G(x(t))
t

= G(x(t))−G(x̄)
t

≪ 0

because G(x̄) = 0, so G(x(t))≪ 0. Since H(x(t)) = H(x1(t), ϕ(x1(t))) = 0, it
follows that x(t) ∈ C for small enough t > 0.

SCQ =⇒ MFCQ: Suppose that gi’s are convex, hj(x) = ⟨aj , x⟩ − cj
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where {aj}J
j=1 are linearly independent, and there exists x0 ∈ RN such that

gi(x0) < 0 for all i and hj(x0) = 0 for all j.
Since ∇hj = aj and {aj}J

j=1 are linearly independent, {∇hj(x̄)}J
j=1 are

linearly independent. If i ∈ I(x̄), since gi is convex, by Proposition 11.7 we
have

0 > gi(x0) = gi(x0)− gi(x̄) ≥ ⟨∇gi(x̄), x0 − x̄⟩ .

Setting y = x0 − x̄, we have ⟨∇gi(x̄), y⟩ < 0 for all i ∈ I(x̄). Since x̄, x0 are
feasible, we have ⟨aj , x̄⟩− cj = 0 and ⟨aj , x0⟩− cj = 0, so taking the difference
⟨∇hj(x̄), y⟩ = ⟨aj , x0 − x̄⟩ = 0. Therefore MFCQ holds.

LICQ =⇒ MFCQ: As in the previous case we may assume I(x̄) =
{1, . . . , I}. Suppose to the contrary that MFCQ does not hold. Then there
exist no y such that ⟨∇gi(x̄), y⟩ < 0 for all i and ⟨∇hj(x̄), y⟩ = 0 for all j.
Let G(x) = (g1(x), . . . , gI(x))′, H(x) = (h1(x), . . . , hJ(x))′, and define the

(I + J)×N matrix M by M =
[

DG(x̄)
DH(x̄)

]
. Define the sets A, B ⊂ RI+J by

A = −RI
++ × {0} ⊂ RI × RJ ,

B =
{

z ∈ RI+J : (∃y ∈ RN )z = My
}

.

Since MFCQ does not hold, we have A∩B = ∅. Clearly A, B are nonempty and
convex. By the separating hyperplane theorem (Theorem 10.2), there exists
0 ̸= a ∈ RI+J such that

sup
z∈A
⟨a, z⟩ ≤ inf

z∈B
⟨a, z⟩ = inf

y∈RN
a′My.

Since y 7→ a′My is linear and supz∈A ⟨a, z⟩ > −∞ because A ̸= ∅, in order
for the above inequality to hold, it is necessary that a′M = 0. Letting a =
(λ, µ) ∈ RI × RJ , then

0 = M ′a =
I∑

i=1
λi∇gj(x̄) +

J∑
j=1

µj∇hj(x̄).

Since a = (λ, µ) ̸= 0, {∇gi(x̄)}I
i=1 and {∇hj(x̄)}J

j=1 are not linearly indepen-
dent. Hence LICQ does not hold.

In many applications, constraints are linear. In that case the following
proposition shows that ACQ (hence GCQ) is automatically satisfied, so there
is no need to check it.

Proposition 12.6. Consider the minimization problem (12.3). If gi, hj’s are
all affine, then the Abadie constraint qualification holds.

Proof. Consider the equality constraint h(x) = 0, where h(x) = ⟨a, x⟩ − b
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with a ̸= 0. Clearly the equality constraint h(x) = 0 is equivalent to the two
inequality constraints

⟨a, x⟩ − b ≤ 0,

⟨−a, x⟩+ b ≤ 0.

Therefore without loss of generality, we may assume that there are no equality
constraints.

For each i = 1, . . . , I, let gi(x) = ⟨ai, x⟩ − bi, where 0 ̸= ai ∈ RN . Let
A := [a1, . . . , aI ]′ ∈ RI×N and b := (b1, . . . , bI)′ ∈ RI . Then the constraint set
is

C =
{

x ∈ RN : Ax ≤ b
}

.

Let x̄ ∈ C. By relabeling the constraints if necessary, without loss of generality
we may assume

gi(x̄)
{

= 0, (i ≤ I1)
< 0, (i > I1)

where I1 ≤ I. By partitioning A, b as A′ = [A′
1, A′

2] and b′ = (b′
1, b′

2), we then
have A1x̄ = b1 and A2x̄≪ b2. By the definition of the linearizing cone (12.4),
we have

LC(x̄) =
{

y ∈ RN : (∀i ≤ I1) ⟨ai, y⟩ ≤ 0
}

=
{

y ∈ RN : A1y ≤ 0
}

.

Let y ∈ LC(x̄). For small enough t > 0, define x(t) = x̄ + ty. Then

A1x(t) = A1(x̄ + ty) = b1 + tA1y ≤ b1

for all t > 0, and
A2x(t) = A2(x̄ + ty)→ A2x̄≪ b2

as t→ 0, so x(t) ∈ C for small enough t > 0. Therefore

y = lim
t→0

x(t)− x̄

t
∈ TC(x̄),

so LC(x̄) ⊂ TC(x̄).

Remark. Proposition 12.6 justifies Theorem 4.3. It is known that GCQ is the
weakest possible condition (Gould and Tolle, 1971).
Remark. The classical theorem of Lagrange states that if f , hj ’s are differen-
tiable, x̄ is a local solution to

minimize f(x)
hj(x) = 0, (j = 1, . . . , J)

and the vectors {∇hj(x̄)}J
j=1 are linearly independent, then there exists µ ∈

RJ such that

∇f(x̄) +
J∑

j=1
µj∇hj(x̄) = 0.
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The Lagrange theorem is usually proved by applying the implicit function
theorem. However, it is clear that the Lagrange theorem is a special case
of the KKT theorem (Theorem 12.4) by dropping inequality constraints and
applying the linear independence constraint qualification (LICQ).

12.5 SADDLE POINT THEOREM

The Karush-Kuhn-Tucker theorem (Theorem 12.4) provides a necessary con-
dition for a local solution assuming the differentiability of functions. In this
section we consider necessary and sufficient conditions for a global solution by
focusing on convex programming problems (minimization problems in which
the objective function and constraints are convex) but dropping differentia-
bility.

Consider the minimization problem (12.3), where f, gi’s are convex and
hj ’s are affine. Let

Ω := (dom f) ∩
I⋂

i=1
(dom gi) (12.8)

be the intersection of the domains of the objective function and the constraint
functions, which we assume to be nonempty. Since hj is affine, we may write
hj(x) = ⟨aj , x⟩−bj for aj ̸= 0. Without loss of generality, we may assume that
{aj} is linearly independent, for otherwise either the constraint set is empty
or some constraints are redundant (Problem 12.4). Letting A = [a1, . . . , aJ ]′ ∈
RJ×N and b = (b1, . . . , bJ)′ ∈ RJ , the equality constraints can be compactly
written as Ax− b = 0.

Define the Lagrangian by

L(x, λ, µ) =
{

f(x) +
∑I

i=1 λigi(x) +
∑J

j=1 µjhj(x), (λ ∈ RI
+)

−∞, (λ /∈ RI
+)

(12.9)

where λ = (λ1, . . . , λI) ∈ RI and µ = (µ1, . . . , µJ) ∈ RJ are Lagrange mul-
tipliers. (We simply define L to be −∞ when λ /∈ RI

+ to avoid mentioning
this constraint.) A point (x̄, λ̄, µ̄) ∈ Ω× RI × RJ is called a saddle point if it
achieves the minimum with respect to x and maximum with respect to (λ, µ).
Formally, (x̄, λ̄, µ̄) is a saddle point if

L(x̄, λ, µ) ≤ L(x̄, λ̄, µ̄) ≤ L(x, λ̄, µ̄) (12.10)

for all (x, λ, µ) ∈ Ω× RI × RJ .
The following theorem provides necessary and sufficient conditions for op-

timality.

Theorem 12.7 (Saddle point theorem). Consider the minimization problem
(12.3), where f, gi’s are convex and hj’s are affine. Let Ω in (12.8) be the
effective domain and

(h1(x), . . . , hJ(x))′ = Ax− b,
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where A ∈ RJ×N and b ∈ RJ . Then the following statements are true.

(i) If (a) x̄ is a solution to the minimization problem (12.3), (b) there ex-
ists x0 ∈ RN such that gi(x0) < 0 for all i and Ax0 − b = 0, and
(c) 0 ∈ int(AΩ − b), then there exist Lagrange multipliers λ̄ ∈ RI

+ and
µ̄ ∈ RJ such that (x̄, λ̄, µ̄) is a saddle point of L.

(ii) If there exist Lagrange multipliers λ̄ ∈ RI
+ and µ̄ ∈ RJ such that (x̄, λ̄, µ̄)

is a saddle point of L, then x̄ is a solution to the minimization problem
(12.3).

Proof. We prove claim (i). Suppose x̄ ∈ Ω is a solution to (12.3). Define the
sets C, D ⊂ R1+I+J by

C =
{

(u, v, w) ∈ R1+I+J : (∃x ∈ Ω)u ≥ f(x), (∀i)vi ≥ gi(x), w = Ax− b
}

,

D =
{

(u, v, w) ∈ R1+I+J : u < f(x̄), (∀i)vi < 0, (∀j)wj = 0
}

.

(See Figure 12.3 for the case J = 0.)

v

u

f(x̄)

C

D

0

FIGURE 12.3: Saddle point theorem.

Clearly C, D are convex since f, gi’s are convex and Ω is convex. Since

(f(x̄), v̄, Ax̄− b) ∈ C

for v̄i = gi(x̄), C is nonempty. Letting v0i = gi(x0) < 0, v0 = (v01, . . . , v0I),
and u0 < f(x̄), we have (u0, v0, 0) ∈ D, so D is nonempty. If (u, v, w) ∈ C∩D,
since (u, v, w) ∈ D we have u < f(x̄), v ≪ 0, and w = 0. Then since (u, v, 0) ∈
C there exists x ∈ Ω such that f(x) ≤ u < f(x̄), gi(x) < 0 for all i, and
Ax − b = 0, contradicting the optimality of x̄. Therefore C ∩D = ∅. By the
separating hyperplane theorem (Theorem 10.2), there exists 0 ̸= (α, β, γ) ∈
R× RI × RJ such that

sup
(u,v,w)∈D

αu + ⟨β, v⟩+ ⟨γ, w⟩ ≤ inf
(u,v,w)∈C

αu + ⟨β, v⟩+ ⟨γ, w⟩ . (12.11)
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Taking (u, v, w) ∈ D and letting u→ −∞, it must be α ≥ 0. Similarly, letting
vi → −∞, it must be βi ≥ 0 for all i.

Let us show that α > 0. Let 1 = (1, . . . , 1) denote the vector of ones. For
any ϵ > 0, we have (f(x̄)− ϵ,−ϵ1, 0) ∈ D, so (12.11) implies

α(f(x̄)− ϵ)− ϵ ⟨β, 1⟩ ≤ αf(x) +
I∑

i=1
βigi(x) +

J∑
j=1

γjhj(x) (12.12)

for any x. Letting x = x0 and ϵ→ 0, we obtain

αf(x̄) ≤ αf(x0) +
I∑

i=1
βigi(x0).

Suppose to the contrary that α = 0. Then
∑I

i=1 βigi(x0) ≥ 0. Since by as-
sumption gi(x0) < 0, it must be βi = 0 for all i. If J = 0 (no equality
constraints), then (α, β) = 0, a contradiction. If J > 0, then (12.11) implies

sup
(u,v,w)∈D

⟨γ, w⟩ ≤ inf
(u,v,w)∈C

⟨γ, w⟩ ⇐⇒ (∀x ∈ Ω) ⟨γ, Ax− b⟩ ≥ 0.

Since by assumption 0 is an interior point of AΩ− b, for small enough δ > 0
there exists x ∈ Ω with −δγ = Ax− b. Therefore −δ ∥γ∥2 ≥ 0 implies γ = 0.
Then (α, β, γ) = 0, a contradiction. Hence α > 0.

Now that we know α > 0, define λ̄ = β/α and µ̄ = γ/α. Then letting
ϵ→ 0 in (12.12), we obtain

f(x̄) ≤ f(x) +
I∑

i=1
λ̄igi(x) +

J∑
j=1

µ̄jhj(x) = L(x, λ̄, µ̄) (12.13)

for all x. Since λ̄i ≥ 0 and gi(x̄) ≤ 0 for all i and hj(x̄) = 0 for all j, it follows
from (12.13) that

L(x̄, λ̄, µ̄) = f(x̄) +
I∑

i=1
λ̄igi(x̄) +

J∑
j=1

µ̄jhj(x̄)

≤ f(x̄) ≤ f(x) +
I∑

i=1
λ̄igi(x) +

J∑
j=1

µ̄jhj(x) = L(x, λ̄, µ̄),

which is the right inequality of (12.10). Furthermore, since hj(x̄) = 0 for all
j, it must be λ̄igi(x̄) = 0 for all i.

It remains to show the left inequality of (12.10). If λ /∈ RI
+, by the definition

of the Lagrangian in (12.9), we have L(x, λ, µ) = −∞, so it is trivial. If λ ∈ RI
+,

then since gi(x̄) ≤ 0 and hj(x̄) = 0, we obtain

L(x̄, λ, µ) = f(x̄) +
I∑

i=1
λigi(x̄) +

J∑
j=1

µjhj(x̄)

≤ f(x̄) = L(x̄, λ̄, µ̄),
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which is the left inequality of (12.10).
We next prove claim (ii). Assume that (x̄, λ̄, µ̄) ∈ Ω×RI

+×RJ is a saddle
point of L. By the left inequality of (12.10), for any λ ∈ RI

+ and µ ∈ RJ we
obtain

f(x̄) +
I∑

i=1
λigi(x̄) +

J∑
j=1

µjhj(x̄) ≤ f(x̄) +
I∑

i=1
λ̄igi(x̄) +

J∑
j=1

µ̄jhj(x̄)

=⇒
I∑

i=1
λigi(x̄) +

J∑
j=1

µjhj(x̄) ≤
I∑

i=1
λ̄igi(x̄) +

J∑
j=1

µ̄jhj(x̄).

Letting µj → ±∞, it must be hj(x̄) = 0 for all j. Letting λi → ∞, we get
gi(x̄) ≤ 0 for all i. Letting λ = 0, we get 0 ≤

∑I
i=1 λ̄igi(x̄), so it must be

λ̄igi(x̄) = 0 for all i. Then by the right inequality of (12.10), for any x ∈ Ω
we obtain

f(x̄) +
I∑

i=1
λ̄igi(x̄) +

J∑
j=1

µ̄jhj(x̄) ≤ f(x) +
I∑

i=1
λ̄igi(x) +

J∑
j=1

µ̄jhj(x)

=⇒ f(x̄) ≤ f(x) +
I∑

i=1
λ̄igi(x) +

J∑
j=1

µ̄jhj(x).

Since λ̄i ≥ 0, if gi(x) ≤ 0 and hj(x) = 0 it follows that f(x̄) ≤ f(x), so x̄ is a
solution to the constrained minimization problem (12.3).

12.6 DUALITY

An application of the saddle point theorem (Theorem 12.7) is to convert a
constrained optimization problem into another (potentially) simpler problem.

Consider the constrained minimization problem

minimize f(x)
subject to gi(x) ≤ 0 (i = 1, . . . , I) (12.14)

with Lagrangian

L(x, λ) =
{

f(x) +
∑I

i=1 λigi(x), (λ ∈ RI
+)

−∞. (λ /∈ RI
+)

(12.15)

The following discussion can easily accommodate equality constraints as well
but we omit for simplicity. Suppose the assumptions of the saddle point the-
orem (Theorem 12.7) are satisfied, so there exists a saddle point (x̄, λ̄):

L(x̄, λ ≤ L(x̄, λ̄) ≤ L(x, λ̄)
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for all (x, λ). Taking the supremum over λ and infimum over x, we obtain

sup
λ

L(x̄, λ) ≤ L(x̄, λ̄) ≤ inf
x

L(x, λ̄).

Therefore viewing x̄ in the left-hand side and λ̄ as free variables, we obtain

inf
x

sup
λ

L(x, λ) ≤ L(x̄, λ̄) ≤ sup
λ

inf
x

L(x, λ). (12.16)

On the other hand, L(x, λ) ≤ supλ L(x, λ) always, so taking the infimum with
respect to x, we get

inf
x

L(x, λ) ≤ inf
x

sup
λ

L(x, λ).

Noting that the right-hand side is just a constant, taking the supremum of
the left-hand side with respect to λ, we get

sup
λ

inf
x

L(x, λ) ≤ inf
x

sup
λ

L(x, λ). (12.17)

Combining (12.16) and (12.17), it follows that

L(x̄, λ̄) = inf
x

sup
λ

L(x, λ) = sup
λ

inf
x

L(x, λ). (12.18)

Define the functions

θ(x) = sup
λ

L(x, λ),

ω(λ) = inf
x

L(x, λ).

Then (12.18) is equivalent to

L(x̄, λ̄) = inf
x

θ(x) = sup
λ

ω(λ). (12.19)

Note that by the definition of the Lagrangian (12.15), we have

θ(x) = sup
λ

L(x, λ) =
{

f(x) if gi(x) ≤ 0 for all i,
∞ if gi(x) > 0 for some i.

Therefore the constrained minimization problem (12.14) is equivalent to the
unconstrained minimization problem

minimize θ(x). (P)

For this reason the problem (P) is called the primal problem. In view of (12.19),
define the dual problem by

maximize ω(λ). (D)
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Then (12.19) implies that the primal and dual values coincide.
The above discussion suggests that to solve the constrained minimization

problem (12.14) and hence the primal problem (P), it might be sufficient to
solve the dual problem (D). Since L(x, λ) is linear in λ, ω(λ) = infx L(x, λ) is
always a concave function of λ no matter what f or gi’s are. Therefore we can
expect that solving the dual problem is much easier than solving the primal
problem.

Example 12.2 (Linear programming). A typical linear programming prob-
lem is

minimize ⟨c, x⟩
subject to Ax ≥ b,

where x ∈ RN is the vector of decision variables, c ∈ RN is the vector of
coefficients, A is an M ×N matrix, and b ∈ RM is a vector. The Lagrangian
is

L(x, λ) = ⟨c, x⟩+ ⟨λ, b−Ax⟩ ,

where λ ∈ RM
+ is the vector of Lagrange multipliers. Since

ω(λ) = inf
x

L(x, λ) = inf
x

[⟨c−A′λ, x⟩+ ⟨b, λ⟩]

=
{
⟨b, λ⟩ , (A′λ = c)
−∞, (A′λ ̸= c)

the dual problem is

maximize ⟨b, λ⟩
subject to A′λ = c, λ ≥ 0.

Example 12.3 (Entropy maximization). Let p = (p1, . . . , pN ) be a multino-
mial distribution, so pn ≥ 0 and

∑N
n=1 pn = 1. The quantity

H(p) := −
N∑

n=1
pn log pn

is called the entropy of p.
In many applications, we want to find the distribution p that has the max-

imum entropy satisfying some moment constraints. Suppose the constraints
are given by

N∑
n=1

ainpn = bi,

where i = 1, . . . , I. Since maximizing H is equivalent to minimizing −H, the
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problem is

minimize
N∑

n=1
pn log pn

subject to
N∑

n=1
ainpn = bi, (i = 0, . . . , I) (12.20)

where ain’s and bi’s are given and we define a0n = 1 and b0 = 1 to accommo-
date the constraint

∑
n pn = 1 (accounting of probability).

If the number of unknown variables N is large (say N ∼ 10000), then
it would be difficult to solve the problem even using a computer since the
objective function pn log pn is nonlinear. However, it turns out that the dual
problem is very simple.

Although p log p is not well-defined when p ≤ 0, define

p log p =
{

0, (p = 0)
∞. (p < 0)

Then the constraint pn ≥ 0 is built into the problem. The Lagrangian is

L(p, λ) =
N∑

n=1
pn log pn +

I∑
i=0

λi

(
bi −

N∑
n=1

ainpn

)

= ⟨b, λ⟩+
N∑

n=1
(pn log pn − ⟨an, λ⟩ pn) ,

where b = (b0, . . . , bI) and an = (a0n, . . . , aIn). To derive the dual problem,
we need to compute infp L(p, λ), which reduces to computing

inf
p

[p log p− cp]

for c = ⟨an, λ⟩ above. However, this problem is a straightforward one-variable
optimization problem. Since the objective function is convex, differentiating
with respect to p, the first-order condition is

log p + 1− c = 0 ⇐⇒ p = ec−1, (12.21)

with minimum value

p log p− cp = ec−1(c− 1)− cec−1 = −ec−1.

Substituting pn = e⟨an,λ⟩−1 in the Lagrangian, after some algebra the objective
function of the dual problem becomes

ω(λ) = inf
p

L(p, λ) = ⟨b, λ⟩ −
N∑

n=1
e⟨an,λ⟩−1.
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Hence the dual problem of (12.20) is

maximize ⟨b, λ⟩ −
N∑

n=1
e⟨an,λ⟩−1. (12.22)

Numerically solving (12.22) is much easier than (12.20) because the dual prob-
lem (12.22) is unconstrained and the number of unknown variables 1 + I is
typically much smaller than N . After solving (12.22), using (12.21), we may
recover the optimal probability as pn = e⟨an,λ⟩−1. For more discussion of du-
ality in entropy-like minimization problems, see Borwein and Lewis (1991).

Example 12.4 (General case). More generally, consider

minimize f(x)
subject to Ax = b.

The Lagrangian is

L(x, λ) = f(x) + ⟨λ, b−Ax⟩
= ⟨b, λ⟩+ f(x)− ⟨A′λ, x⟩ .

Therefore the dual objective function is

ω(λ) = inf
x

L(x, λ) = ⟨b, λ⟩ − f∗(A′λ),

where
f∗(ξ) := sup

x
[⟨ξ, x⟩ − f(x)]

is called the convex conjugate function of f . Noting that ⟨ξ, x⟩− f(x) is affine
in ξ, by Proposition 11.3, f∗ is always convex. Therefore ω is concave. As long
as the convex conjugate function f∗ can be computed analytically, the primal
problem can be solved by maximizing the dual objective function ω.

12.7 SUFFICIENT CONDITIONS

The Karush-Kuhn-Tucker theorem (Theorem 12.4) provides necessary condi-
tions for optimality: if the constraint qualification holds, then a local solution
must satisfy the KKT conditions (first-order and complementary slackness
conditions). We next consider sufficient conditions.

The following theorem shows that for convex programming problems, the
first-order condition is sufficient.

Theorem 12.8 (Sufficiency of KKT conditions for convex programming).
Consider the minimization problem (12.3), where f, gi’s are differentiable and
convex and hj’s are affine. If x̄, λ, µ satisfy the KKT conditions, then x̄ is a
solution.
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Proof. Let L(x, λ, µ) be the Lagrangian in (12.6). Since f, gi’s are convex, hj ’s
are affine, and λ ≥ 0, by Proposition 11.2, L is convex in x. By assumption, the
first-order condition (12.5a) holds at x̄, so ∇xL(x̄, λ, µ) = 0. By Proposition
11.8, x̄ achieves the minimum of L. Therefore, for any feasible x, it follows
that

f(x̄) = f(x̄) +
I∑

i=1
λigi(x̄) +

J∑
j=1

µjhj(x̄) (∵ (12.5b), hj(x̄) = 0)

= L(x̄, λ, µ) ≤ L(x, λ, µ) (∵ ∇xL(x̄, λ, µ) = 0)

= f(x) +
I∑

i=1
λigi(x) +

J∑
j=1

µjhj(x)

≤ f(x). (∵ λi ≥ 0, gi(x) ≤ 0, hj(x) = 0)

Therefore x̄ is a solution.

Theorem 12.8 is very useful. The reason is that the KKT conditions are
sufficient for optimality, and there is no need to verify the Slater condition
(unlike for necessity in Theorem 12.4). A typical application is the utility
maximization problem discussed in Chapter 4.

Recipe for solving convex minimization problems
(i) Verify that the functions f, gi's are di�erentiable and convex and hj 's are

a�ne.

(ii) De�ne the Lagrangian

L(x, λ, µ) = f(x) +
I∑

i=1

λigi(x) +
J∑

j=1

µjhj(x).

Derive the �rst-order condition (12.5a) and complementary slackness condi-
tion (12.5b).

(iii) Solve these conditions. If there is a solution x̄, it is a solution to the minimiza-
tion problem.

When f, gi are not convex but only quasi-convex, we can still give a suf-
ficient condition for optimality. The following theorem is important for eco-
nomic analysis because in many situations, the objective function is quasi-
convex but not necessarily convex.
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Theorem 12.9 (Sufficiency of KKT conditions for quasi-convex program-
ming). Consider the minimization problem (12.3), where f, gi’s are differen-
tiable and quasi-convex and hj’s are affine. If the Slater condition holds (so
there exists x0 such that gi(x0) < 0 for all i and hj(x0) = 0 for all j), x̄, λ, µ
satisfy the KKT conditions, and ∇f(x̄) ̸= 0, then x̄ is a solution.

Proof. Since hj is affine, we may write hj(x) = ⟨aj , x⟩ − bj . Then ∇hj = aj .
Let us show

⟨∇f(x̄), x− x̄⟩ ≥ 0 (12.23)

for all feasible x. Multiplying x − x̄ as an inner product to the first-order
condition (12.5a), we obtain

⟨∇f(x̄), x− x̄⟩ = −
I∑

i=1
λi ⟨∇gi(x̄), x− x̄⟩ −

J∑
j=1

µj ⟨aj , x− x̄⟩ . (12.24)

Since x, x̄ are both feasible, we have ⟨aj , x⟩ = ⟨aj , x̄⟩ = bj , so ⟨aj , x− x̄⟩ = 0.
Hence by (12.24), to show (12.23), it suffices to show λi ⟨∇gi(x̄), x− x̄⟩ ≤ 0
for all i. If gi(x̄) < 0, by complementary slackness we have λi = 0, so the
claim is trivial. If gi(x̄) = 0, since x is feasible, we have gi(x) ≤ 0 = gi(x̄).
Hence by Proposition 11.10, we have ⟨∇gi(x̄), x− x̄⟩ ≤ 0. Since λi ≥ 0, we
have λi ⟨∇gi(x̄), x− x̄⟩ ≤ 0. Thus (12.23) holds.

Consider the point x0 in the Slater condition. For sufficiently small ϵ > 0,
define x1 = x0 + ϵ∇f(x̄). Then

⟨∇f(x̄), x1 − x̄⟩ = ⟨∇f(x̄), x0 + ϵ∇f(x̄)− x̄⟩

= ⟨∇f(x̄), x0 − x̄⟩+ ϵ ∥∇f(x̄)∥2
> 0,

where the last inequality follows from (12.23) for x = x0 and ∇f(x̄) ̸= 0. Take
any feasible x. Since (12.23) holds, for any t ∈ (0, 1) we have

⟨∇f(x̄), (1− t)x + tx1 − x̄⟩ = ⟨∇f(x̄), (1− t)(x− x̄) + t(x1 − x̄)⟩
= (1− t) ⟨∇f(x̄), x− x̄⟩+ t ⟨∇f(x̄), x1 − x̄⟩ > 0.

Since f is quasi-convex, by Proposition 11.10 this inequality implies that

f((1− t)x + tx1) > f(x̄).

Letting t→ 0, we get f(x) ≥ f(x̄). Since x is arbitrary, x̄ is a solution.

Example 12.5 (Utility maximization problem). Consider the utility maxi-
mization problem introduced in Chapter 0:

maximize u(x)
subject to ⟨p, x⟩ ≤ w,

x ≥ 0.
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Here u : RN
++ → R is the utility function, which we assume to be differentiable

and quasi-concave, p≫ 0 is the price vector, and w > 0 is the wealth. Assume
the agent prefers more consumption to less, so ∇u ≫ 0. Furthermore, to
prevent zero consumption, suppose for each n the Inada condition ∂u/∂xn →
∞ as xn → 0 holds. (See Proposition 4.4 for details.)

Since the utility maximization problem is a maximization problem, we
convert the inequality constraint to w − ⟨p, x⟩ ≥ 0. Hence the Lagrangian is

L(x, λ) = u(x) + λ(w − ⟨p, x⟩).

The first-order condition is

0 = ∇xL(x, λ) = ∇u(x)− λp.

By assumption, we have ∇u(x) ̸= 0. Therefore if we can find x̄, λ ∈ RN

such that the first-order condition and the complementary slackness condition
λ(w − ⟨p, x⟩) = 0 hold, by Theorem 12.9, x̄ is a solution. If in addition u is
strictly quasi-concave, then the solution is unique by Proposition 11.1.

For general nonlinear programming problems, we can only hope to obtain
sufficient conditions for local optimality. Consider the minimization problem
(12.3). Assume that the KKT conditions (12.5) hold at x̄ with corresponding
Lagrange multipliers λ ∈ RI

+ and µ ∈ RJ . Recall that the active set of the
inequality constraints is I(x̄) = {i : gi(x̄) = 0}. Let Ĩ(x̄) = {i : λi > 0} be the
set of constraints such that the Lagrange multiplier is positive. Since λigi(x̄) =
0 by complementary slackness, λi > 0 implies gi(x̄) = 0, so necessarily Ĩ(x̄) ⊂
I(x̄). Define the cone

L̃C(x̄) =
{

y ∈ RN : (∀i ∈ I(x̄)\Ĩ(x̄)) ⟨∇gi(x̄), y⟩ ≤ 0,

(∀i ∈ Ĩ(x̄)) ⟨∇gi(x̄), y⟩ = 0, (∀j) ⟨∇hj(x̄), y⟩ = 0
}

. (12.25)

Clearly L̃C(x̄) ⊂ LC(x̄). The following theorem gives a second-order sufficient
condition for local optimality.

Theorem 12.10 (Sufficient condition for local optimality). Suppose that
f, gi, hj’s are C2, the KKT conditions (12.5) hold at x = x̄, and〈

y,∇2
xL(x̄, λ, µ)y

〉
> 0 (12.26)

for all 0 ̸= y ∈ L̃C(x̄). Then x̄ is a strict local solution to the minimization
problem (12.3).

Proof. Suppose that x̄ is not a strict local solution. Then we can take a se-
quence C ∋ xk → x̄ such that f(xk) ≤ f(x̄). Let αk = 1/

∥∥xk − x̄
∥∥ > 0. Then∥∥αk(xk − x̄)

∥∥ = 1, so by taking a subsequence if necessary we may assume
αk(xk − x̄)→ y with ∥y∥ = 1. Let us show that y ∈ L̃C(x̄).
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Multiplying both sides of

f(xk)− f(x̄) ≤ 0, gi(xk)− gi(x̄) ≤ 0 (i ∈ I(x̄)), hj(xk)− hj(x̄) = 0

by αk and letting k →∞, we get

⟨∇f(x̄), y⟩ ≤ 0, ⟨∇gi(x̄), y⟩ ≤ 0 (i ∈ I(x̄)), ⟨∇hj(x̄), y⟩ = 0. (12.27)

Multiplying both sides of the first-order condition (12.5a) by y as an inner
product, noting that λi = 0 if i /∈ I(x̄) by complementary slackness, and
using (12.27), we get

⟨∇f(x̄), y⟩+
∑

i∈I(x̄)

λi ⟨∇gi(x̄), y⟩ = 0.

Again by (12.27) it must be ⟨∇f(x̄), y⟩ = 0 and λi ⟨∇gi(x̄), y⟩ = 0 for all
i ∈ I(x̄). Therefore if i ∈ Ĩ(x̄), so λi > 0, it must be ⟨∇gi(x̄), y⟩ = 0. Hence
by definition we have y ∈ L̃C(x̄).

Since f(xk) ≤ f(x̄), λi ≥ 0, gi(xk) ≤ 0, and λigi(x̄) = 0, it follows that

L(xk, λ, µ) = f(xk) +
∑

i∈I(x̄)

λigi(xk) ≤ f(x̄) = L(x̄, λ, µ).

By Taylor’s theorem, we have

0 ≥L(xk, λ, µ)− L(x̄, λ, µ) =
〈
∇xL(x̄, λ, µ), xk − x̄

〉
+ 1

2
〈
xk − x̄,∇2

xL(x̄, λ, µ)(xk − x̄)
〉

+ o(
∥∥xk − x̄

∥∥2).

By the KKT conditions, the first term in the right-hand side is zero. Multi-
plying both sides by α2

k and letting k →∞, we get

0 ≥ 1
2
〈
y,∇2

xL(x̄, λ, µ)y
〉

,

which contradicts (12.26). Therefore x̄ is a strict local solution.

12.8 PARAMETRIC DIFFERENTIABILITY

In many applications, the optimization problem contains some parameters.
For example, in the utility maximization problem

maximize u(x)
subject to ⟨p, x⟩ ≤ w,

where u : RN
++ → R is the utility function, p ∈ RN

++ is the price vector, and
w > 0 is the wealth, the control variable is x while p, w are parameters. In such
cases, we may view the solution x̄ as a function x̄(p, w) of parameters, and we
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may be interested in knowing how the parameters p, w affect the solution as
well as the optimal value.

More generally, consider the parametric minimization problem

minimize
x

f(x, θ)

subject to gi(x, θ) ≤ 0 (i = 1, . . . , I). (12.28)

Here x ∈ RN is the control variable, θ ∈ Θ is a parameter (Θ is an open set
in some Euclidean space), and for simplicity we consider only inequality con-
straints. (The case with equality constraints is similar and is left to Problem
12.5.) Let

ϕ(θ) = inf
x
{f(x, θ) : (∀i)gi(x, θ) ≤ 0}

be the minimum value function. We are interested in how ϕ(θ) changes to-
gether with θ.

Recall the second-order sufficient condition for optimality (Theorem
12.10). The active set of the inequality constraints is I(x̄) = {i : gi(x̄) = 0},
and let Ĩ(x̄) = {i : λi > 0} be the set of constraints such that the Lagrange
multiplier is positive. Since λigi(x̄) = 0 by complementary slackness, λi > 0
implies gi(x̄) = 0, so necessarily Ĩ(x̄) ⊂ I(x̄). Define the cone L̃C(x̄) by
(12.25). The second-order sufficient condition for local optimality is (12.26).

The following theorem shows that, under the linear independence con-
straint qualification (LICQ) and strict complementary slackness, the solution
and Lagrange multipliers of the parametric optimization problem (12.28) de-
pend smoothly on the parameter θ.

Theorem 12.11 (Parametric differentiability). Suppose that the parametric
optimization problem (12.28) has a local solution x̄ ∈ RN for parameter θ̄ ∈ Θ.
Suppose that f , gi’s are C2 in x and C1 in θ around (x̄, θ̄). Assume that

(i) the vectors
{
∇xgi(x̄, θ̄)

}
i∈I(x̄) are linearly independent, so the Karush-

Kuhn-Tucker theorem holds with Lagrange multiplier λ̄ ∈ RI
+,

(ii) strict complementary slackness holds, so gi(x̄, θ̄) = 0 implies λ̄i > 0 and
therefore I(x̄) = Ĩ(x̄), and

(iii) the second-order condition (12.26) holds.

Then there exists a neighborhood U of θ̄ and C1 functions x(θ), λ(θ) such
that for any θ ∈ U , x(θ) is the local solution to the parametric optimization
problem (12.28) and λ(θ) is the corresponding Lagrange multiplier.

In our case, since strict complementary slackness holds and there are no
equality constraints, condition (12.26) reduces to

y ̸= 0, (∀i ∈ I(x̄))
〈
∇xgi(x̄, θ̄), y

〉
= 0 =⇒

〈
y,∇2

xL(x̄, λ̄, θ̄)y
〉

> 0. (12.29)

We need the following lemma in order to prove the theorem.
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Lemma 12.12. Let everything be as in Theorem 12.11. Define the (N + I)×
(N + I) matrix A by

A =


∇2

xL ∇xg1 · · · ∇xgI

λ̄1∇xg′
1 g1 · · · 0

...
...

. . .
...

λ̄I∇xg′
I 0 · · · gI

 ,

where all functions are evaluated at (x̄, λ̄, θ̄). Then A is invertible.

Proof. Suppose that

A

[
v
w

]
= 0,

where v ∈ RN and w ∈ RI . By Theorem 5.9, it suffices to show v = 0 and
w = 0. By the definition of A, we get

∇2
xLv +

I∑
i=1

wi∇xgi = 0, (12.30a)

(∀i) λ̄i ⟨∇xgi, v⟩+ wigi = 0. (12.30b)

For i ∈ I(x̄) (hence gi(x̄, θ̄) = 0), by (12.30b) and strict complementary
slackness we have λ̄i > 0 and therefore ⟨∇xgi, v⟩ = 0. For i /∈ I(x̄) (hence
gi(x̄, θ̄) < 0), again by (12.30b) and strict complementary slackness we have
λ̄i = 0 and therefore wi = 0. Therefore (12.30a) becomes

∇2
xLv +

∑
i∈I(x̄)

wi∇xgi = 0. (12.31)

Multiplying (12.31) by v as an inner product and using ⟨∇xgi, v⟩ = 0 for
i ∈ I(x̄), we obtain 〈

v,∇2
xLv

〉
= 0.

By condition (12.29), it must be v = 0. Then by (12.31) we obtain∑
i∈I(x̄)

wi∇xgi = 0.

Since {∇xgi}i∈I(x̄) are linearly independent, it must be wi = 0 for all i. There-
fore v = 0 and w = 0.

Proof of Theorem 12.11. Define f : RN × RI ×Θ→ RN × RI by

f(x, λ, θ) =


∇xL(x, λ, θ)

λ1gi(x, θ)
...

λIgI(x, θ)

 .
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Then the Jacobian of f with respect to (x, λ) evaluated at (x̄, λ̄, θ̄) is A, which
is invertible by Lemma 12.12. Furthermore, since x̄ is a local solution corre-
sponding to θ = θ̄, by the KKT Theorem we have f(x̄, λ̄, θ̄) = 0. Therefore
by the implicit function theorem (Theorem 8.3), there exists a neighborhood
U of θ̄ and C1 functions x(θ), λ(θ) such that

f(x(θ), λ(θ), θ) = 0

for θ ∈ U . By the second-order sufficient condition (Theorem 12.10), x(θ) is
the strict local solution to the parametric optimization problem (12.28) and
λ(θ) is the corresponding Lagrange multiplier.

If we further assume the quasi-convexity of objective and constraint func-
tions, we can strengthen Theorem 12.11 as follows.

Corollary 12.13 (Parametric differentiability with quasi-convexity). Con-
sider the setting in Theorem 12.11. Suppose in addition that each gi is quasi-
convex and f is differentiably strictly quasi-convex in x in the sense that

⟨∇xf(x, θ), v⟩ = 0 =⇒
〈
v,∇2

xf(x, θ)v
〉

> 0 (12.32)

for all v ̸= 0 (see Proposition 11.11). Then under conditions (i) and (ii), the
conclusion of Theorem 12.11 is true.

Proof. By Theorem 12.11, it suffices to show the second-order condition, which
reduces to (12.29). Under the maintained assumptions, note that the cone
L̃C(x̄) in (12.25) is given by

L̃C(x̄) =
{

y ∈ RN : (∀i ∈ I(x̄)) ⟨∇xgi, y⟩ = 0
}

,

where we write ∇xgi = ∇xgi(x̄, θ̄). Since each gi is quasi-convex, by Proposi-
tion 11.11, for any 0 ̸= y ∈ L̃C(x̄), we have

〈
y,∇2

xgiy
〉
≥ 0. By the first-order

condition, we have

∇xf = −
I∑

i=1
λi∇xgi = −

∑
i∈I(x̄)

λi∇xgi.

Multiplying 0 ̸= y ∈ L̃C(x̄) as an inner product, we obtain

⟨∇xf, y⟩ = −
∑

i∈I(x̄)

λi ⟨∇xgi, y⟩ = 0.

Therefore using (12.32), we obtain
〈
y,∇2

xfy
〉

> 0. Therefore〈
y,∇2

xLy
〉

=
〈
y,∇2

xfy
〉

+
∑

i∈I(x̄)

λi

〈
y,∇2

xgiy
〉

> 0,

so (12.29) holds.
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Using parametric differentiability and applying the chain rule, we obtain
the following envelope theorem.

Theorem 12.14 (Envelope theorem). Let everything be as in Theorem 12.11.
Let ϕ(θ) = f(x(θ), θ) be the local minimum value function and

L(x, λ, θ) = f(x, θ) +
I∑

i=1
λigi(x, θ)

the Lagrangian. Then ϕ is differentiable and

∇ϕ(θ) = ∇θL(x(θ), λ(θ), θ). (12.33)

Proof. The existence and differentiability of ϕ follow from Theorem 12.11. By
the definition of ϕ and complementary slackness, we obtain

ϕ(θ) = f(x(θ), θ) = L(x(θ), λ(θ), θ).

Differentiating both sides with respect to θ and applying the chain rule, we
get

Dθϕ(θ)︸ ︷︷ ︸
1×H

= DxL︸︷︷︸
1×N

Dθx(θ)︸ ︷︷ ︸
N×H

+ DλL︸︷︷︸
1×I

Dθλ(θ)︸ ︷︷ ︸
I×H

+ DθL︸︷︷︸
1×H

,

where H denotes the dimension of Θ. By the KKT theorem, we have DxL = 0.
By strict complementary slackness, we have λi(θ) = 0 for i /∈ I(x̄) and

Dλi
L(x(θ), λ(θ), θ) = gi(x(θ), θ) = 0

for i ∈ I(x̄), so DλLDθλ(θ) = 0. Therefore ∇ϕ(θ) = ∇θL(x(θ), λ(θ), θ).

Remark. The result (12.33) implies that we can compute the derivative of
ϕ by differentiating the Lagrangian with respect to the parameter θ alone,
treating x and λ as constants.

Corollary 12.15. Consider the special case

minimize
x

f(x)

subject to gi(x) ≤ θi (i = 1, . . . , I).

Then ∇ϕ(θ) = −λ(θ).

Proof. The Lagrangian is

L(x, λ, θ) = f(x) +
I∑

i=1
λi[gi(x)− θi].

By the envelope theorem, ∇ϕ(θ) = ∇θL(x(θ), λ(θ), θ) = −λ(θ).

Remark. Corollary 12.15 implies that the Lagrange multiplier equals the rate
of change in the optimal value when the corresponding constraint is relaxed
or tightened. For this reason, sometimes we interpret the Lagrange multiplier
as the shadow price.
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12.9 PARAMETRIC CONTINUITY

For a parametric optimization problem such as (12.28), the sufficient con-
ditions for parametric differentiability in Theorem 12.11 are rather strong.
In many applications, we may not need differentiability but only continuity.
Thus we seek to provide relatively weak sufficient conditions for parametric
continuity.

To this end, we introduce some terminology. Let X, Y be nonempty sets.
If for each x ∈ X there corresponds a subset Γ(x) ⊂ Y , we say that Γ is a
correspondence (or multi-valued function) from X to Y and denote it by Γ :
X ↠ Y . Note that we use an arrow with two heads “↠” for a correspondence,
while we use the usual arrow “→” for a function. Another common notation
for a correspondence is Γ : X ⇒ Y . Clearly, a function f can be viewed
as a correspondence Γ by considering the singleton Γ(x) = {f(x)}. For any
property P (e.g., nonempty, compact, or convex, etc.), we say that Γ is P-
valued if Γ(x) satisfies property P for all x ∈ X.

We now define notions of continuity for correspondences. Recall from §1.6,
1.A that a function f from a topological space X to another Y is continuous
at x0 ∈ X if for any open V ∋ f(x0), there exists an open U ∋ x0 such that
x ∈ U implies f(x) ∈ V . There are two natural generalizations of continuity
for correspondences.

Definition 12.1 (Upper and lower hemicontinuity). Let X, Y be topological
spaces and Γ : X ↠ Y . Then

• Γ is upper hemicontinuous (uhc) at x0 if for any open V ⊃ Γ(x0), there
exists an open U ∋ x0 such that x ∈ U implies Γ(x) ⊂ V ,

• Γ is lower hemicontinuous (lhc) at x0 if for any open V with Γ(x0)∩V ̸=
∅, there exists an open U ∋ x0 such that x ∈ U implies Γ(x) ∩ V ̸= ∅.

A correspondence that is both upper and lower hemicontinuous is called
continuous. When Γ(x) = {f(x)}, clearly upper and lower hemicontinuity of
Γ are both equivalent to the continuity of f .

The intuition for the upper and lower hemicontinuity is the following. If Γ
is uhc at x0, then Γ(x) is included in V whenever V includes Γ(x0) and x is
close to x0. This means that uhc correspondences can suddenly “expand” but
not “shrink” (Figure 12.4). If Γ is lhc at x0, then Γ(x) intersects V whenever
V intersects Γ(x0) and x is close to x0. This means that lhc correspondences
can suddenly “shrink” but not “expand”.

In most applications, we work with metric spaces such as the Euclidean
space. In this case a function f : X → Y is continuous at x ∈ X if and
only if for all sequences {xk}∞

k=1 ⊂ X such that xk → x, we have f(xk) →
f(x) (Proposition 1.8). Similar sequential characterizations of upper and lower
hemicontinuity are possible. Below, let X, Y be some metric spaces. Recall the
notion of the open ball

Bϵ(x0) := {x ∈ X : d(x, x0) < ϵ} .
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V
Γ(x0)

Γ(x)

(a) UHC.

V
Γ(x0)

Γ(x)

(b) Not UHC.

FIGURE 12.4: Upper hemicontinuous correspondence.

Γ(x0)

Γ(x)

V

(a) LHC.

Γ(x0)

Γ(x)

V

(b) Not LHC.

FIGURE 12.5: Lower hemicontinuous correspondence.

Proposition 12.16 (Sequential characterization of upper hemicontinuity).
Let Γ : X ↠ Y be nonempty. Then the following conditions are equivalent.

(i) Γ is upper hemicontinuous at x and Γ(x) is compact.

(ii) For any sequence {(xk, yk)} ⊂ X×Y with xk → x and yk ∈ Γ(xk), there
exists a convergent subsequence {ykl

} such that ykl
→ y ∈ Γ(x).

Proof. (i) =⇒ (ii): Suppose Γ is uhc at x and Γ(x) is compact. Take any
sequence {(xk, yk)} ⊂ X × Y with xk → x and yk ∈ Γ(xk). For each k, let y′

k

be the point in Γ(x) that is closest to yk, so

y′
k ∈ arg min

y∈Γ(x)
d(y, yk),
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which exists by the extreme value theorem because Γ(x) is compact. Since
y′

k ∈ Γ(x) and Γ(x) is compact, we may take a subsequence such that y′
kl
→

y0 ∈ Γ(x). Therefore to show that {yk} has a subsequence converging to
y0 ∈ Γ(x), it suffices to show that lim infk→∞ d(y′

k, yk) = 0. Suppose to the
contrary that lim infk→∞ d(y′

k, yk) > ϵ > 0. Then d(y′
k, yk) > ϵ for large

enough k, so for any y ∈ Γ(x), we have

d(y, yk) ≥ d(y′
k, yk) > ϵ. (12.34)

If we take V =
⋃

y∈Γ(x) Bϵ/2(y), then clearly V is open and Γ(x) ⊂ V . Since Γ
is uhc, for large enough k we have Γ(xk) ⊂ V , so in particular d(y, yk) < ϵ/2
for some y ∈ Γ(x), which contradicts (12.34).

(ii) =⇒ (i): If we set xk = x for all k, we immediately see that Γ(x) is
compact. Suppose to the contrary that Γ is not uhc at x. By the definition of
upper hemicontinuity, there exists an open V ⊃ Γ(x) and a sequence {xk} such
that xk → x but Γ(xk) ̸⊂ V . Take any yk ∈ Γ(xk)\V . Then yk ∈ V c, which is
a closed set, so for any convergent subsequence {ykl

} with ykl
→ y, we have

y ∈ V c ⊂ Γ(x)c. Therefore y /∈ Γ(x), so {yk} does not have a subsequence
converging to a point in Γ(x), which is a contradiction.

Regarding lower hemicontinuity, we have the following sequential charac-
terization.

Proposition 12.17 (Sequential characterization of lower hemicontinuity).
Let Γ : X ↠ Y be nonempty. Then the following conditions are equivalent.

(i) Γ is lower hemicontinuous at x.

(ii) For any sequence {xk} with xk → x and any y ∈ Γ(x), there exists a
subsequence {xkl

} ⊂ X and a sequence {yl} ⊂ Y such that yl ∈ Γ(xkl
)

for all l and yl → y.

Proof. (i) =⇒ (ii): Suppose Γ is lhc at x. Take any sequence {xk} with
xk → x and any y ∈ Γ(x). Let Vl := B1/l(y) be the open ball in Y with
center y and radius 1/l > 0. Clearly Γ(x) ∩ Vl ̸= ∅. By the definition of
lower hemicontinuity, there exists an open Ul ∋ x such that x′ ∈ Ul implies
Γ(x′) ∩ Vl ̸= ∅. Since xk → x ∈ Ul, we can take xkl

such that xkl
∈ Ul. Then

Γ(xkl
) ∩ Vl ̸= ∅, so we can take yl ∈ Γ(xkl

) ∩ Vl. This implies yl ∈ Γ(xkl
) and

d(yl, y) < 1/l, so yl → y.
(ii) =⇒ (i): Suppose Γ is not lhc at x. By the definition of lower hemi-

continuity, there exists an open V with Γ(x) ∩ V ̸= ∅ such that for any open
U ∋ x, there exists x′ ∈ U such that Γ(x′) ∩ V = ∅. Take any y ∈ Γ(x) ∩ V .
For each k, let Uk := B1/k(x) be the open ball in X with center x and radius
1/k and take xk ∈ Uk such that Γ(xk) ∩ V = ∅. Then for any subsequence
{xkl
} and any yl ∈ Γ(xkl

), we have yl /∈ V . Since V is open and y ∈ V , it
cannot be yl → y.
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The next maximum theorem guarantees that the maximum value of a
parametric maximization problem is continuous and the solution set is upper
hemicontinuous.

Theorem 12.18 (Maximum theorem). Let X, Y be nonempty metric spaces,
f : X × Y → R be a continuous function, and Γ : X ↠ Y be a nonempty,
compact, continuous correspondence. Let

f∗(x) = max
y∈Γ(x)

f(x, y),

Γ∗(x) = arg max
y∈Γ(x)

f(x, y) ̸= ∅,

which exist by the extreme value theorem. Then f∗ : X → R is continuous and
Γ∗ : X ↠ Y is upper hemicontinuous.

Although the proof of the maximum theorem is not so difficult, it is clearer
to weaken the assumptions and prove two weaker statements. For that pur-
pose, recall the definition of semicontinuity of functions in §1.6.

Lemma 12.19. Let f : X × Y → R be upper semicontinuous and Γ :
X ↠ Y be nonempty, compact, and upper hemicontinuous. Then f∗(x) =
maxy∈Γ(x) f(x, y) is upper semicontinuous.

Proof. Take any sequence {xk} with xk → x. Take a subsequence {xkl
} such

that f∗(xkl
) → lim supk→∞ f∗(xk). For each l, take ykl

∈ Γ(xkl
) such that

f(xkl
, ykl

) = f∗(xkl
). Since Γ is uhc and compact, by Proposition 12.16, by

taking a subsequence if necessary, we may assume ykl
→ y ∈ Γ(x). Since f is

usc, we have

f∗(x) ≥ f(x, y) ≥ lim sup
l→∞

f(xkl
, ykl

) = lim
l→∞

f∗(xkl
) = lim sup

k→∞
f∗(xk).

Therefore f∗ is upper semicontinuous.

Lemma 12.20. Let f : X × Y → R be lower semicontinuous and Γ : X ↠ Y
be nonempty and lower hemicontinuous. Then f∗(x) = supy∈Γ(x) f(x, y) is
lower semicontinuous.

Proof. Take any sequence {xk} with xk → x and any u < f∗(x). By the
definition of f∗, we can take y ∈ Γ(x) such that f(x, y) > u. By taking a
subsequence if necessary, assume f∗(xk)→ lim infk→∞ f∗(xk). Since Γ is lhc,
by Proposition 12.17 we may take a subsequence {xkl

} and a sequence {yl}
such that yl ∈ Γ(xkl

) for all l and yl → y. Then f∗(xkl
) ≥ f(xkl

, yl). Since f
is lower semicontinuous, we have

lim inf
k→∞

f∗(xk) = lim inf
l→∞

f∗(xkl
) ≥ lim inf

l→∞
f(xkl

, yl) ≥ f(x, y) > u.

Letting u ↑ f∗(x), it follows that f∗ is lower semicontinuous.
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Proof of Theorem 12.18. By Lemmas 12.19 and 12.20, f∗ is continuous. Since
Γ∗(x) ⊂ Γ(x) and Γ is compact, so is Γ∗. Take any xk → x, yk ∈ Γ∗(xk), and
assume ykl

→ y. Since f and f∗ are continuous, we have

f(x, y) = lim
l→∞

f(xkl
, ykl

) = lim
l→∞

f∗(xkl
) = f∗(x),

so y ∈ Γ∗(x). Hence by Proposition 12.16, Γ∗ is uhc.

Remark. The general form of the maximum theorem (Theorem 12.18) first
appeared in print in Berge (1963), though special cases have been used be-
fore such as Arrow and Debreu (1954). For a more complete treatment of
correspondences, see Aliprantis and Border (2006, Ch. 17).

PROBLEMS

12.1. Let C be any set and suppose x̄ ∈ int C (interior point of C).

(i) Compute the tangent cone TC(x̄) and the normal cone NC(x̄).

(ii) Interpret Theorem 12.2.

12.2. Let p > 1, and define the function f : RN
+ → R by

f(x) = 1
p

N∑
n=1

xp
n.

(i) Prove that f is strictly convex.

(ii) Solve the constrained minimization problem

minimize f(x)

subject to
N∑

n=1
xn = 1,

(∀n)xn ≥ 0.

(iii) Solve the constrained maximization problem

maximize f(x)

subject to
N∑

n=1
xn = 1,

(∀n)xn ≥ 0.

(Hint: since f is strictly convex, if x1 ̸= x2 satisfy the constraints and α ∈
(0, 1), then f((1−α)x1 +αx2) < (1−α)f(x1)+αf(x2) so (1−α)x1 +αx2
cannot be a solution.)
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(iv) Find the best constants 0 ≤ c ≤ C to satisfy the inequality

c ∥x∥1 ≤ ∥x∥p ≤ C ∥x∥1 ,

where ∥x∥p denotes the ℓp norm of x ∈ RN . (The best constants mean
the largest c and smallest C satisfying the above inequality for all x.)

12.3. Let x ∈ R and consider the constraints (i) x ≤ 0 and (ii) x3 ≤ 0.

(i) Show that the two constraints are equivalent, and compute the tangent
cone at x = 0.

(ii) Compute the linearizing cones corresponding to each constraint at x̄ = 0.
Are they the same?

(iii) Construct an example such that the Slater condition gi(x0) < 0 holds
and gi is quasi-convex (but not convex) but the KKT conditions do not
hold.

12.4. Let {aj}J
j=1 be vectors in RN and {bj}J

j=1 be scalars. Define the set

C =
{

x ∈ RN : (∀j) ⟨aj , x⟩ = bj

}
.

Show that if {aj}J
j=1 are linearly dependent, then either C = ∅ or some

constraints are redundant (i.e., we may drop some j without affecting the set
C).

12.5. Extend Theorem 12.11 to the case with equality constraints.

12.6. Compute the convex conjugate functions of the following functions.

(i) f(x) = 1
p |x|

p, where p > 1. (Express the solution using q > 1 such that
1/p + 1/q = 1.)

(ii) f(x) =


∞, (x < 0)
0, (x = 0)
x log x

a , (x > 0)
where a > 0.

(iii) f(x) =
{
∞, (x ≤ 0)
− log x. (x > 0)

(iv) f(x) = ⟨a, x⟩, where a ∈ RN .

(v) f(x) = δa(x) :=
{

0, (x = a)
∞, (x ̸= a)

where a ∈ RN .

(vi) f(x) = 1
2 ⟨x, Ax⟩, where A is an N × N symmetric positive definite

matrix.
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12.7. Derive the dual problem of

minimize ⟨c, x⟩
subject to Ax ≥ b,

x ≥ 0.

12.8. Derive the dual problem of

minimize ⟨c, x⟩+ 1
2 ⟨x, Qx⟩

subject to Ax ≥ b,

where Q is a symmetric positive definite matrix.

12.9. Consider the utility maximization problem (UMP)

maximize α log x1 + (1− α) log x2

subject to p1x1 + p2x2 ≤ w,

where 0 < α < 1 is a parameter, p1, p2 > 0 are prices, and w > 0 is wealth.

(i) Solve the UMP.

(ii) Let v(p1, p2, w) be the value function. Compute the partial derivatives
of v with respect to each of p1, p2, and w.

(iii) Verify Roy’s identity xn = − ∂v
∂pn

/ ∂v
∂w for n = 1, 2, where xn is the

optimal demand of good n.

12.10. Consider the UMP

maximize u(x)
subject to x ∈ RL

+, ⟨p, x⟩ ≤ w,

where w > 0 is the wealth of the consumer, p ∈ RL
++ is the price vector,

x ∈ RL
+ is the demand, and u : RL

+ → R is differentiable and strictly quasi-
concave. Let x(p, w) be the solution to UMP (called Marshallian demand)
and v(p, w) the value function. If x(p, w)≫ 0, prove Roy’s identity

x(p, w) = −∇pv(p, w)
∇wv(p, w) .

(Hint: envelope theorem.)

12.11. Consider the expenditure minimization problem (EMP)

minimize p1x1 + p2x2

subject to α log x1 + (1− α) log x2 ≥ u

where 0 < α < 1 is a parameter, p1, p2 > 0 are prices, and u ∈ R is the desired
utility level.
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(i) Solve the EMP.

(ii) Let e(p1, p2, u) be the value function. Compute the partial derivatives
of e with respect to p1 and p2.

(iii) Verify Shephard’s lemma xn = ∂e
∂pn

for n = 1, 2, where xn is the optimal
demand of good n.

12.12. Consider the EMP

minimize ⟨p, x⟩
subject to u(x) ≥ u,

where p ∈ RL
++ is the price vector, x ∈ RL is the demand, u(x) is a strictly

quasi-concave differentiable utility function, and u ∈ R is the desired utility
level. Let h(p, u) be the solution to EMP (called Hicksian demand) and e(p, u)
be the minimum expenditure (called expenditure function). Prove Shephard’s
lemma

h(p, u) = ∇pe(p, u).

12.13. Prove the following Slutsky equation:

Dpx(p, w)︸ ︷︷ ︸
L×L

= D2
pe(p, u)︸ ︷︷ ︸
L×L

− [Dwx(p, w)]︸ ︷︷ ︸
L×1

[x(p, w)]′︸ ︷︷ ︸
1×L

,

where x(p, w) is the Marshallian demand, u = u(x(p, w)) is the utility level
evaluated at the demand, and e(p, u) is the expenditure function.
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CHAPTER 13

Introduction to Dynamic

Programming

13.1 INTRODUCTION

So far, we have only considered the maximization or minimization of a given
function subject to some constraints. Such a problem is sometimes called a
static optimization problem because there is only one decision to make, namely
choosing the variables that optimize the objective function. In some cases,
writing down or evaluating the objective function itself may be complicated.
Furthermore, in many problems, the decision maker makes multiple decisions
over time instead of a single decision.

Dynamic programming (DP) is a mathematical programming (optimiza-
tion) technique that exploits the sequential structure of the problem. It is
easier to understand the logic through examples instead of the abstract for-
mulation. Suppose that we want to minimize the function

f(x1, x2) = 2x2
1 − 2x1x2 + x2

2 − 2x1 − 4x2.

One way to solve this is to compute the gradient and set it equal to zero, so

∇f(x1, x2) =
[

4x1 − 2x2 − 2
−2x1 + 2x2 − 4

]
=
[
0
0

]
⇐⇒

[
x1
x2

]
=
[
3
5

]
.

(This is only a necessary condition for optimality, but we can easily show
sufficiency since the Hessian ∇2f is positive definite.)

Another way to solve this problem is in two steps. First, suppose that we
have already determined the value of x1, so treat x1 as a constant. Then the
objective function is a (convex) quadratic function in x2. Taking the partial
derivative with respect to x2 and setting it equal to zero, we get

∂f

∂x2
= −2x1 + 2x2 − 4 = 0 ⇐⇒ x2 = x1 + 2.

207
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Then the function value becomes

g(x1) := f(x1, x1 + 2)
= 2x2

1 − 2x1(x1 + 2) + (x1 + 2)2 − 2x1 − 4(x1 + 2)
= x2

1 − 6x1 − 4.

Here g(x) is the minimum value that we can attain if we choose x2 optimally,
given x1 = x. Clearly we can solve the original problem by choosing x1 so as
to minimize g. Since g is a convex quadratic function, setting the derivative
equal to zero, we get

g′(x1) = 2x1 − 6 = 0 ⇐⇒ x1 = 3.

Therefore the solution is (x1, x2) = (x1, x1 + 2) = (3, 5), as it should be.
Essentially, dynamic programming amounts to dividing a single optimiza-

tion problem with many variables into multiple optimization problems with
fewer variables. By doing so, the problem sometimes becomes easier to han-
dle, especially when the problem is stochastic (probabilistic). In the above
example, we have solved the single problem with two variables

min
x1,x2

f(x1, x2)

by dividing it into two problems with one variable each,

g(x1) := min
x2

f(x1, x2) and min
x1

g(x1).

In the next few sections, we present more examples.

13.2 KNAPSACK PROBLEM

Suppose you are a thief who has broken into a jewelry shop. You have a
knapsack of size S ≥ 0 (an integer) to pack what you have stolen. There are
I types of jewelry indexed by i = 1, 2, . . . , I, and a type i jewelry has integer
size si > 0 and is worth wi ≥ 0. You want to pack your knapsack so as to
maximize the total worth of jewelry that you have stolen.

Formulating this problem as a constrained optimization problem is not
particularly difficult. Letting ni be the number of type i jewelry that you
pack, the total value is

∑I
i=1 wini and the total size is

∑I
i=1 sini. Therefore

the problem is equivalent to

maximize
I∑

i=1
wini

subject to
I∑

i=1
sini ≤ S,

(∀i)ni ∈ Z+.
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Although writing down the problem is simple enough, solving it is not because
the choice variable is discrete and hence we cannot take derivatives.

We solve the knapsack problem by dynamic programming. Let V (S) be
the maximum total value of jewelry that can be packed in a size S knapsack,
which we call the value function. Clearly V (S) = 0 if S < mini si since you
cannot pack anything in this case. If you put anything at all in your knapsack
(so S ≥ mini si), clearly you start packing with some type of jewelry. If you
put object i first (with si ≤ S), then you get value wi and you are left with
remaining size S − si. By the definition of the value function, if you continue
packing optimally, you get total value V (S − si) from the remaining space.
Therefore the maximum value that you can get (if you first pack object i) is

wi + V (S − si).

Since you want to pick the first object optimally, you want to maximize this
value with respect to i, which will give you the total maximum value V (S) of
the original problem. Therefore

V (S) = max
i:si≤S

[wi + V (S − si)] (13.1)

holds, which is called the Bellman equation. We can iterate the Bellman equa-
tion (13.1) backwards starting from V (S) = 0 for S < mini si to find the
maximum value. This process is called backward induction or value function
iteration.

For example, let I = 3 (three types), (s1, s2, s3) = (1, 2, 5), and
(w1, w2, w3) = (1, 3, 8). Then

V (0) = 0,

V (1) = w1 + V (0) = 1,

V (2) = max
i

[wi + V (2− si)] = max {1 + V (1), 3 + V (0)} = max {2, 3} = 3,

V (3) = max
i

[wi + V (3− si)] = max {1 + V (2), 3 + V (1)} = max {4, 4} = 4,

V (4) = max {1 + V (3), 3 + V (2)} = max {5, 6} = 6,

V (5) = max {1 + V (4), 3 + V (3), 8 + V (0)} = max {7, 7, 8} = 8,

etc. Although this problem does not admit a closed-form solution, it is
straightforward to write a computer program to solve the problem for any
S.

13.3 SHORTEST PATH PROBLEM

Suppose that there are finitely many locations indexed by i = 1, . . . , I. Trav-
eling directly from i to j ̸= i costs cij ≥ 0. (If there is no direct route from
i to j, simply define cij = ∞.) You want to find the cheapest way to travel
from any point i to any other point j.
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To solve this problem, let VN (i, j) be the minimum cost to travel from i
to j in at most N steps. For convenience, allow the possibility i = j (staying
at the same location) and set cii = 0. Let k be the first connection (including
possibly k = i). Traveling from i to k costs cik, and now you need to travel
from k to j in at most N − 1 steps. If you continue optimally, the cost from
k to j is (by the definition of the value function) VN−1(k, j). Therefore the
Bellman equation is

VN (i, j) = min
k
{cik + VN−1(k, j)} . (13.2)

Since 0 ≤ VN (i, j) ≤ VN−1(i, j) (because cii = 0), the limit limN→∞ VN (i, j)
exists.1 Therefore the cheapest path can be found by iterating backwards from
V1(i, j) = cij .

13.4 OPTIMAL SAVINGS PROBLEM

Suppose that time is indexed by t = 0, 1, . . . , T . You have initial wealth w0 > 0.
At each point in time, you can either consume some of your wealth or save
it at gross interest rate R > 0, meaning that if you save 1 dollar, it will
grow to R dollars next period.2 You cannot go in debt. What is the optimal
consumption-saving plan?

To solve this problem, let wt be the wealth at the beginning of time t. If
you consume ct at time t, the next period’s wealth will be

wt+1 = R(wt − ct) ≥ 0. (13.3)

For concreteness, assume that the utility function is

UT (c0, . . . , cT ) =
T∑

t=0
βt log ct.

(The subscript T in UT means that the planning horizon is T .) Clearly we
have

UT (c0, . . . , cT ) = log c0 + βUT −1(c1, . . . , cT ).

Let VT (w) be the maximum utility you get when you start with initial
wealth w and the planning horizon is T . If T = 0, you have no choice but
to consume everything, so V0(w) = log w. If T > 0 and you consume c this
period, by the budget constraint (13.3) you will have wealth w′ = R(w − c)
next period and the planning horizon will be T − 1. Therefore the Bellman
equation is

VT (w) = max
0≤c≤w

[log c + βVT −1(R(w − c))]. (13.4)

1In fact, it converges in finite steps. This is because since you visit each point at most
once, the number of connections is at most I − 1, so VN = VN−1 for N ≥ I.

2For instance, if the interest rate is 5% per period, then the net interest rate is r = 0.05
and the gross interest rate is R = 1 + r = 1.05.
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In principle, we can compute VT (w) by iterating backwards from T = 0
using V0(w) = log w. Let us compute V1(w), for example. Combining (13.4)
for T = 1 and V0(w) = log w, we have

V1(w) = max
0≤c≤w

[log c + βV0(R(w − c))]

= max
0≤c≤w

[log c + β log(R(w − c))].

The right-hand side inside the brackets is concave in c, so we can maximize
it by setting the derivative equal to zero (Proposition 11.8). The first-order
condition is

1
c
− β

1
w − c

= 0 ⇐⇒ w − c = βc ⇐⇒ c = w

1 + β
.

Therefore the value function for T = 1 is

V1(w) = log w

1 + β
+ β log

(
R

βw

1 + β

)
= (1 + β) log w + constant,

where “constant” is some constant that depends only on the given parameters
β and R.

For general T , we may guess that the functional form of VT is

VT (w) = (1 + β + · · ·+ βT ) log w + constant

and then apply mathematical induction to confirm it. For instance, conjecture
that the value function takes the form

VT (w) = aT + bT log w, (13.5)

where aT ∈ R and bT > 0 are some constants. For T = 0, we know (a0, b0) =
(0, 1). For T = 1, we know from the above derivation that b1 = 1 + β, and we
did not bother computing a1. Suppose that (13.5) holds up to some T −1 and
consider T . Then the Bellman equation (13.4) becomes

VT (w) = max
0≤c≤w

[log c + β(aT −1 + bT −1 log(R(w − c)))].

Since bT −1 > 0 by the induction hypothesis, the expression inside the bracket
is a strictly concave function of c. Since aT −1 is a constant, the first-order
condition is

1
c
− βbT −1

1
w − c

= 0 ⇐⇒ c = w

1 + βbT −1
.

Substituting this c into the Bellman equation, after some algebra we obtain
the functional form (13.5), where

bT = 1 + βbT −1. (13.6)
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Therefore by induction, the functional form (13.5) holds for all T , and solving
the difference equation (13.6), we obtain

bT = 1 + β + · · ·+ βT .

Therefore the optimal consumption when the horizon is T is

c = w

1 + βbT −1
= w

bT
= w

1 + β + · · ·+ βT
.

This trick of guessing the functional form of the value function and confirming
it by mathematical induction is called guess-and-verify. Although guess-and-
verify is rarely applicable in practice, when it is, we can easily solve a dynamic
programming problem. See Problems 13.3–13.5 for other examples.

13.5 OPTIMAL STOPPING PROBLEM

Suppose there are equal numbers of black and red cards (say N each), and
you draw one card at a time. You have the option to stop at any time. The
score you get when you stop is

“number of black cards drawn”− “number of red cards drawn”.

You want to maximize the expected score. What is the optimal strategy?
Let b, r be the number of black and red cards that remain. Then you have

already drawn N − b black cards and N − r red cards, so your current score
is (N − b) − (N − r) = r − b. If you stop, you get r − b. If you continue, on
the next draw you draw a black card with probability b

b+r (and b decreases
by 1) and a red card with probability r

b+r (and r decreases by 1). Let V (b, r)
be the expected score when b black cards and r red cards remain. Then the
Bellman equation is

V (b, r) = max

r − b︸ ︷︷ ︸
stop

,
b

b + r
V (b− 1, r) + r

b + r
V (b, r − 1)︸ ︷︷ ︸

continue

 .

We can find the optimal strategy by iterating backwards from V (0, 0) = 0.

13.6 SECRETARY PROBLEM

The classical secretary problem can be described as follows. A known number
N of job applicants are to be interviewed one by one in random order, all N !
possible orders being equally likely. The administrator is able at any time to
rank the applicants that have so far been interviewed from the best to worst.
As each applicant is interviewed, the administrator must either accept, in
which case the search is terminated, or reject, in which case the next applicant
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is interviewed and the administrator faces the same choice as before. The
administrator’s objective is to maximize the probability of accepting the very
best among all N applicants.

Formulating the secretary problem as a dynamic programming problem
requires some ingenuity. When the n-th applicant shows up for interview and
is (is not) the best among those already interviewed, call the state “1” (“0”).
For x ∈ {0, 1}, let Vn(x) be value function (probability of accepting the very
best by following the optimal strategy from that point on). Let us derive the
Bellman equation. First, consider the case x = 0. Then the administrator will
surely reject applicant n and will interview applicant n + 1. Since the ranking
is random, the rank orders of the applicants {1, . . . , n + 1} are equally likely.
Hence conditional on x = 0 after seeing n applicants, the probability of x = 1
after seeing n + 1 applicants is 1

n+1 . Therefore the Bellman equation is

Vn(0) = 1
n + 1︸ ︷︷ ︸

=Pr(x=1)

Vn+1(1) + n

n + 1︸ ︷︷ ︸
=Pr(x=0)

Vn+1(0). (13.7)

Next, consider the case x = 1. Then the administrator needs to decide whether
to accept or reject applicant n. If accept, the continuation value is

Pr(n is best among all | n is best among first n)
= Pr(n is best among all and first n)/ Pr(n is best among first n)
= Pr(n is best among all)/ Pr(n is best among first n)

= (1/N)/(1/n) = n

N
.

If reject, the continuation value is the same as the right-hand side of (13.7).
Therefore the Bellman equation is

Vn(1) = max
{

n

N
,

1
n + 1Vn+1(1) + n

n + 1Vn+1(0)
}

= max {n/N, Vn(0)} , (13.8)

where we have used (13.7). Changing n to n + 1 in (13.8) and combining with
(13.7), we obtain

Vn(0) = 1
n + 1 max

{
n + 1

N
, Vn+1(0)

}
+ n

n + 1Vn+1(0).

If we define vn = Vn(0)/n, then we can simplify to

vn = 1
n

max
{

1
N

, vn+1

}
+ vn+1. (13.9)

If n = N , the administrator has interviewed all applicants, so VN (0) = 0 and
VN (1) = 1. Thus vN = 0, and we may solve (13.9) by backward induction.
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For the secretary problem, we may obtain a closed-form solution as fol-
lows. Since vn − vn+1 > 0 by (13.9), the sequence {vn} is strictly decreasing.
The following proposition characterizes the solution to the difference equation
(13.9).

Proposition 13.1. Let N ≥ 2 and define 1 ≤ n∗ ≤ N − 1 by

n∗ = min
{

n :
N−1∑
k=n

1
k
≤ 1
}

. (13.10)

Then for n = n∗ − 1, . . . , N − 1, we have

vn = 1
N

N−1∑
k=n

1
k

. (13.11)

Furthermore, v1 = 2v2 = · · · = (n∗ − 1)vn∗−1.

Proof. We prove by mathematical induction. For n = N − 1, it follows from
(13.9) and vN = 0 that vN−1 = 1

N(N−1) , which satisfies (13.11). Suppose the
claim holds for some n, . . . , N − 1 with n ≥ n∗− 1. Using (13.10) and (13.11),
we obtain vn ≤ 1/N . Therefore (13.9) implies

vn−1 = 1
N(n− 1) + vn = 1

N

N−1∑
k=n−1

1
k

,

so (13.11) holds. By the definition of n∗ and (13.11), we have vn∗−1 > 1/N .
Since vn is decreasing vn > 1/N for n ≤ n∗ − 1. Therefore (13.9) implies

vn−1 = 1
n− 1vn + vn = n

n− 1vn ⇐⇒ (n− 1)vn−1 = nvn.

By Proposition 13.1, the optimal strategy in the secretary problem is to
reject the first n∗ − 1 applicants and then accept the next candidate who is
the best among those already interviewed. The probability of accepting the
best candidate under the optimal strategy is

V1(1) = max {1/N, V1(0)} = max {1/N, v1}

= v1 = (n∗ − 1)vn∗−1 = n∗ − 1
N

N−1∑
k=n∗−1

1
k

,

which converges to 1/e ≈ 0.37 as N →∞.

13.7 ABSTRACT FORMULATION

Having seen many examples of dynamic programming problems, we generalize
to an abstract setting. At an abstract level, a dynamic programming problem
or a dynamic program can be defined as follows.
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Definition 13.1. A dynamic program is a tuple D = {X, A, Γ, V, H}, where

• X is a nonempty set called the state space,

• A is a nonempty set called the action space,

• Γ : X ↠ A is a nonempty correspondence called the feasible correspon-
dence, with its graph denoted by

G := {(x, a) ∈ X × A : a ∈ Γ(x)} ,

• V is a nonempty space of functions v : X → [−∞,∞] called the value
space,

• H : G × V → [−∞,∞] is a function called the aggregator , which is
increasing in the last argument:

v1 ≤ v2 =⇒ H(x, a, v1) ≤ H(x, a, v2).

The idea of this definition is as follows. Given the state x ∈ X, the decision
maker can take some actions a ∈ A; let Γ(x) ⊂ A denote all possible actions.
(An action is also called a control variable.) Let v(x′) be the continuation
value that a decision maker expects when the next state is x′ ∈ X. This is
a function on X, and write v ∈ V. Now given the current state x, the action
a ∈ Γ(x), and the continuation value v, the decision maker should be able to
evaluate the reward (utility); write it H(x, a, v) ∈ [−∞,∞].

Let D = {X, A, Γ, V, H} be a dynamic program. Without loss of generality,
we consider maximization problems, so the decision maker wishes to maximize
the reward. Hence given v ∈ V, define the function Tv : X→ [−∞,∞] by

(Tv)(x) := sup
a∈Γ(x)

H(x, a, v). (13.12)

The operator T in (13.12) defined on the value space V is called the Bellman
operator. Obviously, if the problem is a minimization problem, the supremum
in (13.12) becomes an infimum.

We now define the solution concept of a dynamic program.

Definition 13.2. Let D = {X, A, Γ, V, H} be a dynamic program with Bell-
man operator T . We say that v ∈ V is a value function of D if v is a fixed point
of T , that is, v = Tv. The equation v = Tv is called the Bellman equation.

The interpretation of Definition 13.2 is straightforward. Let v(x′) be the
continuation value that the decision maker expects if the next state is x′ ∈ X
and the decision maker continues to choose the optimal actions. Currently
the state is x ∈ X, and the decision maker can choose a ∈ Γ(x). The optimal
choice is to maximize the utility H(x, a, v), which (by the definition of the
Bellman operator) is (Tv)(x). But if v were the optimal value, by definition it
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must be v(x) = (Tv)(x). Thus v = Tv. The condition v = Tv is also called the
principle of optimality: an optimal policy has the property that whatever the
initial state and actions are, the remaining actions must constitute an optimal
policy with regard to the state resulting from the first action.

We verify that all previous examples fit into this abstract formulation.

Example 13.1 (Knapsack problem). The state space is X = {0, 1, . . .} = Z+,
with state denoted by S ∈ X. The action space is A = {0, 1, . . . , I}, with
action denoted by i ∈ A (where “0” corresponds to packing nothing). The
feasible correspondence is Γ(S) = {i = 1, . . . , I : si ≤ S} if this is nonempty
and Γ(S) = {0} otherwise. The value space V is the set of all functions v :
X→ R with v(S) = 0 for S < mini si. The aggregator is

H(S, i, v) =
{

wi + v(S − si) if i ≥ 1,
v(S) if i = 0.

Example 13.2 (Shortest path problem). The state space is X = N ×
{1, . . . , I}2, with state denoted by (n, i, j) ∈ X (where n is the number of
trips allowed and i, j denote the origin and destination). The action space is
A = {1, . . . , I}, with action denoted by the transit point k ∈ A. The feasible
correspondence is Γ(n, i, j) = A, the entire space. The value space V is the set
of all functions v : X→ [0,∞]. The aggregator is

H(n, i, j, k, v) =


cik + v(n− 1, k, j) if n > 1,
cij if n = 1 and k = j,
∞ if n = 1 and k ̸= j.

Note that for the shortest path problem, the Bellman equation is expressed
using minimization (compare (13.2) and (13.12)).

Example 13.3 (Optimal savings problem). The state space is X = Z+×R+,
with state denoted by (T, w) ∈ X (where T is the horizon and w ≥ 0 is the
wealth). The action space is A = R+, with action denoted by consumption
c ∈ A. The feasible correspondence is Γ(T, w) = [0, w]. The value space V is
the set of all functions v : X→ [−∞,∞). The aggregator is

H(T, w, c, v) =
{

log c + βv(T − 1, R(w − c)) if T ≥ 1,
log c if T = 0.

Example 13.4 (Optimal stopping problem). The state space is X =
{0, 1, . . . , N}2 × {0, 1}, with state denoted by (b, r, x) ∈ X (where b, r are
the number of black and red cards remaining and x = 0, 1 stands for “stop”
and “continue”). The action space is A = {0, 1}, with action denoted by a ∈ A
(where 0, 1 correspond to “stop” and “continue”). The feasible correspondence
is Γ(b, r, x) = {0, 1} if b + r > 0 and x = 1 and Γ(b, r, x) = {0} otherwise. The
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value space V is the set of all functions v : X→ R. The aggregator is

H(b, r, x, a, v)

=
{

b
b+r v(b− 1, r, 1) + r

b+r v(b, r − 1, 1) if b + r > 0, x = 1, a = 1,
r − b if (x, a) = (1, 0) or x = 0.

We omit the secretary problem because it is cumbersome.
In practice, optimization problems are not necessarily formulated as a

dynamic program. For instance, the shortest path problem does not have an
apparent sequential structure. Being able to formulate a given optimization
problem as a dynamic program by identifying each object (the state space
X, the action space A, the feasible correspondence Γ, the value space V, the
aggregator H) is a valuable skill that requires practice. Once a problem is
formulated as a dynamic program, we may apply specific techniques that are
applicable in each context.

Here we present a class of dynamic programs that always admit unique
solutions, namely finite-horizon dynamic programs.

Proposition 13.2. Let D = {X, A, Γ, V, H} be a dynamic program with Bell-
man operator T : V→ V. Suppose that

(i) there exists a sequence of subsets ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ · · · ⊂ X
with

⋃∞
n=1 Xn = X,

(ii) for any n, x ∈ Xn, a ∈ Γ(x), and v1, v2 ∈ V with v1 = v2 on Xn−1, we
have H(x, a, v1) = H(x, a, v2).

Then D has a unique value function.

Proof. We first construct a fixed point of T . Take any v0 ∈ V and define
vn = T nv0. By condition (ii), for x ∈ X1, the value of H(x, a, v) does not
depend on v0. Therefore for x ∈ X1, the value of

v1(x) = (Tv0)(x) = sup
a∈Γ(x)

H(x, a, v0)

also does not depend on v0. In particular, setting v0 = v1, we obtain v1 = Tv1
on X1. Let us show by induction that vn = Tvn on Xn. The claim is true for
n = 1. Suppose the claim is true up to some n, and let un = Tvn. By the
induction hypothesis, we have vn = un on Xn. Therefore by condition (ii), for
x ∈ Xn+1, we have H(x, a, vn) = H(x, a, un), and therefore

vn+1(x) = (Tvn)(x) = sup
a∈Γ(x)

H(x, a, vn) = sup
a∈Γ(x)

H(x, a, un)

= (Tun)(x) = (T 2vn)(x) = (Tvn+1)(x).

Hence the claim also holds for n + 1.
Next, define v ∈ V by v(x) = vn(x) if x ∈ Xn. To see that v is well defined,
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suppose x ∈ Xm ∩ Xn for some m < n. Then by condition (i) Xm ⊂ Xn, and
by what we have just proved vn = T n−mvm = vm on Xm, so the value of v is
unambiguous. Furthermore, by condition (i), we have x ∈ Xn for some n, so
v is defined on the entire X. Thus v ∈ V is well defined.

To show that v is a fixed point of T , take any x ∈ X. Then by condition
(i), we have x ∈ Xn for some n, so v(x) = vn(x) = (Tvn)(x) = (Tv)(x). Since
x is arbitrary, v = Tv.

Finally, we show the uniqueness of the fixed point. Suppose u, v are fixed
points of T . Then on X1, we have H(x, a, u) = H(x, a, v), so u = Tu = Tv = v.
Using condition (ii) and applying induction, we have u = v on Xn for all n.
Hence by condition (i), u = v on X.

When the dynamic program D satisfies the assumptions of Proposition
13.2, we say that D is a finite-horizon dynamic program. A finite horizon
dynamic program has the following feature: (i) the state space X is covered
by an increasing sequence of subsets {Xn}, (ii) to evaluate the right-hand side
of the Bellman equation (13.12) on Xn, we only need to know the value of
v on the smaller set Xn−1, (iii) X0 = ∅, implying that the right-hand side of
(13.12) on X1 is unambiguous. When a dynamic program has this feature, for
any initial state x ∈ X, we may obtain the value v(x) by iterating the Bellman
operator T finitely many times. All examples discussed in this chapter are
finite-horizon dynamic programs.

NOTES

For historical background on the secretary problem discussed in §13.6, see
Ferguson (1989). The abstract approach to dynamic programming in §13.7
can already be seen in Denardo (1967), but it was popularized by Bertsekas
(2018). For a modern treatment of dynamic programming, see Sargent and
Stachurski (2024).

PROBLEMS

13.1. There are N types of coins. A coin of type n has integer value wn. You
want to find the minimum number of coins needed for the value of the coins
to sum to S, where S ≥ 0 is an integer.

(i) Write down the Bellman equation.

(ii) Solve the problem for S = 10 when N = 3 and (w1, w2, w3) = (1, 2, 4).

13.2. Using your favorite programming language (Matlab, Python, etc.),
write computer programs that numerically solve the knapsack problem, the
shortest path problem, and the optimal stopping problem (drawing cards)
given the model inputs.

13.3. You are a potato farmer. You start with some stock of potatoes. At each
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time, you can eat some of them and plant the rest. If you plant x potatoes, you
will harvest Axα potatoes at the beginning of the next period, where A > 0
and α ∈ (0, 1). You want to maximize your utility from consuming potatoes

T∑
t=0

βt log ct,

where 0 < β < 1 is the discount factor, ct > 0 is consumption of potatoes at
time t, and T is the number of periods you live.

(i) If you have k potatoes now and consume c out of it, how many potatoes
can you harvest next period?

(ii) Let VT (k) be the maximum utility you get when you start with k pota-
toes. Write down the Bellman equation.

(iii) Solve for the optimal consumption when T = 1.

(iv) Guess that VT (k) = aT + bT log k for some constants aT , bT . Assuming
that this guess is correct, derive a relation between bT and bT −1.

13.4. Consider the optimal savings problem with the utility function
T∑

t=0
βt c1−γ

t

1− γ
,

where 0 < γ ̸= 1.
(i) Write down the Bellman equation.

(ii) Show that the value function must be of the form VT (w) = aT
w1−γ

1−γ for
some aT > 0 with a0 = 1.

(iii) Take the first-order condition and express the optimal consumption as
a function of aT −1.

(iv) Substitute the optimal consumption into the Bellman equation and de-
rive a relation between aT and aT −1.

(v) Solve for aT and the optimal consumption rule.
13.5. Consider the optimal savings problem with stochastic interest rates.
Let Rz be the gross interest rate in state z ∈ {1, . . . , Z}, and let pzz′ be the
transition probability from state z to z′.

(i) Write down the Bellman equation.

(ii) Show that the value function must be of the form VT (w, z) = az,T
w1−γ

1−γ
for some az,T > 0 with az,0 = 1.

(iii) By solving for the optimal consumption rule, derive a relation between
az,T and {az′,T −1}S

z′=1.
13.6. Confirm the details of the secretary problem.





CHAPTER 14

Contraction Methods

14.1 INTRODUCTION

In Chapter 13, we introduced several dynamic programming problems and
provided an abstract formulation. The main theoretical result is that under
weak assumptions, a finite-horizon dynamic program admits a unique value
function, which can be obtained by value function iteration in finitely many
steps. However, many interesting dynamic programs are not finite-horizon
(they are infinite-horizon!dynamic programs).

As an example, consider the following optimal savings problem:

maximize E0

∞∑
t=0

βtu(ct) (14.1a)

subject to (∀t)wt+1 = R(zt, zt+1)(wt − ct) + y(zt+1), (14.1b)
(∀t)0 ≤ ct ≤ wt, (14.1c)
w0 > 0, z0 given. (14.1d)

Here u : R+ → [−∞,∞) is the flow utility function from consumption ct ≥ 0
at time t; the parameter β ∈ [0, 1) is the discount factor; Et denotes the
expectation conditional on time t information; wt ≥ 0 is the financial wealth
at the beginning of time t; {zt}∞

t=0 is a Markov chain taking values in the
finite set Z = {1, . . . , Z} with transition probability matrix P = (P (z, z′));
y : Z → R+ specifies the non-financial income of the agent in each state
z ∈ Z; and R : Z2 → R+ specifies the gross return on savings conditional
on transitioning from state z to z′. The expression (14.1a) is the objective
function; the condition (14.1b) is the budget constraint; the condition (14.1c)
implies that consumption is nonnegative and the agent cannot borrow; and
(14.1d) is the initial condition. To understand the budget constraint (14.1b),
note that the next period’s financial wealth w′ is the sum of the next period’s
non-financial income y′ and the return from savings, which is R times w − c.

The problem (14.1) is a generalization of the optimal savings problem
studied in §13.4. There the horizon was finite (T ) instead of infinite; the
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utility function was u(c) = log c; there was no uncertainty (Z = 1); and there
was no non-financial income (y = 0).

Studying a constrained optimization problem like (14.1) could be chal-
lenging because the number of control variables is infinite and the finite-
dimensional methods in Part III are not directly applicable. For infinite-
horizon dynamic programs, different techniques become necessary for estab-
lishing the existence of solutions and studying their properties. This chapter
discusses methods based on the contraction principle introduced in Chapter
7.

14.2 MARKOV DYNAMIC PROGRAM

We say that the dynamic program D = {X, A, Γ, V, H} is an additive Markov
dynamic program or Markov decision problem (MDP) if the following condi-
tions hold.

• The state space can be written as X×Z, where Z = {1, . . . , Z} is a finite
set associated with a stochastic matrix P = (P (z, z′))z,z′∈Z.

• The aggregator takes the additive (expected utility) form

H(x, z, a, v) = r(x, z, a) + β

Z∑
z′=1

P (z, z′)v(g(x, z, z′, a), z′), (14.2)

where r : X×Z×A→ [−∞,∞) is the reward function, g : X×Z2×A→ X
is the law of motion or transition function, and β ∈ [0, 1) is the discount
factor .

Note that in the definition of the aggregator (14.2), the summation can be
interpreted as the conditional expectation E[v(xt+1, zt+1) | zt = z], where the
next state is

xt+1 = g(xt, zt, zt+1, at).

Thus we may write the Bellman operator T as

(Tv)(x, z) := sup
a∈Γ(x,z)

H(x, z, a, v)

= sup
a∈Γ(x,z)

{r(x, z, a) + β Ez[v(x′, z′)]} , (14.3)

where Ez = E[· | z] denotes the conditional expectation and it is understood
that x′ = g(x, z, z′, a). We write an additive Markov dynamic program as

D = {X, Z, P, A, Γ, V, r, g, β} . (14.4)

Example 14.1 (Optimal savings problem). Consider the optimal savings
problem (14.1). Then we may identify each object of the additive Markov
dynamic program as follows.



Contraction Methods ■ 223

• The state space is X = [0,∞), where the state is wealth w ∈ X.

• The action space is A = [0,∞), where the action is consumption c ∈ A.

• The feasible correspondence is Γ(w, z) = [0, w].

• The reward is the utility r(w, z, c) = u(c).

• The transition function is

g(w, z, z′, c) = R(z, z′)(w − c) + y(z′). (14.5)

The following theorem is fundamental. Recall that we denote by bX or b(X)
the space of all bounded functions defined on X, which by Proposition 7.1 is
a Banach space endowed with the sup norm ∥·∥.

Theorem 14.1. Let D = {X, Z, P, A, Γ, V, r, g, β} be an additive Markov dy-
namic program, where V = b(X × Z). Suppose that r ∈ b(X × Z × A), so r is
bounded. Then the Bellman operator T defined by (14.3) is a contraction with
modulus β ∈ [0, 1). Consequently, the following statements are true.

(i) D has a unique value function v ∈ V, which is the unique fixed point of
T .

(ii) For any v0 ∈ V, we have v = limk→∞ T kv0.

(iii) The approximation error
∥∥T kv0 − v

∥∥ has order of magnitude βk.

Proof. By the contraction mapping theorem (Theorem 7.3), it suffices to show
that T is a contraction on V with modulus β. To this end, we verify Blackwell’s
sufficient conditions (Proposition 7.5).

If v ∈ V = b(X × Z), then v is bounded, so for any scalar c ≥ 0, we have
v + c ∈ V. Therefore V satisfies the upward shift property. If v1, v2 ∈ V, then
the triangle inequality implies ∥v1 − v2∥ ≤ ∥v1∥ + ∥v2∥ < ∞, so V satisfies
the bounded difference property. If v ∈ V, noting that |r(x, z, a)| ≤ ∥r∥ and
|v(x′, z′)| ≤ ∥v∥, we obtain

|(Tv)(x, z)| =

∣∣∣∣∣ sup
a∈Γ(x,z)

{r(x, z, a) + β Ez[v(x′, z′)]}

∣∣∣∣∣
≤ sup

a∈Γ(x,z)
{|r(x, z, a)|+ β Ez[|v(x′, z′)|]}

≤ sup
a∈Γ(x,z)

{∥r∥+ β Ez ∥v∥} = ∥r∥+ β ∥v∥ <∞,

so T : V→ V.
If v1, v2 ∈ V and v1 ≤ v2 pointwise, then for any (x, z) ∈ X × Z, we have

(Tv1)(x, z) = sup
a∈Γ(x,z)

{r(x, z, a) + β Ez[v1(x′, z′)]}

≤ sup
a∈Γ(x,z)

{r(x, z, a) + β Ez[v2(x′, z′)]} = (Tv2)(x, z),
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so Tv1 ≤ Tv2 and T is monotone. If v ∈ V and c ≥ 0, then

(T (v + c))(x, z) = sup
a∈Γ(x,z)

{r(x, z, a) + β Ez[v(x′, z′) + c]}

= sup
a∈Γ(x,z)

{r(x, z, a) + β Ez[v(x′, z′)]}+ βc

= (Tv)(x, z) + βc,

so T (v + c) = Tv + βc (in particular, ≤) and T satisfies the discounting
property. Therefore by Proposition 7.5, T is a contraction with modulus β.

We say that an additive Markov dynamic program D in (14.4) is a bounded
dynamic program if the reward function r is bounded. In that case, we always
take the value space V to be the space of bounded functions (or its subset),
so V = b(X × Z). For bounded dynamic programs, Theorem 14.1 not only
establishes the existence and uniqueness of the value function but also a com-
putational algorithm: value function iteration is guaranteed to converge. For
instance, if the utility function u in Example 14.1 is bounded, we can easily
verify that all assumptions of Theorem 14.1 are satisfied (Problem 14.1).

14.3 SEQUENTIAL AND RECURSIVE FORMULATIONS

Consider the additive Markov dynamic program D studied in §14.2. By The-
orem 14.1, there exists a unique value function v, which satisfies v = Tv.
Therefore (14.3) reduces to the Bellman equation

v(x, z) = sup
a∈Γ(x,z)

{r(x, z, a) + β Ez[v(x′, z′)]} . (14.6)

When we study a dynamic optimization problem, we may formulate it recur-
sively by writing down the Bellman equation as in (14.6). In contrast, we may
also formulate it sequentially as in the optimal savings problem (14.1). For
instance, by iterating the aggregator, the additive Markov dynamic program
D can be formulated sequentially as

maximize Ez0

∞∑
t=0

βtr(xt, zt, at) (14.7a)

subject to (∀t)xt+1 = g(xt, zt, zt+1, at), (14.7b)
(∀t)at ∈ Γ(xt, zt), (14.7c)
(x0, z0) ∈ X × Z given. (14.7d)

A natural question is whether the value function v in (14.6) is related to the
solution to the optimization problem (14.7).

To answer this question, we introduce some terminology. We say that
the stochastic process of the state-action pair {(xt, at)}∞

t=0 is feasible if
at ∈ Γ(xt, zt) for all t given the initial state x0 and the Markov chain {zt}∞

t=0.
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A function σ : X × Z → A satisfying σ(x, z) ∈ Γ(x, z) is called a (feasible)
policy function. Given v ∈ V, if a = σ(x, z) achieves the maximum of the
right-hand side of (14.3) for all (x, z) ∈ X×Z, we say that the policy function
σ is v-greedy.

The following theorem shows that, for bounded additive Markov dynamic
programs, solving the recursive dynamic program is necessary and sufficient
for solving the sequential dynamic program (14.7).
Theorem 14.2 (Equivalence of recursive and sequential dynamic programs).
Let everything be as in Theorem 14.1 and v ∈ V be the unique fixed point of
the Bellman operator T . Then the following statements are true.

(i) The supremum value v̄(x0, z0) of the sequential dynamic program (14.7)
is well-defined and finite.

(ii) We have v(x, z) = v̄(x, z) for all (x, z) ∈ X × Z.

(iii) If a v-greedy policy σ exists and we define the state-action process
{(xt, at)}∞

t=0 by at = σ(xt, zt) for all t, then {(xt, at)}∞
t=0 solves the

sequential dynamic program (14.7).
Proof. (i) By assumption, r is bounded, so the value of the objective function
in (14.7a) is bounded as∣∣∣∣∣Ez0

∞∑
t=0

βtr(xt, zt, at)

∣∣∣∣∣ ≤
∞∑

t=0
βt ∥r∥ = ∥r∥

1− β
<∞.

Therefore the objective function is well defined and the supremum value
v̄(x0, z0) of the sequential dynamic program (14.7) exists and is finite.

(ii) To prove v = v̄, we show v ≤ v̄ and v ≥ v̄. Take any (x, z) ∈ X×Z and
set (x0, z0) = (x, z). Take any feasible {(xt, at)}. Then the Bellman equation
(14.6) implies

v(xt, zt) ≥ r(xt, zt, at) + β Ezt [v(xt+1, zt+1)].

Iterating this inequality, for any T > 0, we obtain

v(x0, z0) ≥ Ez0

T −1∑
t=0

βtr(xt, zt, at) + Ez0 βT v(xT , zT ). (14.8)

Noting that ∥v∥ <∞ and β ∈ [0, 1), we have∣∣Ez0 βT v(xT , zT )
∣∣ ≤ βT ∥v∥ → 0

as T →∞. Therefore letting T →∞ in (14.8),1 we obtain

v(x0, z0) ≥ Ez0

∞∑
t=0

βtr(xt, zt, at).

1Here we are interchanging the order of infinite summation and expectation. Its justi-
fication requires the dominated convergence theorem in measure theory. See, for instance,
Folland (1999).
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Taking the supremum over all feasible state-action processes, we obtain
v(x0, z0) ≥ v̄(x0, z0). Therefore v ≥ v̄.

To show the reverse inequality, take any ϵ > 0. For any (xt, zt), by the
Bellman equation (14.6), we can take at ∈ Γ(xt, zt) such that

v(xt, zt) ≤ r(xt, zt, xt) + β Ezt
[v(xt+1, zt+1)] + (1− β)ϵ.

Iterating this inequality, for any T > 0, we obtain

v(x0, z0) ≤ Ez0

T −1∑
t=0

βtr(xt, zt, at) + Ez0 βT v(xT , zT ) + (1− βT )ϵ. (14.9)

Letting T →∞ in (14.9), we obtain

v(x0, z0) ≤ Ez0

∞∑
t=0

βtr(xt, zt, at) + ϵ

≤ sup Ez0

∞∑
t=0

βtr(xt, zt, at) + ϵ = v̄(x0, z0) + ϵ,

where sup means the supremum over all feasible state-action processes. Letting
ϵ ↓ 0, we obtain v(x0, z0) ≤ v̄(x0, z0), so v ≤ v̄.

(iii) If σ is v-greedy and at = σ(xt, zt) for all t, then the Bellman equation
(14.6) implies

v(xt, zt) = r(xt, zt, at) + β Ezt
[v(xt+1, zt+1)].

Iterating this equation yields

v(x0, z0) = Ez0

T −1∑
t=0

βtr(xt, zt, at) + Ez0 βT v(xT , zT ).

Letting T →∞, we obtain

v̄(x0, z0) = v(x0, z0) = Ez0

∞∑
t=0

βtr(xt, zt, at).

By Theorem 14.2, in any bounded dynamic program in which a greedy
policy exists, we may generate a solution to the sequential dynamic program
(14.7) by iterating at = σ(xt, zt) and xt+1 = g(xt, zt, zt+1, at). Given this
equivalence, from now on we will use only the recursive formulation because
it is more tractable.

14.4 PROPERTIES OF VALUE FUNCTION

In many applications, we are not only interested in proving the existence (and
uniqueness) of a value function but also establishing its properties such as
continuity, monotonicity, and convexity/concavity.

For this purpose, we note the following very simple lemma (which was
Problem 7.2).
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Lemma 14.3 (Closed subset lemma). Let (V, d) be a complete metric space
and T : V → V a contraction with a unique fixed point v ∈ V. If ∅ ≠ V1 ⊂ V
is closed and TV1 ⊂ V1, then v ∈ V1.

Proof. Since V1 is closed, (V1, d) is a complete metric space. Since T : V1 → V1
is a contraction, it has a unique fixed point v1 ∈ V1, which is also a fixed point
of T : V→ V. Since v is unique, we must have v = v1 ∈ V1.

We present several applications of Lemma 14.3. Below, let D in (14.4) be
a bounded additive Markov dynamic program with Bellman operator T and
value function v. The set of maximizers in (14.6) (which could be empty),

σ(x, z) := arg max
a∈Γ(x,z)

{r(x, z, a) + β Ez[v(x′, z′)]} , (14.10)

is called the policy correspondence. When σ is a singleton or we specify some
rule to select one action, we call it a policy function.

Proposition 14.4 (Continuity of value function). Let D in (14.4) be a
bounded additive Markov dynamic program. Let X, A be topological spaces, r, g
continuous, and Γ nonempty, compact, and continuous. Then the value func-
tion v is continuous and the policy correspondence σ is nonempty and upper
hemicontinuous.

Proof. Let V1 ⊂ V be the space of bounded continuous functions equipped
with the sup norm ∥·∥. By Corollary 7.2, V1 is a nonempty closed subset of V
and hence Banach. Under the maintained assumptions, for v ∈ V1, an appli-
cation of the maximum theorem (Theorem 12.18) implies Tv ∈ V1. Therefore
TV1 ⊂ V1, so the value function satisfies v ∈ V1 by Lemma 14.3. Since v is
continuous and Γ is nonempty and compact, by the extreme value theorem
the policy correspondence σ is nonempty, and it is upper hemicontinuous by
the maximum theorem.

We next consider monotonicity. Before we do so, we need to introduce the
notion of a partial order. Let X be a set. We say that a binary relation ≤ on
X is a partial order if

(i) (Reflexivity) x ≤ x for all x ∈ X,

(ii) (Antisymmetry) if x ≤ y and y ≤ x, then x = y,

(iii) (Transitivity) if x ≤ y and y ≤ z, then x ≤ z.

A set with a partial order is called a partially ordered set, or poset for short.
The Euclidean space X = RN is a partially ordered Banach space by declaring
x ≤ y whenever xn ≤ yn for all n. Similarly, a function space (such as V in
Example 7.1) is partially ordered by declaring v1 ≤ v2 whenever v1(x) ≤ v2(x)
for all x. When dealing with spaces of functions taking real values, we always
endow the partial order defined by pointwise order.
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Proposition 14.5 (Monotonicity of value function). Let D in (14.4) be a
bounded additive Markov dynamic program. Suppose that X is partially ordered
and Γ, r, g are monotone in the sense that, for all x1 ≤ x2, z, z′ ∈ Z, and
a ∈ Γ(x1, z), we have

Γ(x1, z) ⊂ Γ(x2, z),
r(x1, z, a) ≤ r(x2, z, a),

g(x1, z, z′, a) ≤ g(x2, z, z′, a).

Then the value function is monotone: x1 ≤ x2 =⇒ v(x1, z) ≤ v(x2, z).

Proof. Let V1 ⊂ V be the set of bounded monotone functions. Suppose {vk} ⊂
V1 and vk → v in V. Then for any x1 ≤ x2 and z ∈ Z, we have vk(x1, z) ≤
vk(x2, z). Letting k → ∞, we have v(x1, z) ≤ v(x2, z), so v is monotone and
v ∈ V1. Thus V1 is closed. If v ∈ V1, then for any x1 ≤ x2, we have

(Tv)(x1, z) = sup
a∈Γ(x1,z)

{r(x1, z, a) + β Ez[v(g(x1, z, z′, a), z′)]}

≤ sup
a∈Γ(x1,z)

{r(x2, z, a) + β Ez[v(g(x2, z, z′, a), z′)]}

≤ sup
a∈Γ(x2,z)

{r(x2, z, a) + β Ez[v(g(x2, z, z′, a), z′)]}

= (Tv)(x2, z),

where the first inequality uses the monotonicity of r, g, v and the second in-
equality uses the monotonicity of Γ. Therefore Tv is monotone and TV1 ⊂ V1,
so the claim follows from Lemma 14.3.

We next establish the concavity of the value function. If X is a vector space
and (Y,≤) is a partially ordered vector space, we say that the map f : X → Y
is convex if

f((1− α)x1 + αx2) ≤ (1− α)f(x1) + αf(x2).

A concave map is defined by flipping the inequality.

Proposition 14.6 (Concavity of value function). Let everything be as in
Proposition 14.5 and suppose that the state space X and the action space A are
vector spaces. If r, g are concave in (x, a), then the value function is monotone
and concave in x.

Proof. Let V1 ⊂ V be the set of bounded monotone functions and V2 ⊂ V1 be
the set of bounded monotone concave functions. By the same argument as in
the proof of Proposition 14.5, V2 is closed. Let v ∈ V2. Since g is a monotone
concave map, by Proposition 11.4, v(g(x, z, z′, a), z′) is concave in (x, a). Since
r is concave, by Proposition 11.2,

r(x, z, a) + β Ez[v(g(x, z, z′, a), z′)]
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is concave in (x, a). Therefore by Proposition 11.6,

(Tv)(x, z) = sup
a∈Γ(x,z)

{r(x, z, a) + β Ez[v(g(x, z, z′, a), z′)]}

is concave in x. By Proposition 14.5, Tv is also monotone in x, so TV2 ⊂ V2
and the claim follows from Lemma 14.3.

Example 14.2 (Optimal savings problem with concave utility). Consider the
optimal savings problem in Example 14.1. If the utility function u is bounded
and concave, then the value function is increasing and concave. To see this, we
verify the assumptions of Propositions 14.5 and 14.6. If w1 ≤ w2, the feasible
correspondence satisfies

Γ(w1, z) = [0, w1] ⊂ [0, w2] = Γ(w2, z).

The reward function satisfies

r(w1, z, c) = u(c) = r(w2, z, c).

The transition function satisfies

g(w1, z, z′, c) = R(z, z′)(w1 − c) + y(z′)
≤ R(z, z′)(w2 − c) + y(z′) = g(w2, z, z′c).

Therefore the assumptions of Proposition 14.5 are satisfied. Furthermore,
clearly r(w, z, c) = u(c) is concave in (w, c) and g(w, z, z′, c) is affine (hence
concave) in (w, c), so the assumptions of Proposition 14.6 are satisfied.

14.5 RESTRICTING SPACES

Although solving additive Markov dynamic programs based on the contrac-
tion principle (Theorem 14.1) is elegant, to directly apply these results, the
reward function needs to be bounded. However, some reward functions that
are commonly used in applications are unbounded. For instance, consider the
optimal savings problem (14.1). The most common utility function is the con-
stant relative risk aversion (CRRA) specification

u(c) =
{

c1−γ

1−γ if 0 < γ ̸= 1,
log c if γ = 1,

(14.11)

where the parameter γ > 0 governs risk aversion. Note that u in (14.11) is
unbounded above if 0 < γ < 1, unbounded below if γ > 1, and unbounded
both from above and below if γ = 1.

In some cases, we may apply the contraction principle by restricting the
spaces.
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Example 14.3 (Optimal savings with utility unbounded below). Consider
the optimal savings problem (14.1). Suppose that the utility function u is
bounded above, strictly increasing on [0,∞), and finite-valued on (0,∞), for
example the CRRA specification (14.11) with γ > 1. Suppose that income is
always positive, so y

¯
:= minz∈Z y(z) > 0. By assumption, we have

u
¯

:= u(y
¯
) > −∞ and ū := u(∞) <∞.

Note that due to the budget constraint (14.1b) and the borrowing con-
straint (14.1c), for any t ≥ 0, the agent is guaranteed to have wealth
wt ≥ y

¯
> 0. Once we solve the problem starting at t = 1, solving the problem

at t = 0 is straightforward because it reduces to a finite-horizon (one period)
problem. Therefore without loss of generality, we may restrict the state space
to X = [y

¯
,∞). Furthermore, for any feasible state-action process {(wt, ct)},

using (14.1a), the value the agent gets is restricted to the range

u
¯1− β
≤ E0

∞∑
t=0

βtu(ct) ≤
ū

1− β
.

Therefore, without loss of generality we may restrict the value space to func-
tions v such that

u
¯1− β
≤ v(x, z) ≤ ū

1− β
(14.12)

for all (x, z) ∈ X × Z. This bound on the value space allows us to obtain a
bound on the action space as well. To see why, suppose the agent consumes
c ≥ 0 today. Using the bound (14.12), the continuation value can be bounded
from above as

u(c) + β Ez[v(w′, z′)] ≤ u(c) + β

1− β
ū.

If c is optimal, in order for the Bellman operator to be a self map on the value
space defined by (14.12), we must have

u
¯1− β
≤ u(c) + β

1− β
ū ⇐⇒ u(c) ≥ βū− u

¯1− β
.

Thus without loss of generality, we may restrict consumption to this range
and assume that u is bounded below. Then we can apply the same proof as
Theorem 14.1 and the conclusion remains valid.

We consider another example.
Example 14.4 (Stochastic growth model). Consider the following stochastic
growth model:

maximize E0

∞∑
t=0

βtu(ct) (14.13a)

subject to (∀t)wt+1 = g(wt, zt, zt+1, ct), (14.13b)
(∀t)0 ≤ ct ≤ wt, (14.13c)
w0 > 0, z0 given. (14.13d)
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The optimal savings problem (14.1) is mathematically a special case of the
stochastic growth model (14.13) by setting the transition function to (14.5).
However, the economic interpretation is different. While the optimal savings
problem describes the behavior of a single agent, the stochastic growth model
describes the behavior of the aggregate economy, where w is available resources
and g is the production function. A common example is to set

g(w, z, z′, c) = A(z, z′)kα + (1− δ)k, (14.14)

where k := w − c is capital, A(z, z′) > 0 is productivity, α ∈ (0, 1) governs
decreasing returns to scale, and δ ∈ (0, 1) is capital depreciation rate. If the
utility function u is bounded, we may apply Theorem 14.1.

For the stochastic growth model with transition function (14.14), utility
functions that are unbounded above (such as the CRRA specification (14.11)
with 0 < γ < 1) can be easily handled by restricting the state space. To see
this, solve

w = Awα + (1− δ)w ⇐⇒ w = w̄ := (A/δ)
1

1−α , (14.15)
where A := maxz,z′∈Z A(z, z′). Then (14.14) implies that

0 ≤ w ≤ w̄ =⇒ 0 ≤ g(w, z, z′, c) ≤ w̄,

w ≥ w̄ =⇒ 0 ≤ g(w, z, z′, c) ≤ w

for all z, z′ ∈ Z and c ∈ [0, w]. Thus we may restrict the state space X to
any bounded interval including [0, w̄]. Then u is bounded, and we may apply
Theorem 14.1.

14.6 STATE-DEPENDENT DISCOUNTING

The discount factor β ∈ [0, 1) in the Markov dynamic program (14.4) governs
the patience of the decision maker. When β is large (small), the decision
maker puts relatively more (less) weight on future rewards and thus can be
considered more (less) patient. For some applications, we may want to consider
situations where patience changes over time. For instance, if the decision maker
is considered to be the head of a dynasty, even if a parent is patient and lives
frugally, the child may be impatient and spend extravagantly. Furthermore,
for modeling purposes, there is no need to restrict the discount factor to be
less than 1. We thus consider a more general setting where the discount factor
could be state dependent.2

For this purpose, all we need to do is to change the definition of the
aggregator from (14.2) to

H(x, z, a, v) = r(x, z, a) +
Z∑

z′=1
P (z, z′)β(z, z′)v(g(x, z, z′, a), z′), (14.16)

2Krusell and Smith (1998) numerically found that introducing state-dependent discount-
ing in an optimal savings problem help to explain large wealth inequality. Toda (2019)
proved this claim in a particular model.
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where β : Z2 → R+. Here β(z, z′) ≥ 0 is the discount factor conditional on
transitioning from state z to z′. When the aggregator takes the form (14.16),
we say that the additive Markov dynamic program exhibits state-dependent
discounting.

The following theorem generalizes Theorems 14.1 and 14.2 by using the
properties of Perov contractions introduced in §7.5.

Theorem 14.7. Let D in (14.4) be a bounded additive Markov dynamic pro-
gram with state-dependent discounting. If the matrix B := (P (z, z′)β(z, z′))
has spectral radius ρ(B) < 1, the following statements are true.

(i) The Bellman operator T is a Perov contraction with coefficient matrix
B.

(ii) D has a unique value function v, which is the unique fixed point of T .

(iii) For any v0 ∈ V, we have v = limk→∞ T kv0.

(iv) For any γ ∈ (ρ(B), 1), the approximation error
∥∥T kv0 − v

∥∥ has order of
magnitude γk.

(v) If the policy correspondence σ is nonempty, the state-action process gen-
erated by σ achieves the maximum of the sequential problem.

Proof. We only provide a sketch. The first four statements follow by check-
ing that the assumptions of Proposition 7.7 are satisfied. The last statement
follows by the same argument as the proof of Theorem 14.2 and applying the
Gelfand spectral radius formula (Theorem 6.15).

14.7 WEIGHTED SUPREMUM NORM

As we have seen in the discussion of the optimal savings problem (Example
14.3) and the stochastic growth model (Example 14.4), some common appli-
cations violate the boundedness assumption of Theorem 14.1. While we may
get around this issue in some cases by restricting the state space or the value
space, such approaches are ad hoc and lack generality. We thus seek to extend
Theorem 14.1 to allow certain kinds of unboundedness.

To this end, let κ : X×Z→ (0,∞) be some positive function and suppose
that we normalize the value function as ṽ = v/κ. Then the Bellman equation
(14.6) becomes

κ(x, z)ṽ(x, z) = sup
a∈Γ(x,z)

{r(x, z, a) + Ez[β(z, z′)κ(x′, z′)ṽ(x′, z′)]} ,

where we allow state-dependent discounting as in §14.6. Dividing both sides
by κ(x, z) > 0, we may define a scaled Bellman operator T̃ by

(T̃ ṽ)(x, z) = sup
a∈Γ(x,z)

{
r̃(x, z, a) + Ez

[
β(z, z′)κ(x′, z′)

κ(x, z) ṽ(x′, z′)
]}

, (14.17)
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where r̃ := r/κ. To make T̃ a (Perov) contraction, all we need is to control
the ratio κ(x′, z′)/κ(x, z). We thus define

β̃(z, z′) := β(z, z′) sup
x∈X

sup
a∈Γ(x,z)

κ(g(x, z, z′, a), z′)
κ(x, z) <∞. (14.18)

To come up with the appropriate function space, let V be the space of functions
v : X × Z→ R with

∥v∥κ := sup
z∈Z

sup
x∈X

|v(x, z)|
κ(x, z) <∞. (14.19)

Because κ > 0, it is straightforward to show by imitating the proof of Propo-
sition 7.1 that (V, ∥·∥κ) is a Banach space. The norm (14.19) is called the
weighted supremum norm with weight function κ. For v1, v2 ∈ V, if we define
d : V × V→ RZ

+ by

dz(v1, v2) = sup
x∈X

|v1(x, z)− v2(x, z)|
κ(x, z) ,

then (V, d) becomes a complete vector-valued metric space by the discussion
in §7.5.

With this preparation, we obtain the following theorem, which generalizes
both Theorems 14.1 and 14.7.

Theorem 14.8. Let D = {X, Z, P, A, Γ, V, r, g, β} be an additive Markov dy-
namic program associated with a function κ : X × Z → (0,∞). Let (V, d) be
the complete vector-valued metric space just described. Suppose that

sup
x∈X

sup
a∈Γ(x,z)

|r(x, z, a)|
κ(x, z) <∞ (14.20)

and ρ(B) < 1, where B := (P (z, z′)β̃(z, z′)) is defined using (14.18). Then the
following statements are true.

(i) The (scaled) Bellman operator T (T̃ ) is a Perov contraction on V (b(X×
Z)) with coefficient matrix B.

(ii) D has a unique value function v = κṽ, where ṽ is the unique fixed point
of T̃ in b(X × Z).

Proof. (i) It suffices to show the claim for T̃ . Below, we view ṽ ∈ b(X × Z) as
a bounded function from X to RZ , so we identify b(X×Z) as (bX)Z . We verify
the assumptions of Proposition 7.7. It is clear that (bX)Z satisfies the upward
shift and bounded difference properties. The monotonicity of T̃ immediately
follows from the definition (14.17). To show discounting, take any c ∈ RZ

+.
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Using (14.17), we obtain

(T̃ (ṽ + c))(x, z)

= sup
a∈Γ(x,z)

{
r̃(x, z, a) + Ez

[
β(z, z′)κ(x′, z′)

κ(x, z) (ṽ(x′, z′) + c(z′))
]}

≤ (T̃ ṽ)(x, z) + sup
a∈Γ(x,z)

Ez

[
β(z, z′)κ(x′, z′)

κ(x, z) c(z′)
]

≤ (T̃ ṽ)(x, z) + Ez[β̃(z, z′)c(z′)]
= (T̃ ṽ)(x, z) + (Bc)z.

Therefore T̃ (ṽ + c) ≤ T̃ ṽ + Bc, so discounting holds.
(ii) Obvious by (14.6) and (14.17).

Remark. Theorem 14.7 is a special case of Theorem 14.8 by setting κ ≡ 1.
Example 14.5 (Optimal savings with unbounded utility). Consider the op-
timal savings problem (14.1) with transition function (14.5), where u could
be unbounded both from above and below. We have already seen in Example
14.3 that unboundedness from below can be handled by restricting the state
and value spaces. Consider the weight function κ(w, z) = w + b, where b > 0.
Then

κ(g(w, z, z′, c), z′)
κ(w, z) = R(z, z′)(w − c) + y(z′) + b

w + b

≤ R(z, z′)w + y(z′) + b

w + b
. (14.21)

Noting that
Rw + y + b

w + b
≤ max {1, R} (w + b) + y

w + b
≤ max {1, R}+ y

b
,

it follows from (14.21) that
κ(g(w, z, z′, c), z′)

κ(w, z) ≤ max {1, R(z, z′)}+ y(z′)
b
→ max {1, R(z, z′)}

as b → ∞. Therefore by taking b large enough, a sufficient condition for the
existence of a solution is that u(w)/(w + b) is bounded above (concavity of u
suffices) and that

β̃(z, z′) := β max {1, R(z, z′)}
satisfies the assumption of Theorem 14.8.
Example 14.6 (Optimal savings with CRRA utility). In Example 14.5, sup-
pose that the utility function is given by (14.11) with 0 < γ < 1. If we consider
the weight function κ(w, z) = (w + b)1−γ , by a similar argument we may set

β̃(z, z′) := β max
{

1, R(z, z′)1−γ
}

,

and satisfying the assumptions of Theorem 14.8 becomes even easier (because
R1−γ < R whenever R > 1).



Contraction Methods ■ 235

14.8 NUMERICAL DYNAMIC PROGRAMMING

Almost all dynamic programming problems do not admit closed-form solu-
tions and must be solved numerically on a computer. This section provides an
introduction to numerical dynamic programming and some theoretical back-
ground.

Suppose we would like to solve the Markov dynamic program (14.4) with
Bellman operator (14.6). For simplicity, suppose both the state x and ac-
tion a are real-valued, and the feasible correspondence Γ(x, z) is an interval.
Because a computer can accept only finitely many objects, the first step to
solve the problem is to discretize the state space X. Take some N , and let
XN = {x1, . . . , xN} be a finite grid, where x1 < · · · < xN . We parameterize
the value function by finitely many numbers {v(xn, z)}N

n=1
Z
z=1 ∈ RNZ . Then

the value space is VN := RNZ , which is a Banach space. Suppose we use some
interpolation/extrapolation method to evaluate v on the entire state space X,
for instance linear interpolation on the interval [x1, xN ] and extrapolation by
constants outside. With a slight abuse of notation, we use the same symbol
VN to denote the space of functions defined on the entire X by interpola-
tion/extrapolation.

Recall that the Bellman operator T is defined by

(Tv)(x, z) := max
a∈Γ(x,z)

{r(x, z, a) + β Ez[v(x′, z′)]}

= max
a∈Γ(x,z)

{
r(x, z, a) + β

Z∑
z′=1

P (z, z′)v(g(x, z, z,′ a), z′)
}

. (14.22)

If v ∈ VN and we use a particular interpolation/extrapolation method to
evaluate v(g(x, z, z,′ a), z′), then computing the right-hand side of (14.22) for
each (wn, z) pair, we obtain new numbers {(Tv)(xn, z)}N

n=1
Z
z=1. Thus we may

view T as a self map from VN to VN . An application of Blackwell’s sufficient
condition shows that T is a contraction with modulus β. Therefore T has a
unique fixed point in VN , which could be thought of as an approximation to
the true value function v ∈ V.

As an illustration, we consider a simple specification for the stochastic
growth model in Example 14.4. The Bellman operator (14.22) can be explicitly
written as

(Tv)(w, z) =

max
0≤k≤w

{
u(w − k) + β

Z∑
z′=1

P (z, z′)v(A(z, z′)kα + (1− δ)k, z′)
}

, (14.23)

where k = w − c is capital. We consider a two-state Markov chain with Z =
{1, 2} and transition probability P (z, z′) = 0.8 if z = z′ and P (z, z′) = 0.2 if



236 ■ Essential Mathematics for Economics

z ̸= z′. The productivity is

A(z, z′) =
{

1.1 if z′ = 1,
0.9 if z′ = 2,

so state 1 is the high-productivity state. We set α = 0.36 and δ = 0.08, which
are standard values. The discount factor is β = 0.95 and the relative risk aver-
sion in (14.11) is γ = 0.5. We use an N -point exponential grid {wn}N

n=1 on
[0, 120] with N = 100 to evaluate the value function. (See Gouin-Bonenfant
and Toda (2023) for the details on the grid.) Starting from some v0, we it-
erate the Bellman operator (14.23) by numerically maximizing the objective
function (14.23) for each (wn, z) pair. Matlab codes are available at the book
website https://github.com/alexisakira/EME.

Figure 14.1 plots the sequence of value functions {vk} obtained by value
function iteration. In the left panel, we start with v0 ≡ 0, in which case con-
vergence is monotonic (because the utility function is positive). In the right
panel, we start with an unnatural function, namely the sine curve flipped
upside down. Although convergence is not monotonic, the conclusions of The-
orem 14.1 remain valid.
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FIGURE 14.1: Value function iteration in stochastic growth model.

For a bounded additive Markov dynamic program, Theorem 14.1 guar-
antees that value function iteration (VFI) converges. However, this does not
imply that we need to use VFI to solve dynamic programs. In fact, it is well
known that VFI is a slow algorithm, for two reasons. First, by Theorem 14.1,
the theoretical error is O(βk) after k iterations, which decays only exponen-
tially. Second, at each iteration one needs to solve an optimization problem
(maximize or minimize over a ∈ Γ(x, z)), which is computationally intensive.

One way to get around the second issue is to perform the optimization
step only occasionally. For instance, take a natural number m and suppose we
update the k-th value function vk using the Bellman operator (14.3)

vk+1 := (Tvk)(x, z) = sup
a∈Γ(x,z)

{r(x, z, a) + β Ez[vk(x′, z′)]}
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only when k = ml for l = 0, 1, . . . , and otherwise we skip the optimization
step as

vk+1 := r(x, z, a) + β Ez[vk(x′, z′)],
where for the action a, we use the optimal action for the last optimization
step. Following Sargent and Stachurski (2024), we refer to this algorithm as
optimistic policy iteration (OPI). The following theorem shows that, with a
suitable choice of initial value, OPI converges.
Theorem 14.9. Let everything be as in Proposition 14.4. If v0 ∈ V satisfies
v0 ≤ Tv0, then the sequence {vk}∞

k=0 obtained by optimistic policy iteration
converges to the value function v.

To prove Theorem 14.9, we establish a series of lemmas following the ap-
proach of Sargent and Stachurski (2024, §9.1.4). Let V be the space of bounded
continuous functions. For v ∈ V, by the extreme value theorem, there exists a
v-greedy policy

σ(x, z) ∈ arg max
a∈Γ(x,z)

{r(x, z, a) + β Ez[v(x′, z′)]} . (14.24)

For this σ, define the policy iteration operator Tσ by skipping the optimization
step, so for any w ∈ V, let

(Tσw)(x, z) := r(x, z, a) + β Ez[w(x′, z′)]

for a = σ(x, z). Finally, define the OPI operator W by Wv = T m−1
σ Tv for

v ∈ V, where σ implicitly depends on v because σ is v-greedy. Define the
subset Vu := {v ∈ V : v ≤ Tv}. By assumption, we have v0 ∈ Vu.
Lemma 14.10. The set Vu is W -invariant: WVu ⊂ Vu.
Proof. Take any v ∈ Vu and let σ be v-greedy. Since a = σ(x, z) is the max-
imizer of the right-hand side of (14.24), which defines the Bellman operator
T , we have Tσv = Tv. Therefore

Wv = T m−1
σ Tv = T m

σ v ≤ T m
σ Tv (∵ v ≤ Tv, Tσ monotone)

= TσT m−1
σ Tv = TσWv ≤ TWv. (∵ Tσ ≤ T )

Therefore Wv ∈ Vu.

Lemma 14.11. If v ∈ Vu, then Tv ≤Wv ≤ T mv.
Proof. Since T, Tσ are monotone and Tσ ≤ T , we have

Wv = T m−1
σ Tv ≤ T m−1Tv = T mv.

To show the left inequality, let us show by induction that T j
σTv ≥ Tv for all

j = 0, 1, . . . . If j = 0, the claim is trivial. If the claim holds for some j, then

T j+1
σ Tv = TσT j

σTv ≥ TσTv (∵ T j
σTv ≥ Tv, Tσ monotone)

≥ Tσv (∵ Tv ≥ v, Tσ monotone)
= Tv, (∵ σ is v-greedy)
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so the claim holds for j +1 as well. In particular, setting j = m−1, we obtain
Wv = T m−1

σ Tv ≥ Tv.

Proof of Theorem 14.9. By Lemma 14.10, W is a self map on Vu. Hence by
iterating the inequality in Lemma 14.11 k times, for any v0 ∈ Vu, we obtain
T kv0 ≤ W kv0 ≤ T kmv0. Letting k → ∞, by Theorem 14.1 we have W kv0 →
v.

Remark. To apply Theorem 14.9, we need to select an initial value v0 satisfying
v0 ≤ Tv0. For bounded dynamic programs, this is simple. To see why, if the
reward function r is bounded, by adding a positive constant if necessary,
without loss of generality we may assume that r ≥ 0. If we start from v0 ≡ 0,
then clearly

(Tv0)(x, z) = (T0)(x, z) = max
a∈Γ(x,z)

r(x, z, a) ≥ 0 = v0(x, z),

so v0 ≤ Tv0 holds.
In general, OPI converges much faster than VFI because it avoids opti-

mization most of the time. As an example, Figure 14.2 plots the process of
optimistic policy iteration with m = 10. For the same convergence criterion
(which was set to maximum value error 10−4), VFI took k = 196 iterations in
about 18 seconds until convergence on a standard laptop computer, whereas
OPI took k = 205 iterations in 3 seconds. Note that for OPI, convergence
is less smooth (and hence requires more iterations) because maximization is
skipped most of the time.
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FIGURE 14.2: Optimistic policy iteration in stochastic growth model.

NOTES

The first application of the contraction mapping theorem to study dynamic
programming problems seems to be Shapley (1953). The contraction ap-
proach to dynamic programming is standard, for instance Blackwell (1965)
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and Denardo (1967). For a modern treatment of dynamic programming, see
Sargent and Stachurski (2024). Stachurski and Zhang (2021) and Toda (2021b)
study the theory of dynamic programming with state-dependent discounting,
and the latter pointed out the usefulness of Perov contractions. The idea of
using weighted supremum norms for solving unbounded dynamic program-
ming problems dates back to Lippman (1975) and Wessels (1977) and was
applied to economics in Boyd (1990) and Durán (2000, 2003). Theorem 14.8
significantly simplifies the analysis because it applies the Perov contraction
theorem instead of the Banach contraction theorem. §14.7 is largely based
on Toda (2024). The optimistic policy iteration algorithm was proposed by
Howard (1960) (with m =∞) and is called by various names such as Howard’s
policy improvement or policy iteration. For more results related to §14.8, see
Rauch and Toda (2024).

PROBLEMS

14.1. In Example 14.1, verify that all assumptions of Theorem 14.1 are sat-
isfied.

14.2. Fill in the details of the proof of Theorem 14.7.

14.3. Verify the details of Example 14.6.

14.4. Consider the optimal savings problem (14.1). Suppose that the utility
function u is continuous, bounded below, and satisfies

lim
c→∞

u(c)
cα

= 0

for all α > 0.

(i) Show that u(c) = log(c + γ), where γ > 0 is any constant, satisfies the
above assumption.

(ii) Fix α > 0 and b > 0, and consider the weight function

κ(w, z) = (w + b)α.

Explicitly compute

sup
0≤c≤w

κ(w′, z′)
κ(w, z) ,

where w′ = g(w, z, z′, c) = R(z, z′)(w − c) + y(z′).

(iii) Show that for any ϵ > 0, we can take a large enough b > 0 such that

sup
w≥0

sup
0≤c≤w

κ(w′, z′)
κ(w, z) ≤ max {1, R(z, z′)α}+ ϵ.
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(iv) Show that if α > 0 is sufficiently close to 0 and b > 0 is large enough,
then the optimal savings problem has a unique value function within the
space of functions v(w, z) satisfying

sup
z

sup
w≥0

|v(w, z)|
(w + b)α

<∞.



CHAPTER 15

Variational Methods

15.1 INTRODUCTION

In Chapter 14, we studied infinite-horizon dynamic programming problems by
applying the contraction mapping theorem. One drawback of this approach is
that in addition to the control variables, the (unknown) value function always
enters the Bellman equation, so there are many objects to pin down. This
chapter presents an alternative (and much more classical) approach based
on variational principles (first-order conditions), which is sometimes called
the calculus of variations. Although this approach lacks generality because it
requires additional structure such as differentiability and restrictions on the
law of motion, when it is applicable, we may gain additional insights.

To illustrate the variational approach, consider the optimal savings prob-
lem introduced in §14.1:

maximize E0

∞∑
t=0

βtu(ct) (15.1a)

subject to (∀t)wt+1 = Rt+1(wt − ct) + yt+1, (15.1b)
(∀t)0 ≤ ct ≤ wt, (15.1c)

where the initial wealth w0 > 0 is given and the stochastic process for gross
returns and non-financial income {(Rt, yt)}∞

t=1 is exogenous. Consider an agent
seeking to make a decision at time t. Given wt, the continuation utility is

Et

∞∑
s=0

βt+su(ct+s) = βtu(ct) + Et[βt+1u(ct+1)] + •,

where Et denotes the expectation conditional on time t information and •
denotes a quantity whose exact expression we omit but which can be inferred
from the context. Let {(wt, ct)}∞

t=0 be a feasible state-action process with
wt, ct > 0 for all t, and consider the following feasible deviation. At time t,
the agent increases savings by ϵ; using the budget constraint (15.1b), next
period’s wealth increases by Rt+1ϵ; at t + 1, the agent consumes this extra

241
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wealth so that the plan after t + 1 remains unchanged. Under this deviation,
the continuation utility becomes

βtu(ct − ϵ) + Et[βt+1u(ct+1 + Rt+1ϵ)] + •, (15.2)

where the terms expressed by • do not dependent on ϵ. Obviously, an optimal
plan needs to remain optimal under any deviation. The derivative of (15.2)
with respect to ϵ is

−βtu′(ct − ϵ) + Et[βt+1Rt+1u′(ct+1 + Rt+1ϵ)]. (15.3)

Setting (15.3) equal to 0 at ϵ = 0 and dividing by βt, a necessary condition
for optimality is

u′(ct) = Et[βRt+1u′(ct+1)]. (15.4)
The equation (15.4) is known as the Euler equation. It is the discrete-time
analogue of the Euler-Lagrange equation that appears in the classical calculus
of variations developed by Euler and Lagrange in the 18th century.

15.2 EULER EQUATION

To simplify the discussion and to help develop intuition, we start with the
analysis of the deterministic, finite-horizon optimal control problems. Consider
the optimization problem

maximize
T∑

t=0
rt(xt, at) (15.5a)

subject to (∀t)xt+1 = gt+1(xt, at), (15.5b)
(∀t)at ∈ Γt(xt), (15.5c)
x0 given. (15.5d)

The problem (15.5) is similar to the additive Markov dynamic program in
sequential form introduced in §14.3 except that (i) the problem is deterministic
and has a finite horizon and (ii) the reward function rt, transition function
gt, and feasible correspondence Γt may depend on time. Note that in (15.5a)
there is no discount factor because it can always be included in the reward rt.

To derive necessary conditions for optimality, we introduce the following
assumption.

Assumption 15.1. The following conditions hold.

(i) The state and action spaces are X = RNx and A = RNa
+ .

(ii) For all t, rt : X × A → [−∞,∞) is continuous, and it is differentiable
on the domain dom rt := {(x, a) ∈ X × A : r(x, a) > −∞}.

(iii) For all t, gt+1 depends only on a ∈ A, and is continuous on RNa
+ and

differentiable on RNa
++.
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(iv) Nonnegativity constraint: Γt(xt) = A = RNa
+ .

The condition (i) that the state and action spaces X, A consist of the entire
RNx ,RNa

+ seems strong, but this is not a restriction because we may always
define the reward rt(x, a) = −∞ if (x, a) is outside the domain. (See §11.1
for more discussion.) The condition (iii) that the law of motion depends only
on the action and not on the state is obviously strong, but it is crucial for
considering one-shot deviations as discussed in the introduction. In condition
(iv), we can obviously accommodate other lower bounds such as at ≥ a

¯t by
redefining the action variable as ãt := at − a

¯t, etc. Below, we denote the
Jacobian with respect to variables x, a by Dx, Da. The following proposition
provides necessary conditions for optimality.

Proposition 15.1 (Necessity). Consider the dynamic optimization problem
(15.5) and suppose Assumption 15.1 holds. If {(xt, at)}T

t=0 is optimal with a
finite value, then the following conditions hold:

Dart(xt, at)︸ ︷︷ ︸
1×Na

+ Dxrt+1(xt+1, at+1)︸ ︷︷ ︸
1×Nx

Dagt+1(at)︸ ︷︷ ︸
Nx×Na

≤ 0, (15.6a)

[Dart(xt, at) + Dxrt+1(xt+1, at+1)Dagt+1(at)]at = 0, (15.6b)

and
(DarT (xT , aT ))aT = 0. (15.7)

Proof. Suppose that {(xt, at)}T
t=0 is optimal. Then fixing t and changing at

only will not result in any gain. Consider the restricted optimization problem
where we optimize only over at. If t < T , the problem reduces to

maximize rt(xt, at) + rt+1(gt+1(at), at+1)
subject to at ≥ 0.

Letting λt ∈ RNa
+ be the Lagrange multiplier on the nonnegativity constraint,

the Lagrangian is

L = rt(xt, at) + rt+1(gt+1(at), at+1) + λ′
tat.

Since by assumption rt is differentiable whenever its value is finite, we may
apply the Karush-Kuhn-Tucker theorem (Theorem 12.4). Using the chain rule,
the first-order condition is

Dart(xt, at) + Dxrt+1(xt+1, at+1)Dagt+1(at) + λ′
t = 0. (15.8)

Since λt ≥ 0, we obtain the inequality (15.6a). Multiplying at from right to
(15.8) and using the complementary slackness condition λ′

tat = 0, we obtain
(15.6b).

If t = T , the problem reduces to

maximize rT (xT , aT )
subject to aT ≥ 0.
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The Lagrangian is
L = rT (xT , aT ) + λ′

T aT .

The first-order condition is DarT (xT , aT ) + λ′
T = 0. Multiplying aT from the

right and using the complementary slackness condition, we obtain (15.7).

The necessary condition (15.6) is called the Euler inequality. When the
nonnegativity constraint for the n-th entry ant ≥ 0 does not bind and the
inequality holds with equality, it is called an Euler equation.

We next consider sufficient conditions. To this end, we introduce the fol-
lowing monotonicity and concavity assumption.
Assumption 15.2. The following conditions hold.

(i) For all t, rt : X × A→ [−∞,∞) is concave, Dxrt ≥ 0, and Dart ≤ 0.

(ii) For all t, gt+1 : A→ X is a concave map.
If we interpret the the state variable x as “resource” and the control vari-

able as “savings”, because increasing savings reduces current consumption
(and hence, utility), the conditions Dxrt ≥ 0 and Dart ≤ 0 become natu-
ral. The following proposition shows that, under monotonicity and concavity,
the Euler equation (15.6) and the terminal condition (15.7) are sufficient for
optimality.
Proposition 15.2 (Sufficiency). Consider the dynamic optimization problem
(15.5) and suppose Assumptions 15.1, 15.2 hold. Let {(xt, at)}T

t=0 be a feasible
plan. If for all t (15.6), (15.7) hold, then {(xt, at)}T

t=0 is optimal.
Proof. Take any feasible {(r̂t, ât)}∞

t=0, so x̂0 = x0 and x̂t+1 = gt+1(ât) for all
t. Since rt is differentiable and concave, by Proposition 11.7 we have

rt(x̂t, ât)− rt(xt, at) ≤ (Dxrt)(x̂t − xt) + (Dart)(ât − at), (15.9)

where for simplicity we suppress the arguments of Dxrt, Dart. Similarly, since
gt+1 is a concave map, we have

gt+1(ât)− gt+1(at) ≤ (Dagt+1)(ât − at). (15.10)

Therefore the difference in the value can be bounded from above as

∆ :=
T∑

t=0
[rt(x̂t, ât)− rt(xt, at)]

≤
T∑

t=0
[(Dxrt)(x̂t − xt) + (Dart)(ât − at)] (∵ (15.9))

=
T∑

t=1
(Dxrt)(x̂t − xt) +

T∑
t=0

(Dart)(ât − at) (∵ x̂0 = x0)

=
T −1∑
t=0

(Dxrt+1)(gt+1(ât)− gt+1(at)) +
T∑

t=0
(Dart)(ât − at),
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where the last equation shifts the index by 1 and uses the feasibility xt+1 =
gt+1(at) etc. Multiplying Dxrt+1 ≥ 0 from the left to (15.10), we obtain

∆ ≤
T −1∑
t=0

[Dxrt+1Dagt+1 + Dart](ât − at) + (DarT )(âT − aT )

= −
T −1∑
t=0

λ′
t(ât − at) + (DarT )(âT − aT ), (15.11)

where we define λt ∈ RNa using the first-order condition (15.8). By assump-
tion, (15.6a) implies λt ≥ 0 and (15.6b) implies λ′

tat = 0. Therefore (15.11)
becomes

∆ ≤ −
T −1∑
t=0

λ′
tât︸ ︷︷ ︸

≥0

+
T −1∑
t=0

λ′
tat︸ ︷︷ ︸

=0

+(DarT )(âT − aT )

≤ (DarT )(âT − aT ) ≤ −(DarT )aT , (15.12)

where the last inequality follows from DarT ≤ 0 and âT ≥ 0. By (15.7),
the right-hand side of (15.12) equals 0. Therefore ∆ ≤ 0, so {(xt, at)}T

t=0 is
optimal.

15.3 TRANSVERSALITY CONDITION

We next study infinite-horizon optimal control problems, while still maintain-
ing a deterministic environment. For infinite-horizon problems, the objective
function

∑∞
t=0 rt(xt, at) may not even be defined unless some structure is im-

posed such as rt(xt, at) = βtu(xt, at) with 0 ≤ β < 1 and u is bounded.
To avoid imposing strong conditions that guarantee convergence, we define
optimality by the following overtaking criterion: we say that a feasible plan
{(xt, at)}∞

t=0 is optimal if for any other feasible plan {(x̂t, ât)}∞
t=0, we have

lim sup
T →∞

T∑
t=0

[rt(x̂t, ât)− rt(xt, at)] ≤ 0. (15.13)

When (15.13) holds, the partial sum
∑T

t=0 rt(x̂t, ât) cannot overtake∑T
t=0 rt(xt, at) by a finite positive amount infinitely often, which motivates

the definition. Obviously, if
∑∞

t=0 rt(xt, at) is always well defined and finite,
then (15.13) is equivalent to

∞∑
t=0

rt(x̂t, ât) ≤
∞∑

t=0
rt(xt, at),

so we recover optimality in the usual sense.
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Motivated by the terminal condition (15.7) in the finite-horizon problem,
we introduce the following definition: for a feasible plan {(xt, at)}∞

t=0, we say
that the transversality condition holds if

lim
t→∞

(Dart(xt, at))at = 0. (15.14)

We may now extend the sufficiency result in Proposition 15.2 to the infinite-
horizon case.

Theorem 15.3 (Sufficiency). Consider the infinite-horizon dynamic opti-
mization problem (15.5) with T = ∞ and suppose Assumptions 15.1, 15.2
hold. Let {(xt, at)}∞

t=0 be a feasible plan. If for all t the Euler inequality (15.6)
and the transversality condition (15.14) hold, then {(xt, at)}∞

t=0 is optimal in
the sense of (15.13).

Proof. Take any feasible plan {(x̂t, ât)}∞
t=0 and let

∆T :=
T∑

t=0
[rt(x̂t, ât)− rt(xt, at)].

All derivations in the proof of Proposition 15.2 hold up to (15.12). Therefore
(15.14) implies lim supT →∞ ∆T ≤ 0, so {(xt, at)}∞

t=0 is optimal.

Example 15.1 (Optimal savings). Consider the optimal savings problem
discussed in the introduction but without uncertainty. Let the state space be
X = R, where the state is wealth w ∈ X. Let the action space be A = R+, where
the action is savings s ∈ A. By accounting, consumption is c := w − s. Let
the reward be discounted utility rt(w, s) = βtu(w − s), where u is increasing,
concave, and u(c) = −∞ for c ≤ 0. Let the transition function be

gt+1(st) = Rt+1st + yt+1.

Clearly Assumptions 15.1, 15.2 hold. Letting ct = wt − st be consumption,
the Euler inequality (15.6a) is

−βtu′(ct) + βt+1u′(ct+1)Rt+1 ≤ 0 ⇐⇒ u′(ct) ≥ βRt+1u′(ct+1),

with equality if st > 0 ⇐⇒ ct < wt. The transversality condition (15.14) is

lim
t→∞

βtu′(ct)st = 0.

Example 15.2 (Optimal savings with log utility). In Example 15.1, suppose
u(c) = log c and yt+1 = 0, so utility is logarithmic and there is no non-financial
income. We studied such a special case in §13.4 in finite horizon with constant
returns. There, the optimal consumption was given by

c = w

1 + β + · · ·+ βT
= 1− β

1− βT +1 w.
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Letting T →∞, we may conjecture that the optimal consumption in infinite
horizon is c = (1 − β)w. Let us verify that this is indeed true by applying
Theorem 15.3. If we set ct = (1 − β)wt, the budget constraint (15.1b) (with
yt+1 = 0) implies wt+1 = βRt+1wt. Then

u′(ct)− βRt+1u′(ct+1) = 1
(1− β)wt

− βRt+1

(1− β)βRt+1wt
= 0,

so the Euler equation holds. Furthermore,

βtu′(ct)st = βt st

ct
= βt β

1− β
→ 0

as t → ∞, so the transversality condition holds. Therefore by Theorem 15.3,
ct = (1− β)wt is indeed optimal.

Example 15.3 (Optimal growth). Consider the following deterministic ver-
sion of the stochastic growth model discussed in Example 14.4:

maximize
∞∑

t=0
βtu(ct)

subject to (∀t)ct + kt+1 = f(kt),
(∀t)ct, kt+1 ≥ 0,

k0 > 0 given.

This problem can be interpreted as the optimization problem of Robinson
Crusoe marooned on a desert island: ct is the consumption of potatoes at time
t, kt+1 is the stock of potatoes to be planted for time t + 1, and f(kt) is the
harvest of potatoes at time t. It is convenient to define xt = f(kt), which can
be interpreted as resources available at time t. Let the state space be X = R,
where the state is x ∈ X. Let the action space be A = R+, where the action is
savings at = kt+1 = xt − ct. Let the reward be rt(xt, at) = βtu(xt − at). Let
the transition function be gt+1(at) = f(at). The Euler equation (15.6a) is

u′(ct) = βu′(ct+1)f ′(at).

The transversality condition (15.14) is

lim
t→∞

βtu′(ct)at = 0.

Example 15.4 (Optimal growth with log utility). In Example 15.3, suppose
u(c) = log c and f(k) = Akα, where A > 0 is productivity and α ∈ (0, 1).
We solve this problem in closed-form by guess-and-verify. Letting V (x) be the
value function, the Bellman equation is

V (x) = max
0≤k≤x

{log(x− k) + βV (Akα)} .
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Conjecture that V (x) = a + b log x for some a ∈ R and b > 0. Then

a + b log x = max
0≤k≤x

{log(x− k) + β(a + b log(Akα)} .

Taking the first-order condition with respect to k yields

− 1
x− k

+ βbα
1
k

= 0 ⇐⇒ k = bαβ

1 + bαβ
x.

Substituting this into the Bellman equation and comparing the coefficients of
log x, we obtain

b = 1 + βbα ⇐⇒ b = 1
1− αβ

.

Therefore the optimal savings is k = αβx and optimal consumption is c =
(1− αβ)x. Since xt+1 = Akα

t+1, we obtain

u′(ct)− βu′(ct+1)f ′(kt+1) = 1
ct
− β

Aαkα−1
t+1

ct+1
= 1

ct
− β

αxt+1

ct+1kt+1

= 1
(1− αβ)xt

− αβxt+1

(1− αβ)xt+1αβxt
= 0,

so the Euler equation holds. Furthermore,

βtu′(ct)kt+1 = βt kt+1

ct
= βt αβ

1− αβ
→ 0

as t → ∞, so the transversality condition holds. Therefore by Theorem 15.3,
ct = (1− αβ)xt is indeed optimal.

We next consider necessary conditions. By considering one-shot deviations,
the necessity of the Euler inequality (15.6) is obvious by the same argument
as in the proof of Proposition 15.1. Therefore we focus on the transversality
condition (15.14).

Theorem 15.4 (Necessity). Consider the infinite-horizon dynamic opti-
mization problem (15.5) with T = ∞ and suppose Assumptions 15.1, 15.2
hold. Let {(xt, at)}∞

t=0 be an optimal plan. For t ≥ 1 and θ ∈ [0, 1], define
ft : [0, 1] → [−∞,∞) by ft(θ) = rt(gt(θat−1), θat). If there exists θ0 ∈ (0, 1)
such that

∑∞
t=1 ft(θ) converges to a finite value for all θ ∈ [θ0, 1], then the

transversality condition (15.14) holds.

Proof. Let us first show that ft is concave. The proof is similar to Proposition
11.4 but we repeat it for completeness. Take θ1, θ2 ∈ [0, 1] and α ∈ [0, 1]. Let
θ := (1− α)θ1 + αθ2. Since gt is a concave map, we have

x := gt(θat−1) ≥ (1− α)gt(θ1at−1) + αg(θ2at−1) =: (1− α)x1 + αx2.

Furthermore, by definition

b := θat = (1− α)θ1at + αθ2at =: (1− α)b1 + αb2.
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By considering the value rt(x, b), we obtain

ft(θ) = rt(gt(θat−1), θat)
= rt(x, b) (∵ definition of x, b)
≥ rt((1− α)x1 + αx2, (1− α)b1 + αb2) (∵ rt increasing in x)
≥ (1− α)rt(x1, b1) + αrt(x2, b2) (∵ rt concave)
= (1− α)ft(θ1) + αft(θ2),

so f is concave.
Next, take any θ ∈ [θ0, 1]. Write

θ = (1− α)θ0 + α ⇐⇒ α = θ − θ0

1− θ0
∈ [0, 1].

Since ft is concave, we obtain

ft(θ) ≥ (1− α)ft(θ0) + αft(1) ⇐⇒ ft(1)− ft(θ)
1− θ

≤ ft(1)− ft(θ0)
1− θ0

. (15.15)

Finally, we prove the transversality condition. Let {(xt, at)}∞
t=0 be optimal.

For any θ ∈ [θ0, 1] and T > 0, define {(x̂t(θ), ât(θ))}∞
t=0 by

ât(θ) =
{

at if t ≤ T ,
θat if t ≥ T + 1,

x̂t(θ) =
{

x0 if t = 0,
gt(ât−1) if t ≥ 1.

Since A = RNa
+ is convex and contains zero, clearly {(x̂t(θ), ât(θ))}∞

t=0 is fea-
sible. Furthermore, by the definition of ft, we have rt(x̂t(θ), ât(θ)) = ft(θ) for
t > T , which is summable by assumption. Since {(xt, at)}∞

t=0 is optimal, we
obtain

0 ≥
∞∑

t=0
[rt(x̂t(θ), ât(θ))− rt(xt, at)]

= rT (xT , θaT )− rT (xT , aT ) +
∞∑

t=T +1
[ft(θ)− ft(1)]

⇐⇒ rT (xT , θaT )− rT (xT , aT ) ≤
∞∑

t=T +1
[ft(1)− ft(θ)].

Dividing both sides by 1− θ > 0 and using (15.15), we obtain

rT (xT , θaT )− rT (xT , aT )
1− θ

≤
∞∑

t=T +1

ft(1)− ft(θ)
1− θ

≤
∞∑

t=T +1

ft(1)− ft(θ0)
1− θ0

.
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Since the right-hand side does not depend on θ, letting θ ↑ 1 in the left-hand
side, we obtain

0 ≤ −(DarT (xT , aT ))aT ≤
∞∑

t=T +1

ft(1)− ft(θ0)
1− θ0

,

where the left inequality follows from DarT ≤ 0 and aT ≥ 0. Letting T →∞
and noting that {ft(θ)} is summable, the right-hand side converges to 0, and
hence the transversality condition (15.14) holds.

15.4 STOCHASTIC CASE

The generalization of the Euler equation and the transversality condition to
stochastic optimization problems is straightforward. The only technical com-
plications are that (i) we may allow the reward function rt and the transi-
tion function gt to be random (more precisely, letting {Ft}∞

t=0 be a filtration
on a probability space (Ω,F , P ), fixing xt, at, the functions rt(xt, at, ω) and
gt(at, ω) are Ft-measurable), and (ii) we need to be careful about exchanging
the order of differentiation, integration (taking expectations), and taking infi-
nite sums. These technicalities are beyond the scope of this book and we refer
the reader to textbooks on measure theory such as Folland (1999).

Let Et denote the time t conditional expectation operator. Generalizing
the overtaking criterion (15.13), we say that a feasible state-action process
{(xt, at)}∞

t=0 is optimal if for any other feasible plan {(x̂t, ât)}∞
t=0, we have

lim sup
T →∞

E0

T∑
t=0

[rt(x̂t, ât)− rt(xt, at)] ≤ 0.

The Euler inequality (15.6a) can be generalized as

Dart(xt, at) + Et[Dxrt+1(xt+1, at+1)Dagt+1(at)] ≤ 0.

The transversality condition (15.14) can be generalized as

lim
t→∞

E0[(Dart(xt, at))at] = 0.

With these changes in notation, all results in Propositions 15.1–Theorem 15.4
hold (subject to the technicalities mentioned above).

15.5 OPTIMAL SAVINGS PROBLEM

As an application of optimal control theory, we solve the optimal savings
problem without assuming the boundedness of the utility function following
the Euler equation iteration approach of Li and Stachurski (2014) and Ma,
Stachurski, and Toda (2020).

Because we have already seen the optimal savings problem many times,



Variational Methods ■ 251

the model description is brief. Let Z = {1, . . . , Z} be a finite set and {zt}∞
t=0

be a Markov chain with transition probability matrix P = (P (z, z′)), where
P (z, z′) = Pr(zt+1 = z′ | zt = z). We assume that the discount factor and
gross return on savings between time t− 1 and t as well as the non-financial
income at time t satisfy

βt = β(zt−1, zt), Rt = R(zt−1, zt), yt = y(zt−1, zt), (15.16)

where β, R, y : Z2 → R+. Letting w ≥ 0 be wealth and c ≥ 0 be consumption,
given (w, z), the objective of the agent is to maximize

u(c) + Ez[β(z, z′)u(c′)] + •

subject to the budget constraint

w′ = R(z, z′)(w − c) + y(z, z′) (15.17)

and the nonnegativity and borrowing constraints 0 ≤ c ≤ w.
Suppose the utility function u is continuously differentiable on (0,∞) and

that the marginal utility u′ is positive, continuous, and strictly decreasing, so
u is strictly increasing and strictly concave. Furthermore, assume the Inada
condition u′(0) = ∞ so that the nonnegativity constraint c ≥ 0 never binds.
Suppose an optimal consumption function c(w, z) exists. Then by Example
15.1, we obtain the Euler inequality

u′(c(w, z)) ≥ Ez[β(z, z′)R(z, z′)u′(c(w′, z′))], (15.18)

where the next period’s wealth w′ satisfies the budget constraint (15.17) and
the Euler inequality (15.18) holds with equality if c(w, z) < w. Let us convert
the Euler inequality to a single equation. If c(w, z) < w, (15.18) holds with
equality. Furthermore, since u is concave (hence u′ is decreasing), we have
u′(c(w, z)) ≥ u′(w). If c(w, z) = w, then (15.18) is an inequality, and we
obviously have u′(c(w, z)) = u′(w). Therefore by combining the two cases, we
obtain the single equation

u′(c(w, z)) = max {Ez[β(z, z′)R(z, z′)u′(c(w′, z′))], u′(w)} . (15.19)

To simplify notation, let us suppress the arguments of β, R, y. To solve
the Euler equation (15.19), we apply the idea of Coleman (1990) and Li and
Stachurski (2014). Let c be a guess of the consumption function and consider
updating it. To this end, set ξ = c(w, z), and using the budget constraint
(15.17) to eliminate w′, rewrite (15.19) as

u′(ξ)−max {Ez[βRu′(c(R(w − ξ) + y, z′))], u′(w)} = 0. (15.20)

The idea of Euler equation iteration (EEI) is that, given a candidate policy
function c, we update it at the point (w, z) by the value ξ solving the Euler
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equation (15.20). If we can show that this updating rule is a (Perov) contrac-
tion, then we obtain a unique fixed point, which satisfies the Euler equation.

To carry out this idea, we need to define an appropriate functional space.
It is reasonable to assume that the consumption function c(w, z) is continuous
and increasing in w. Then the marginal utility function fz(w) := u′(c(w, z))
becomes continuous and decreasing in w. We thus define the space F of can-
didate marginal utility functions by the set of all functions f : (0,∞)→ RZ

++
such that f is continuous, decreasing, and its difference from u′ is bounded:

(∀z ∈ Z) sup
w∈(0,∞)

|fz(w)− u′(w)| <∞. (15.21)

Define d : F2 → RZ
+ by d(f, g) = (d1(f, g), . . . , dZ(f, g)) with

dz(f, g) = sup
w∈(0,∞)

|fz(w)− gz(w)| .

It is straightforward to show that (F , d) is a complete vector-value metric
space (see §7.5 and Problem 15.4). The following lemma shows that, for any
f ∈ F , by setting c(w, z) = (u′)−1(f(w, z)), we can uniquely solve (15.20).

Lemma 15.5. Let f ∈ F and define c = (u′)−1 ◦ f . Then for all (w, z) ∈
(0,∞)×Z, there exists a unique ξ = ξ(w, z) ∈ (0, w] solving the Euler equation
(15.20). Furthermore, ξ is continuous and increasing in w.

Proof. We first show the existence and uniqueness of ξ. By the definition of
c, we have u′ ◦ c = f . Define ϕ : (0, w]→ R by

ϕ(ξ, w) = u′(ξ)−max {Ez[βRfz′(R(w − ξ) + y)], u′(w)} .

By assumption, ξ 7→ u′(ξ) is continuous and strictly decreasing. Since f is
continuous and decreasing, ξ 7→ Ez[βRfz′(R(w − ξ) + y)] is continuous and
increasing. Therefore ϕ is continuous and strictly decreasing in ξ. Since

ϕ(0, w) = u′(0)−max {Ez[βRfz′(Rw + y)], u′(w)} =∞,

ϕ(w, w) = u′(w)−max {Ez[βRfz′(y)], u′(w)} ≤ 0,

by the intermediate value theorem, there exists a unique ξ ∈ (0, w] satisfying
ϕ(ξ, w) = 0.

We next show the continuity and monotonicity of ξ. Since f, u′ are contin-
uous, so is ξ. To show monotonicity, let w1 < w2 and take the corresponding
ξ1, ξ2. To show ξ1 ≤ ξ2, suppose to the contrary that ξ1 > ξ2. Since f, u′ are
decreasing, ϕ is increasing in w. Noting that ϕ is strictly decreasing in ξ, we
obtain

0 = ϕ(ξ1, w1) ≤ ϕ(ξ1, w2) < ϕ(ξ2, w2) = 0,

which is a contradiction.

The following lemma shows that we may define a self map T : F → F by
using the updating rule in Lemma 15.5.
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Lemma 15.6. Suppose y(z, z′) > 0 for all (z, z′) ∈ Z2. For f ∈ F , define
(Tf)z(w) = u′(ξ(w, z)) using Lemma 15.5. Then T : F → F .

Proof. Let ξ(w, z) be as in Lemma 15.5. Since u′ is continuous and strictly
decreasing, and ξ(w, z) is continuous and increasing in w, it follows that
(Tf)z(w) = u′(ξ(w, z)) is continuous and decreasing in w. Therefore to show
that T is a self map on F , it suffices to show (15.21). Letting ξ = ξ(w, z) and
using (15.20), we obtain

(Tf)z(w) = u′(ξ) = max {Ez[βRfz′(R(w − ξ) + y)], u′(w)} ≥ u′(w). (15.22)

Since f ∈ F and (15.21) holds, we can take a constant M > 0 such that
supw,z |fz(w)− u′(w)| ≤M . Therefore

(Tf)z(w)− u′(w) = max {Ez[βRfz′(R(w − ξ) + y))]− u′(w), 0}
≤ Ez[βRfz′(R(w − ξ) + y)]
≤ Ez[βR(u′(R(w − ξ) + y) + M)]
≤ Ez[βR(u′(y) + M)] <∞, (15.23)

where the last line follows from the fact that u′ is decreasing and y(z, z′) > 0.
Combining (15.22) and (15.23), we obtain

0 ≤ (Tf)z(w)− u′(w) ≤ Ez[βR(u′(y) + M)] <∞,

so (15.21) holds for Tf .

In what follows, we refer to T : F → F in Lemma 15.6 as the Cole-
man operator . The following lemma shows that under suitable conditions, the
Coleman operator T is a Perov contraction and hence admit a unique fixed
point.

Lemma 15.7. Suppose y(z, z′) > 0 for all (z, z′) ∈ Z2. Define the nonnegative
matrix B by B(z, z′) = P (z, z′)β(z, z′)R(z, z′) with spectral radius ρ(B). If
ρ(B) < 1, then T : F → F is a Perov contraction with coefficient matrix B.

Proof. We verify the sufficient conditions in Proposition 7.7. The functional
space F clearly satisfies the upward shift and bounded difference properties.
To prove monotonicity, Let f, g ∈ F and suppose f ≤ g. To show Tf ≤ Tg,
it suffices to show

ξ := (u′)−1((Tf)z(w)) ≥ (u′)−1((Tg)z(w)) =: η

for all (w, z). Take any (w, z). If ξ ≥ η, there is nothing to prove, so assume
ξ < η. Then using (15.20), we obtain

u′(ξ) = max {Ez[βRfz′(R(w − ξ) + y)], u′(w)}
≤ max {Ez[βRgz′(R(w − ξ) + y)], u′(w)} (∵ f ≤ g)
≤ max {Ez[βRgz′(R(w − η) + y)], u′(w)} (∵ ξ < η, g decreasing)
= u′(η).
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Since u′ is strictly decreasing, we obtain ξ ≥ η. Therefore T is monotone.
To prove discounting, take any nonnegative vector a ∈ RZ

+. Fixing (w, z),
define ξ(a) := (u′)−1((T (f + a)z(w)). Using the already established mono-
tonicity, it follows that ξ(a) is decreasing in a. Therefore

(T (f + a)z)(w) = u′(ξ(a))
= max {Ez[βR(f + a)z′(R(w − ξ(a)) + y)], u′(w)}
= max {Ez[βRfz′(R(w − ξ(a)) + y) + βRaz′ ], u′(w)}
≤ max {Ez[βRfz′(R(w − ξ(a)) + y)], u′(w)}+ (Ba)z

≤ max {Ez[βRfz′(R(w − ξ(0)) + y)], u′(w)}+ (Ba)z

= u′(ξ(0)) + (Ba)z = (Tf)z(w) + (Ba)z,

where the last inequality follows from ξ(a) ≤ ξ(0) and the fact that f is
decreasing. Therefore discounting holds. Proposition 7.7 implies that T : F →
F is a Perov contraction with coefficient matrix B.

By combining Lemmas 15.5–15.7, we obtain the following theorem.

Theorem 15.8. Consider the optimal savings problem. Suppose that

(i) the utility function u is continuously differentiable on (0,∞), u′ is pos-
itive, continuous, strictly decreasing, and satisfies the Inada condition
u′(0) =∞,

(ii) the non-financial income satisfies y(z, z′) > 0 for all (z, z′), and

(iii) the nonnegative matrix B defined by B(z, z′) = P (z, z′)β(z, z′)R(z, z′)
has spectral radius less than 1.

Define the space of candidate consumption functions C by the set of all func-
tions c : (0,∞)×Z→ (0,∞) such that c is continuous, increasing, and satisfies

sup
(w,z)∈(0,∞)×Z

|u′(c(w, z))− u′(w)| <∞. (15.24)

Then there exists a unique c ∈ C satisfying the Euler equation (15.19). Fur-
thermore, Euler equation iteration converges from any initial c0 ∈ C.

We discuss a few generalizations and limitations of Theorem 15.8.
Remark. Theorem 15.8 only establishes the existence and uniqueness of a
consumption function satisfying the Euler equation. For optimality, we need
to verify the transversality condition, which requires a separate argument.
See Proposition 2.2 of Ma, Stachurski, and Toda (2020), which proves the
transversality condition under the additional assumption that the matrix A
defined by A(z, z′) = P (z, z′)β(z, z′) has spectral radius less than 1.
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Remark. In Theorem 15.8, we assumed that the discount factor, gross return,
and non-financial income all depend on the pair of Markov variables (zt−1, zt)
as in (15.16). However, we may let them also depend on an additional variable
ζt that is independent and identically distributed over time. By inspecting the
proofs of the lemmas, all we need is to assume y(z, z′, ζ ′) > 0, Ez[βR] < ∞,
Ez[βRu′(y)] <∞, and modify the matrix B to

B(z, z′) = P (z, z′) Ez,z′ [β(z, z′, ζ ′)R(z, z′, ζ ′)].

Remark. In Theorem 15.8, to simplify the argument we assumed the Inada
condition u′(0) =∞, but this can be easily dispensed with. If u′(0) need not
equal ∞, then the nonnegativity constraint c ≥ 0 may bind. Thus in addition
to the Euler inequality (15.18), we also need to include the reverse inequality,
with equality if c(w, z) = 0. Then the Euler equation (15.19) needs to be
modified to

u′(c(w, z)) = min {u′(0), max {Ez[β(z, z′)R(z, z′)u′(c(w′, z′))], u′(w)}} .

The remaining argument is identical; see Ma and Toda (2021) for details.
Remark. Probably the most severe restriction of Theorem 15.8 is that it re-
quires y(z, z′) > 0. If y(z, z′) = 0, the argument breaks down. To see why,
consider the special case of u(c) = log c, β(z, z′) = β ∈ (0, 1), and y(z, z′) = 0
for all (z, z′). We know from Example 15.2 that the optimal consumption
function is c(w, z) = (1− β)w. But then

u′(c(w, z))− u′(w) = 1
(1− β)w −

1
w

= β

(1− β)w →∞

as w → 0, so (15.24) does not hold.
As the last remark shows, we need a separate argument to treat the case

y(z, z′) = 0. Here we briefly present results of Ma and Toda (2021) when the
period utility function is the constant relative risk aversion (CRRA) specifi-
cation

u(c) =
{

c1−γ

1−γ if 0 < γ ̸= 1,
log c if γ = 1.

(15.25)

Because the problem is homogeneous, if an optimal consumption function
exists, it must be of the form c(w, z) = c̄zw for some vector c̄ ∈ RZ

+ with
c̄z ∈ (0, 1) for all z. Substituting this into the Euler equation (15.19) and
noting that the borrowing constraint does not bind, we must have

c̄−γ
z = Ez[βR1−γ c̄−γ

z′ (1− c̄z)−γ ].

Multiplying both sides by (1− c̄z)γ and setting xz = c̄−γ
z , after some algebra

we obtain
(∀z)xz =

(
1 +

(
Ez[βR1−γxz′ ]

)1/γ
)γ

. (15.26)
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Define the nonnegative matrix K(θ) by K(θ)(z, z′) = Ez,z′ [β(z, z′)R(z, z′)θ].
Then we may interpret (15.26) as

x = (1 + (K(1− γ)x)1/γ)γ ,

where x ∈ RZ
++ and powers are applied entry-wise. Letting the right-hand

side be Tx, it follows that T : RZ
+ → RZ

+ is a monotone self map. Ma and
Toda (2021, Proposition 14) shows that T has a unique fixed point if and
only if ρ(K(1− γ)) < 1. For instance, if Z = 1 so (β, R) are independent and
identically distributed over time through a variable ζ, then (15.26) becomes

x =
(

1 +
(
E[βR1−γx]

)1/γ
)γ

⇐⇒ c̄ = x−1/γ = 1− E[βR1−γ ]1/γ .

Note that c̄ > 0 if and only if E[βR1−γ ] < 1, which is a well-known condition
(Ma and Toda, 2021, Footnote 11).

As we see from all these discussions, it is frustrating that the necessary or
sufficient conditions for the existence of a solution as well as the approaches
to solve optimal savings problems are different depending on the model spec-
ification. When non-financial income is positive (y(z, z′) > 0 for all (z, z′)),
then Theorem 15.8 states that ρ(K(1)) < 1 is sufficient for the existence and
uniqueness of a consumption function satisfying the Euler equation, and the
proof is based on Euler equation iteration and the Perov contraction theorem.
When the utility function exhibits constant relative risk aversion γ and non-
financial income is zero (y(z, z′) = 0 for all (z, z′)), then the result of Ma and
Toda (2021) shows that ρ(K(1 − γ)) < 1 is necessary and sufficient, and the
proof is based on some properties of monotone convex/concave maps. There
is still room for more research.

NOTES

The sufficiency of the Euler equation and the transversality condition for opti-
mal control has been known for a long time. The necessity of the transversal-
ity condition used to be considered difficult, but Kamihigashi (2002) provided
a simple proof under the assumption xt+1 = at (so the transition function
gt is the identity map). Theorem 15.4 is an adaptation to the more general
case xt+1 = gt(at). The Euler equation iteration as a solution algorithm was
proposed by Coleman (1990) for solving stochastic growth models. Li and
Stachurski (2014) adapted this approach to establish the existence of a so-
lution to the optimal savings problem under constant discount factor and
return on savings. Ma, Stachurski, and Toda (2020) extended to the case with
stochastic discounting and returns. The Euler equation iteration approach
has many applications. Stachurski and Toda (2019, 2020) proved that under
constant discounting and returns, the tail behavior of the wealth distribution
inherits that of the income distribution. Ma and Toda (2021, 2022) proved
the asymptotic linearity of consumption functions when the marginal utility
u′(c) behaves like a power function and discuss computational efficiency.
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PROBLEMS

15.1. Introduce appropriate assumptions on u, f in Example 15.3 so that
Assumptions 15.1, 15.2 are satisfied.

15.2. Prove that the optimal consumption rule c = (1−β)w in Example 15.2
remains valid for arbitrary stochastic returns {Rt}∞

t=1.

15.3. Prove that the optimal consumption rule c = (1 − αβ)w in Example
15.4 remains valid for arbitrary stochastic productivities {At}∞

t=0.

15.4. Consider the space (F , d) in §15.5.

(i) For each z ∈ Z, show that dz : F2 → R+ satisfies the triangle inequality.

(ii) Prove that (F , d) is a complete vector-valued metric space.

15.5 (Ma et al., 2020, Proposition 2.3). Consider the optimal savings problem
in §15.5. This problem asks you to prove that the optimal savings function
s(w, z) := w−c(w, z) is increasing in wealth w. Let C be the space of candidate
consumption functions defined in Theorem 15.8 and let

C1 = {c ∈ C : (∀z ∈ Z)w 7→ w − c(w, z) is increasing in w.}

Let F ,F1 be the corresponding spaces of marginal utility functions and T :
C → C be Coleman operator in Lemma 15.6.

(i) Show that F1 is a nonempty closed set.

(ii) Show that T : F1 → F1.

(iii) Show that the optimal savings function s(w, z) := w− c(w, z) is increas-
ing in w. (Hint: use the Closed Subset Lemma 14.3.)

15.6 (Ma et al., 2020, Proposition 2.4). Consider the optimal savings prob-
lem in §15.5. This problem asks you to prove that the optimal consumption
function is increasing in income. Use the same notation as Problem 15.5.

(i) Let y1, y2 : Z2 → R++ be two income profiles and T1, T2 : F → F be the
corresponding Coleman operators. If y1(z, z′) ≤ y2(z, z′) for all (z, z′),
show that T1f ≥ T2f for all f ∈ F .

(ii) Show by induction that T k
1 f ≥ T k

2 f for all f ∈ F and k ∈ N.

(iii) Let f1, f2 ∈ F be the unique fixed points of T1, T2. Show that f1 ≥ f2.

(iv) Letting c1, c2 be the corresponding consumption functions, show that
c1 ≤ c2.





APPEND I X A

Introduction to

Numerical Analysis

A.1 INTRODUCTION

In the main text, we have studied optimization problems from a theoretical
perspective. If the objective function happens to be convex or concave, to
minimize or maximize it, all we need to do is to find a point at which the
derivative is zero (Proposition 11.8). This is easier said than done. In practice,
almost all problems have no closed-form solutions and hence we need to use
numerical methods to find the approximate solution. This chapter provides
an introduction to commonly used numerical methods. Some useful references
include Davis and Rabinowitz (1984) and Trefethen (2019).

A.2 SOLVING NONLINEAR EQUATIONS

If a one-variable function f is differentiable, the first-order condition for opti-
mality is f ′(x) = 0. Letting g(x) = f ′(x), it thus suffices to solve the nonlinear
equation g(x) = 0. Suppose that g : R→ R is continuous and

g(x)


< 0, (x < x̄)
= 0, (x = x̄)
> 0. (x > x̄)

These inequalities show that we know exactly whether the current approx-
imate solution x is greater or less than the true solution x̄ according to
g(x) ≷ 0.

Bisection method

The idea of the bisection method is to decrease x if g(x) > 0 and increase x if
g(x) < 0.

259
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To describe the bisection algorithm, let

x = current approximate solution,

a = current lower bound of x̄,

b = current upper bound of x̄,

ε = error tolerance for x̄.

The bisection algorithm is defined as follows (Figure A.1).

Algorithm A.1 (Bisection method).

(i) Pick initial values a0 < b0 and error tolerance ε > 0.

(ii) For each k = 1, 2, . . . , let xk = (ak + bk)/2 and

(ak+1, bk+1) =
{

(ak, xk) if g(xk) > 0,
(xk, bk) if g(xk) < 0.

(iii) Stop if |xk+1 − xk| < ε. The approximate solution is xk+1.

ak

bk

xk = ak+bk

2
x

FIGURE A.1: Bisection method.

The bisection method also works when g crosses 0 from above, but the
updating rule of the lower and upper bounds must be modified in the obvious
way. The bisection method is a sure way to obtain a solution but is slow. Since
the interval gets halved at each iteration, after k iterations the length of the
interval is of the order 2−k. Therefore convergence is (only) exponentially fast.

Order of convergence

At this point it is useful to define how fast an algorithm converges. Let {xk}∞
k=0

be the sequence of approximate solutions generated by some algorithm. Let x̄
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be the true solution. We say that the order of convergence of the algorithm is
α if there exist constants α ≥ 1 and β > 0 such that

|xk+1 − x̄| ≤ β |xk − x̄|α (A.1)

for sufficiently large k. The cases α = 1, 2, 3 are sometimes called linear,
quadratic, and cubic convergence. If α = 1 (linear convergence), we also require
β < 1 to guarantee convergence. In that case, assuming (A.1) holds for all k
and iterating, we get

|xk − x̄| ≤ βk |x0 − x̄| ,

so {xk} converges to x̄ exponentially fast. Therefore the bisection method has
order of convergence 1 by setting β = 1/2.

If α > 1, then {xk} converges to x̄ double exponentially. To see this, let us
find a constant C > 0 such that

C |xk+1 − x̄| ≤ (C |xk − x̄|)α.

Comparing with the definition of the order of convergence (A.1), it suffices to
choose C such that β = Cα−1 ⇐⇒ C = β

1
α−1 . Iterating (A.1) over n, we

obtain
C |xk − x̄| ≤ (C |x0 − x̄|)αk

,

so provided that |x0 − x̄| < 1/C, we get

|xk − x̄| ≤ C−1(C |x0 − x̄|)αk

→ 0,

and the speed of convergence is double exponentially fast.

Newton method

Although the bisection method is simple, it is inefficient in the sense that the
only information of g(x) the algorithm uses is its sign. Unsurprisingly, the
order of convergence is 1, which is slow. The Newton method, which is based
on Taylor’s theorem, achieves a much faster convergence by using both the
function value and the derivative.

The idea of the Newton method is as follows. Let g be continuously differ-
entiable. Suppose that we have an approximate solution at x = a. By Taylor’s
theorem (Proposition 2.4), we have

g(x) ≈ g(a) + g′(a)(x− a).

Since the right-hand side is linear in x, we may solve it to obtain

0 = g(a) + g′(a)(x− a) ⇐⇒ x = a− g(a)
g′(a) .

The formal algorithm of the Newton method is as follows (Figure A.2).
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Algorithm A.2 (Newton method).

(i) Pick an initial value x0 and error tolerance ε > 0.

(ii) For n = 1, 2, . . . , compute

xk+1 = xk −
g(xk)
g′(xk) . (A.2)

(iii) Stop if |xk+1 − xk| < ε. The approximate solution is xk+1.

xk

xk+1

x

FIGURE A.2: Newton method.

The following theorem shows that the Newton method has order of con-
vergence 2.

Theorem A.1. Let g : R → R be C2. Suppose that x̄ ∈ R satisfies g(x̄) = 0
and g′(x̄) ̸= 0. Then there exists a constant β > 0 and a neighborhood U of x̄

such that xk ∈ U implies |xk+1 − x̄| ≤ β |xk − x̄|2.

Proof. Let xk be the current approximate solution. Subtracting x̄ from both
sides of (A.2), we get

xk+1 − x̄ = xk − x̄− g(xk)
g′(xk) = −g(xk) + g′(xk)(x̄− xk)

g′(xk) . (A.3)

Since g is C2, applying Taylor’s theorem to g(x̄) around xk, there exists t ∈
[0, 1] such that ξ := (1− t)x̄ + txk satisfies

0 = g(x̄) = g(xk) + g′(xk)(x̄− xk) + 1
2g′′(ξ)(x̄− xk)2.

Substituting into (A.3) and assuming g′(xk) ̸= 0, we get

xk+1 − x̄ = g′′(ξ)
2g′(xk) (xk − x̄)2.
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Since by assumption g is C2 and g′(x̄) ̸= 0, we can take a neighborhood U of
x̄ such that g′(x) ̸= 0 for x ∈ U and

β := sup
t∈[0,1]

sup
x∈U

∣∣∣∣g′′((1− t)x + tx̄)
2g′(x)

∣∣∣∣ <∞.

Then |xk+1 − x̄| ≤ β |xk − x̄|2 whenever xk ∈ U , so by the definition (A.1),
the order of convergence of the Newton method is (at least) 2.

Remark. For g(x) = x2 − 2, the right-hand side of (A.2) is

xk −
g(xk)
g′(xk) = xk −

x2
k − 2
2xk

= 1
2xk + 1

xk
,

which was the motivation behind Problem 1.4.
The Newton method can also be applied to solve a system of nonlinear

equations. For example, let g : RN → RN and we would like to solve g(x) = 0.
By Taylor’s theorem, we have

g(x) ≈ g(a) + Dg(a)(x− a) ⇐⇒ x ≈ a− [Dg(a)]−1g(a),

where Dg denotes the N × N Jacobian of g. Thus if x0 is close to the true
solution x̄ and Dg(x̄) is invertible iterating

xk+1 = xk − [Dg(xk)]−1g(xk)

yields a fast convergence to x̄ (Problem A.2).

Linear interpolation

The Newton method requires both the function value g(x) and its derivative
g′(x) to implement it. Oftentimes, the derivative g′(x) has a complicated form.
In some cases (e.g., the objective function is defined only numerically, not
analytically), it is impossible to compute the derivative. In such cases, we can
use linear interpolation to solve for the solution.

Let xk and xk−1 be the two most recent approximate solutions to g(x) = 0.
Approximating g by the linear function that agrees with g at these two points,
we obtain

g(x) ≈ g(xk)− g(xk−1)
xk − xk−1

(x− xk) + g(xk).

Setting the right-hand side equal to 0, we obtain

g(xk)− g(xk−1)
xk − xk−1

(x− xk) + g(xk) = 0

⇐⇒ xk+1 = xk − g(xk) xk − xk−1

g(xk)− g(xk−1) . (A.4)

Problem A.4 shows that the order of convergence of the linear interpolation
method is the golden ratio α = 1+

√
5

2 = 1.618 . . . .
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Quadratic interpolation

The linear interpolation method approximates a nonlinear function by a linear
one by interpolating between two points. This way, we can solve for the new
approximate solution explicitly by solving a linear equation. However, we can
also solve quadratic equations explicitly. The quadratic interpolation method
fits a quadratic function to three points.

Suppose that we have three approximate solutions a < b < c to the nonlin-
ear equation g(x) = 0, with g(a)g(c) < 0. The quadratic interpolation method
constructs a quadratic function that agrees with g at these three points, and
then finds the root. By direct substitution, we can show that the quadratic
function

q(x) = g(a) (x− b)(x− c)
(a− b)(a− c) + g(b) (x− c)(x− a)

(b− c)(b− a) + g(c) (x− a)(x− b)
(c− a)(c− b)

= Ax2 + Bx + C

satisfies q(x) = g(x) for x = a, b, c. Comparing the coefficients, we obtain

A = g(a)
(a− b)(a− c) + g(b)

(b− c)(b− a) + g(c)
(c− a)(c− b) ,

B = − g(a)(b + c)
(a− b)(a− c) −

g(b)(c + a)
(b− c)(b− a) −

g(c)(a + b)
(c− a)(c− b) ,

C = g(a)bc

(a− b)(a− c) + g(b)ca

(b− c)(b− a) + g(c)ab

(c− a)(c− b) .

Using the formula for the solution to a quadratic equation, we obtain

x = −B ±
√

B2 − 4AC

2A
,

where we should pick the sign ± such that a < x < c.
The quadratic interpolation method is defined as follows.

Algorithm A.3 (Quadratic interpolation method).

(i) Pick initial values a0 < b0 < c0 and error tolerance ε > 0.

(ii) For each n, compute d = xk+1 given current ak, bk, ck. Stop if
|xk+1 − xk| < ε. Otherwise, set

(ak+1, bk+1, ck+1) =
{

(ak, d, bk) if ak < d < bk,
(bk, d, ck) if bk < d < ck.

The order of convergence of the quadratic interpolation method is the root
α > 1 of the equation

x3 − x2 − x− 1 = 0,

which is α = 1.8393 . . . .
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A.3 POLYNOMIAL APPROXIMATION

Polynomials are useful for approximating smooth functions because they can
be differentiated and integrated analytically. Since a degree n− 1 polynomial
is determined by n coefficients, once we specify n points on the xy plane, there
exists (at most) one polynomial that passes through these points.

Lagrange interpolation

Lagrange interpolation gives an explicit formula for the interpolating polyno-
mial.

Proposition A.2. Let x1 < · · · < xn and define the k-th Lagrange polynomial

Lk(x) :=
∏

l ̸=k(x− xl)∏
l ̸=k(xk − xl)

for k = 1, . . . , n. Then p(x) =
∑n

k=1 ykLk(x) is the unique polynomial of
degree up to n− 1 satisfying p(xk) = yk for k = 1, . . . , n.

Proof. By the definition of Lk(x), we have Lk(xl) = δkl (Kronecker’s delta).
Therefore for all l, we have

p(xl) =
n∑

k=1
ykLk(xl) =

n∑
k=1

ykδkl = yl.

Clearly Lk(x) is a polynomial of degree n−1, so p(x) is a polynomial of degree
up to n− 1.

If we interpolate a function f(x) at the points x1 < · · · < xn by a degree
n−1 polynomial, what is the approximation error? The following proposition
gives an error bound if f is sufficiently smooth.

Proposition A.3. Let f : R → R be Cn and pn−1 be the interpolating poly-
nomial of f at x1 < · · · < xn. Then for any x, there exists ξ in the convex
hull of {x, x1, . . . , xn} such that

f(x)− pn−1(x) = f (n)(ξ)
n!

n∏
k=1

(x− xk). (A.5)

Proof. If x = xk for some k, then f(xk) − pn−1(xk) = 0, so (A.5) is trivial.
Suppose x ̸= xk for all k and let I = co {x, x1, . . . , xn}, which is an interval.
For any t ∈ I, let R(t) = f(t)− pn−1(t) be the error term and define

g(t) = R(t)S(x)−R(x)S(t),

where S(t) =
∏n

k=1(t − xk). Clearly g(x) = 0. Furthermore, since R(xk) =
S(xk) = 0, we have g(xk) = 0 for k = 1, . . . , n. In general, if g is differentiable
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and g(a) = g(b) = 0, by the mean value theorem (Proposition 2.3) there exists
c ∈ (a, b) such that g′(c) = 0. Applying this to the n non-overlapping intervals
with endpoints x, x1, . . . , xn, there exist n distinct points y1, . . . , yn between
x, x1, . . . , xn such that g′(yk) = 0 for k = 1, . . . , n. Continuing this argument,
there exists ξ ∈ I such that g(n)(ξ) = 0. But since S is a degree n polynomial
with leading coefficient 1, we have S(n) = n!, so

0 = g(n)(ξ) = R(n)(ξ)S(x)−R(x)n!.

Since R(t) = f(t)−pn−1(t) and deg pn−1 ≤ n−1, we obtain R(n)(ξ) = f (n)(ξ).
Therefore

f(x)− pn−1(x) = R(x) = 1
n!f

(n)(ξ)S(x) = f (n)(ξ)
n!

n∏
k=1

(x− xk).

Chebyshev polynomial

If we want to interpolate a function on an interval by a polynomial but we are
free to choose the interpolation nodes x1, . . . , xn, how should we choose them?
By mapping the interval with an affine function, without loss of generality we
may assume that the interval is [−1, 1]. Since f (n)(ξ) in (A.5) depends on
the particular function f but

∏n
k=1(x − xk) does not, it is natural to choose

x1, . . . , xn so as to minimize

max
x∈[−1,1]

∣∣∣∣∣
n∏

k=1
(x− xk)

∣∣∣∣∣ .
Chebyshev solved this problem a long time ago.

The degree n Chebyshev polynomial Tn(x) is obtained by expanding cos nθ
as a degree n polynomial of cos θ and setting x = cos θ. For instance,

cos 0θ = 1 =⇒ T0(x) = 1,

cos θ = cos θ =⇒ T1(x) = x,

cos 2θ = 2 cos2 θ − 1 =⇒ T2(x) = 2x2 − 1,

and so on. In general, adding

cos(n + 1)θ = cos nθ cos θ − sin nθ sin θ,

cos(n− 1)θ = cos nθ cos θ + sin nθ sin θ,

and setting x = cos nθ, we obtain

Tn+1(x) = 2xTn(x)− Tn−1(x). (A.6)

The coefficients of Chebyshev polynomials can be easily computed by iterat-
ing (A.6). The following theorem provides the optimal nodes for polynomial
interpolation.
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Theorem A.4. The solution to

min
x1≥···≥xn

max
x∈[−1,1]

∣∣∣∣∣
n∏

k=1
(x− xk)

∣∣∣∣∣
is given by xk = cos 2k−1

2n π, in which case
∏n

k=1(x− xk) = 21−nTn(x).

Proof. Let p(x) = 21−nTn(x). By the recursive formula (A.6), the leading
coefficient of Tn(x) is 2n−1. Therefore the leading coefficient of p(x) is 1.
Since p(cos θ) = 21−n cos nθ, clearly

sup
x∈[−1,1]

|p(x)| = sup
θ∈[−π,π]

21−n |cos nθ| = 21−n.

Suppose that there exists a degree n polynomial q(x) with leading coefficient
1 such that supx∈[−1,1] |q(x)| < 21−n. Again since p(cos θ) = 21−n cos nθ, we
have p(x) = (−1)k21−n at x = yk = cos kπ/n, where k = 0, 1, . . . , n. Since
|q(x)| < 21−n for all x ∈ [−1, 1], by the intermediate value theorem there exist
z1, . . . , zn between y0, . . . , yn such that p(zk) − q(zk) = 0. But since p, q are
polynomials of degree n with leading coefficient 1, r(x) := p(x) − q(x) is a
polynomial of degree up to n − 1. Since r(zk) = 0 for k = 1, . . . , n, it must
be r(x) ≡ 0 or p ≡ q, which is a contradiction. Therefore

∏n
k=1(x − xk) =

21−nTn(x), so xk = cos 2k−1
2n π for k = 1, . . . , n.

A.4 QUADRATURE

Many economic problems involve maximizing expected value. Unless the dis-
tribution is discrete, expectations become integrals, which cannot be compute
explicitly except for special cases. Therefore we need numerical methods to
evaluate integrals, which are called quadrature (or numerical integration).

A typical quadrature formula takes the form∫ b

a

f(x) dx ≈
N∑

n=1
wnf(xn), (A.7)

where f is a general integrand, {xn}N
n=1 are nodes, and {wn}N

n=1 are weights of
the quadrature rule. This section covers the most basic theory of quadrature.
See Davis and Rabinowitz (1984) for a more complete textbook treatment.

The simplest quadrature rule is to divide the interval [a, b] into N−1 evenly
spaced subintervals (so xn = a + n−1

N−1 (b− a) for n = 1, . . . , N) and choose the
weights {wn}N

n=1 so that one can integrate all polynomials of degree N − 1 or
less exactly. This quadrature rule is known as the N -point Newton-Cotes rule.
Since we can map the interval [0, 1] to [a, b] through the affine transformation
x 7→ a + (b− a)x, without loss of generality let us assume (a, b) = (0, 1).
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Trapezoidal rule

The 2-point Newton-Cotes rule is known as the trapezoidal rule. In this case
we have xn = 0, 1, and we choose w1, w2 to integrate an affine function exactly.
Therefore requiring that (A.7) holds exactly for f(x) = 1, x, we obtain

1 =
∫ 1

0
1 dx = w1 + w2,

1
2 =

∫ 1

0
x dx = w2.

Solving these equations, we obtain w1 = w2 = 1/2. Changing the interval
from [0, 1] to [a, b], the trapezoidal rule becomes∫ b

a

f(x) dx ≈ b− a

2 (f(a) + f(b)). (A.8)

Let us estimate the error of this approximation. Let p(x) be the degree 1
interpolating polynomial of f at x = a, b. Since p agrees with f at a, b, clearly∫ b

a

p(x) dx = b− a

2 (f(a) + f(b)).

Therefore by Proposition A.3, we obtain∫ b

a

f(x) dx− b− a

2 (f(a) + f(b)) =
∫ b

a

(f(x)− p(x)) dx

=
∫ b

a

f ′′(ξ(x))
2 (x− a)(x− b) dx,

where ξ(x) ∈ (a, b). Since (x − a)(x − b) < 0 on (a, b), by the mean value
theorem for Riemann-Stieltjes integrals, there exists c ∈ (a, b) such that∫ b

a

f ′′(ξ(x))
2 (x− a)(x− b) dx = f ′′(c)

2

∫ b

a

(x− a)(x− b) dx = −f ′′(c)
12 (b− a)3.

Therefore we can estimate the error in (A.8) as∣∣∣∣∣
∫ b

a

f(x) dx− b− a

2 (f(a) + f(b))

∣∣∣∣∣ ≤ ∥f ′′∥
12 (b− a)3, (A.9)

where ∥·∥ denotes the supremum norm on [a, b].

Simpson's rule

The 3-point Newton-Cotes rule is known as Simpson’s rule. In this case the
quadrature nodes are xn = 0, 1/2, 1, and we choose the weights w1, w2, w3 so
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as to integrate a quadratic function exactly. Therefore requiring that (A.7)
holds exactly for f(x) = 1, x, x2, we obtain

1 =
∫ 1

0
1 dx = w1 + w2 + w3,

1
2 =

∫ 1

0
x dx = 1

2w2 + w3,

1
3 =

∫ 1

0
x2 dx = 1

4w2 + w3.

Solving these equations, we obtain w1 = w3 = 1/6 and w2 = 2/3. Changing
the interval from [0, 1] to [a, b], Simpson’s rule becomes∫ b

a

f(x) dx ≈ b− a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
. (A.10)

Interestingly, since
1
4 =

∫ 1

0
x3 dx = 1

8w2 + w3,

Simpson’s rule actually integrates polynomials of degree 3 exactly, even though
it is not designed to do so.

To estimate the error of Simpson’s rule (A.10), take any point d ∈ (a, b)
and let p(x) be a degree 3 interpolating polynomial of f at x = a, a+b

2 , b, d.
Since Simpson’s rule integrates degree 3 polynomials exactly, by Proposition
A.3 we have∫ b

a

f(x) dx− b− a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
=
∫ b

a

(f(x)− p(x)) dx

=
∫ b

a

f (4)(ξ(x))
4! (x− a)

(
x− a + b

2

)
(x− b)(x− d) dx.

Since d ∈ (a, b) is arbitrary, we can take d = a+b
2 . Since

(x− a)
(

x− a + b

2

)2
(x− b) ≤ 0

on (a, b), as before we can apply the mean value theorem for integrals. Using
the change of variable x = a+b

2 + b−a
2 t, we can compute∫ b

a

(x− a)
(

x− a + b

2

)2
(x− b) dx

=
(

b− a

2

)5 ∫ 1

−1
(t + 1)t2(t− 1) dt = − 1

120(b− a)5.
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Since 4! = 24 and 24× 120 = 2880, the integration error of (A.10) is∣∣∣∣∣
∫ b

a

f(x) dx− b− a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)∣∣∣∣∣ ≤
∥∥f (4)

∥∥
2880 (b−a)5. (A.11)

Compound rule

Newton-Cotes rules with N ≥ 4 are almost never used because beyond some
degree N , some of the weights {wn}N

n=1 become negative, which causes round-
ing errors. One way to avoid this issue is to divide the interval [a, b] into N
evenly spaced subintervals and apply the trapezoidal rule or the Simpson’s rule
to each subinterval. This method is known as the compound (or composite)
rule.

If we apply the trapezoidal rule to N subintervals, then there are N + 1
endpoints. Letting xn = n/N for n = 0, 1, . . . , N , the formula for [0, 1] is∫ 1

0
f(x) dx ≈

N∑
n=1

1
2N

(f(xn−1) + f(xn))

= 1
2N

(f(x0) + 2f(x1) + · · ·+ 2f(xN−1) + f(xN )) .

(Just remember that the relative weights are 1 at endpoints and 2 in between.)
Since b− a = 1/N and there are N subintervals, using (A.9), the error of the
(N + 1)-point trapezoidal rule is of order ∥f ′′∥

12 N−2.
If we apply Simpson’s rule, then there are 3 points on each subinterval,

of which there are N , and N − 1 endpoints are counted twice. Therefore the
total number of points is 3N − (N − 1) = 2N + 1. Letting xn = n/(2N) for
n = 0, 1, . . . , 2N , the formula for [0, 1] is∫ 1

0
f(x) dx ≈

N∑
n=1

1
6N

(f(x2n−2) + 4f(x2n−1) + f(x2n))

= 1
6N

(f(x0) + 4f(x1) + 2f(x2) + · · ·+ 4f(x2N−1) + f(x2N )) .

(Just remember that the relative weights are 1 at endpoints, and they al-
ternate like 4, 2, . . . , 4, 2, 4 in between.) Since b − a = 1/N and there are N
subintervals, using (A.11), the error of the (2N + 1)-point Simpson’s rule is
of order ∥f(4)∥

2880 N−4.
Since the quadrature weights are given explicitly for trapezoidal and Simp-

son’s rules, it is straightforward to write codes for computing numerical inte-
grals. Tables A.1 and A.2 show the log10 relative errors of integrals over the
interval [0, 1] for several functions defined by

log10

∣∣∣Î/I − 1
∣∣∣ ,
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where I is the true integral and Î is the numerical one. As the above error
analysis suggests, errors tend to be smaller when the integrand is smoother
(has higher order derivatives). Furthermore, Simpson’s rule is more accurate
than the trapezoidal rule.

TABLE A.1: log10 relative errors of compound trapezoidal rule.

# points x1/2 x3/2 x5/2 x7/2 x9/2 ex

3 -1.0238 -1.1743 -0.7343 -0.4896 -0.3041 -1.6830
5 -1.4550 -1.7558 -1.3394 -1.0875 -0.8937 -2.2838
9 -1.8926 -2.3438 -1.9427 -1.6885 -1.4928 -2.8855
17 -2.3346 -2.9361 -2.5452 -2.2902 -2.0941 -3.4874
33 -2.7795 -3.5314 -3.1474 -2.8922 -2.6960 -4.0895
65 -3.2264 -4.1287 -3.7495 -3.4943 -3.2980 -4.6915

TABLE A.2: log10 relative errors of compound Simpson’s rule.

# points x1/2 x3/2 x5/2 x7/2 x9/2 ex

3 -1.3676 -2.2275 -2.3780 -1.8192 -1.1040 -3.4722
5 -1.8179 -2.9667 -3.3705 -2.9823 -2.3199 -4.6667
9 -2.2691 -3.7142 -4.3841 -4.1584 -3.5289 -5.8684
17 -2.7206 -4.4649 -5.4112 -5.3435 -4.7350 -7.0720
33 -3.1722 -5.2168 -6.4470 -6.5346 -5.9399 -8.2759
65 -3.6237 -5.9692 -7.4884 -7.7297 -7.1443 -9.4800

Gaussian quadrature

In the Newton-Cotes quadrature, we assume that the nodes are evenly spaced,
but of course there is no particular reason to do so. Can we do better by
choosing the quadrature nodes optimally? In general, consider the integral∫ b

a

w(x)f(x) dx, (A.12)

where −∞ ≤ a < b ≤ ∞ are endpoints of integration, w(x) > 0 is some
(fixed) weighting function, and f is a general integrand. A typical example is
a = −∞, b = ∞, and w(x) = 1√

2πσ2 e−(x−µ)2/2σ2 , in which case we want to
compute the expectation E[f(X)] when the random variable X is normally
distributed with mean µ and standard deviation σ.

It turns out that for any N , we can choose nodes {xn}N
n=1 and weights

{wn}N
n=1 such that we can integrate all polynomials of degree up to 2N − 1

exactly using a quadrature formula of the form (A.7), which is known as the
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Gaussian quadrature. In the discussion below, assume that
∫ b

a
w(x)xn dx exists

for all n ≥ 0, where −∞ ≤ a < b ≤ ∞ are fixed. For functions f, g, define the
inner product ⟨f, g⟩ by

⟨f, g⟩ =
∫ b

a

w(x)f(x)g(x) dx. (A.13)

As usual, define the norm of f by ∥f∥ =
√
⟨f, f⟩. To simplify notation, let us

omit a, b, so
∫

means
∫ b

a
.

The first step is to construct orthogonal polynomials {pn(x)}N
n=0 corre-

sponding to the inner product (A.13). We say that polynomials {pn(x)}N
n=0

are orthogonal if (i) deg pn = n and the leading coefficient of pn is 1, and
(ii) for all m ̸= n, we have ⟨pm, pn⟩ = 0. Some authors require that the poly-
nomials are orthonormal, so ⟨pn, pn⟩ = 1. Here we normalize the polynomials
by requiring that the leading coefficient is 1, which is useful for computation.
The following three-term recurrence relation shows the existence of orthogonal
polynomials and provides an explicit algorithm for computing them.

Proposition A.5 (Three-term recurrence relation). Let p0(x) = 1, p1(x) =
x− ⟨xp0,p0⟩

∥p0∥2 , and for n ≥ 1 define

pn+1(x) =
(

x− ⟨xpn, pn⟩
∥pn∥2

)
pn(x)− ∥pn∥2

∥pn−1∥2 pn−1(x). (A.14)

Then pn(x) is the degree n orthogonal polynomial.

Proof. Let us show by induction on n that (i) pn is an degree n polynomial
with leading coefficient 1, and (ii) ⟨pn, pm⟩ = 0 for all m < n. The claim is
trivial for n = 0. For n = 1, by construction p1 is a degree 1 polynomial with
leading coefficient 1, and since p0(x) = 1, we obtain

⟨p1, p0⟩ =
〈(

x− ⟨xp0, p0⟩
∥p0∥2

)
p0, p0

〉
= ⟨xp0, p0⟩ − ⟨xp0, p0⟩ = 0.

Suppose the claim holds up to n. Then for n + 1, by (A.14) the leading
coefficient of pn+1 is the same as that of xpn, which is 1. If m = n, then

⟨pn+1, pn⟩ =
〈(

x− ⟨xpn, pn⟩
∥pn∥2

)
pn −

∥pn∥2

∥pn−1∥2 pn−1, pn

〉

= ⟨xpn, pn⟩ − ⟨xpn, pn⟩ −
∥pn∥2

∥pn−1∥2 ⟨pn−1, pn⟩ = 0.
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If m = n− 1, then

⟨pn+1, pn−1⟩ =
〈(

x− ⟨xpn, pn⟩
∥pn∥2

)
pn −

∥pn∥2

∥pn−1∥2 pn−1, pn−1

〉

= ⟨xpn, pn−1⟩ −
⟨xpn, pn⟩
∥pn∥2 ⟨pn, pn−1⟩ − ∥pn∥2

= ⟨pn, xpn−1⟩ − ∥pn∥2
.

Since the leading coefficients of pn, pn−1 are 1, we can write xpn−1(x) =
pn(x) + q(x), where q(x) is a polynomial of degree at most n − 1. Clearly q
can be expressed as a linear combination of p0, p1, . . . , pn−1, so ⟨pn, q⟩ = 0.
Therefore

⟨pn+1, pn−1⟩ = ⟨pn, pn + q⟩ − ∥pn∥2 = ∥pn∥2 + ⟨pn, q⟩ − ∥pn∥2 = 0.

Finally, if m < n− 1, then

⟨pn+1, pm⟩ =
〈(

x− ⟨xpn, pn⟩
∥pn∥2

)
pn −

∥pn∥2

∥pn−1∥2 pn−1, pm

〉

= ⟨xpn, pm⟩ −
⟨xpn, pn⟩
∥pn∥2 ⟨pn, pm⟩ −

∥pn∥2

∥pn−1∥2 ⟨pn−1, pm⟩

= ⟨pn, xpm⟩ = 0

because xpm is a polynomial of degree 1 + m < n.

The following lemma shows that a degree n orthogonal polynomial has
exactly n real roots (so they are all simple).

Lemma A.6. pn(x) has exactly n real roots on (a, b).

Proof. By the fundamental theorem of algebra, pn(x) has exactly n roots in
C. Suppose to the contrary that pn(x) has fewer than n real roots on (a, b).
Let x1, . . . , xk (k < n) be the roots at which pn(x) changes its sign and
q(x) = (x − x1) · · · (x − xk). Since pn(x)q(x) has a constant sign but is not
identically equal to zero, we have

⟨pn, q⟩ =
∫

w(x)pn(x)q(x) dx ̸= 0

because w(x) > 0. On the other hand, since deg q = k < n, we have ⟨pn, q⟩ = 0,
which is a contradiction.

The following theorem shows that using the N roots of the degree N or-
thogonal polynomial pN (x) as quadrature nodes and choosing specific weights,
we can integrate all polynomials of degree up to 2N−1 exactly. Thus Gaussian
quadrature always exists.
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Theorem A.7 (Gaussian quadrature). Let a < x1 < · · · < xN < b be the
N roots of the degree N orthogonal polynomial pN established in Lemma A.6
and

wn :=
∫

w(x)Ln(x) dx (A.15)

for n = 1, . . . , N , where

Ln(x) :=
∏

m ̸=n

x− xm

xn − xm

is the degree N − 1 polynomial that takes value δmn at xm. Then∫
w(x)p(x) dx =

N∑
n=1

wnp(xn) (A.16)

for all polynomials p(x) of degree up to 2N − 1.

Proof. Since deg p ≤ 2N − 1 and deg pN = N , we can write

p(x) = pN (x)q(x) + r(x),

where deg q, deg r ≤ N − 1. Since q can be expressed as a linear combination
of orthogonal polynomials of degree up to N − 1, we have ⟨pn, q⟩ = 0. Hence∫

w(x)p(x) dx = ⟨pn, q⟩+
∫

w(x)r(x) dx =
∫

w(x)r(x) dx.

On the other hand, since {xn}N
n=1 are roots of pN , we have

p(xn) = pN (xn)q(xn) + r(xn) = r(xn)

for all n, so in particular
N∑

n=1
wnp(xn) =

N∑
n=1

wnr(xn).

Therefore it suffices to show (A.16) for polynomials r of degree up to N − 1.
Since deg r ≤ N − 1 and deg Ln = N − 1, by Proposition A.2 we have

r(x) =
N∑

n=1
r(xn)Ln(x)

identically. Since r can be represented as a linear combination of Ln’s, it
suffices to show (A.16) for all Ln’s. But since by (A.15) we have∫

w(x)Ln(x) dx = wn =
N∑

m=1
wmδmn =

N∑
m=1

wmLn(xm),

the claim is true.
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In practice, how can we compute the nodes {xn}N
n=1 and weights {wn}N

n=1
of the N -point Gaussian quadrature established in Theorem A.7? The solution
is given by the following Golub-Welsch algorithm.

Theorem A.8 (Golub and Welsch, 1969). For each n ≥ 1, define αn, βn by

αn = ⟨xpn−1, pn−1⟩
∥pn−1∥2 , βn = ∥pn∥

∥pn−1∥
> 0.

Define the N ×N symmetric tridiagonal matrix

TN =



α1 β1 0 · · · 0

β1 α2 β2
. . .

...

0 β2 α3
. . . 0

...
. . . . . . . . . βN−1

0 · · · 0 βN−1 αN


. (A.17)

Then the Gaussian quadrature nodes {xn}N
n=1 are eigenvalues of TN . Letting

vn = (vn1, . . . , vnn)′ be an eigenvector of TN corresponding to the eigenvalue
xn, the weights {wn}N

n=1 in (A.15) are equal to

wn = v2
n1

∥vn∥2

∫
w(x) dx > 0. (A.18)

Proof. By (A.14) and the definition of αn, βn, for all n ≥ 0 we have

pn+1(x) = (x− αn+1)pn(x)− β2
npn−1(x). (A.19)

Note that this is true for n = 0 by defining p−1(x) = 0 and β0 = 0. For each
n, let p∗

n(x) = pn(x)/ ∥pn∥ be the normalized orthogonal polynomial. Then
(A.19) becomes

∥pn+1∥ p∗
n+1(x) = ∥pn∥ (x− αn+1)p∗

n(x)− ∥pn−1∥β2
np∗

n−1(x).

Dividing both sides by ∥pn∥ > 0, using the definition of βn, βn+1, and rear-
ranging terms, we obtain

βnp∗
n−1(x) + αn+1p∗

n(x) + βn+1p∗
n+1(x) = xp∗

n(x).

In particular, setting x = xk (where xk is a root of pN ), we obtain

βnp∗
n−1(xk) + αn+1p∗

n(xk) + βn+1p∗
n+1(xk) = xkp∗

n(xk). (A.20)

for all n and k = 1, . . . , N . Since β0 = 0 by definition and p∗
N (xk) = 0

(since xk is a root of pN and hence of p∗
N = pN / ∥pN∥), letting P (x) =

(p∗
0(x), . . . , p∗

N−1(x))′ and collecting (A.20) into a vector, we obtain

TN P (xk) = xkP (xk)
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for k = 1, . . . , N . Define the N×N matrix P by P = (P (x1), . . . , P (xN )). Then
TN P = diag(x1, . . . , xN )P , so x1, . . . , xN are eigenvalues of TN provided that
P is invertible. Now since {p∗

n}
N−1
n=0 are normalized and Gaussian quadrature

integrates all polynomials of degree up to 2N − 1 exactly, we have

δmn = ⟨p∗
m, p∗

n⟩ =
∫

w(x)p∗
m(x)p∗

n(x) dx =
N∑

k=1
wkp∗

m(xk)p∗
n(xk) (A.21)

for m, n ≤ N − 1. Letting W = diag(w1, . . . , wN ) and collecting (A.21) into a
matrix, we obtain PWP ′ = I. Therefore P, W are invertible and x1, . . . , xN

are eigenvalues of TN . Solving for W and taking the inverse, we obtain

W −1 = P ′P ⇐⇒ 1
wn

=
N−1∑
k=0

p∗
k(xn)2 > 0

for all n. To show (A.18), let vn be an eigenvector of TN corresponding to the
eigenvalue xn. Then vn = cP (xn) for some constant c ̸= 0. Taking the norm,
we obtain

∥vn∥2 = c2 ∥P (xn)∥2 = c2
N−1∑
k=0

p∗
k(xn)2 = c2

wn
⇐⇒ wn = c2

∥vn∥2 .

Comparing the first entry of vn = cP (xn), noting that p0(x) = 1 and hence
p∗

0 = p0/ ∥p0∥ = 1/ ∥p0∥, we obtain

c2 = v2
n1 ∥p0∥2 = v2

n1

∫
w(x)p0(x)2 dx = v2

n1

∫
w(x) dx,

which implies (A.18).

We list a few examples of the Gaussian quadrature.

Example A.1 (Gauss-Legendre quadrature). The case (a, b) = (−1, 1),
w(x) = 1 is useful for computing integrals without weighting.

Example A.2 (Gauss-Chebyshev quadrature). The case (a, b) = (−1, 1),
w(x) = 1/

√
1− x2 is useful for computing Fourier coefficients through the

change of variable x = cos θ.

Example A.3 (Gauss-Hermite quadrature). The case (a, b) = (−∞,∞),
w(x) = e−x2 is useful for computing the expectation with respect to the
normal distribution.

Example A.4 (Gauss-Laguerre quadrature). The case (a, b) = (0,∞),
w(x) = e−x is useful for computing the expectation with respect to the expo-
nential distribution.
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TABLE A.3: log10 relative errors of Gauss-Legendre quadrature.

# points x1/2 x3/2 x5/2 x7/2 x9/2 ex

3 -2.4237 -3.3289 -3.8570 -4.0525 -3.8824 -6.3191
5 -3.0245 -4.3578 -5.3560 -6.0948 -6.6082 -12.4194
9 -3.7418 -5.5649 -7.0688 -8.3362 -9.4106 -15.9546
17 -4.5396 -6.8986 -8.9436 -10.7592 -12.3913 -15.9546
33 -5.3862 -8.3108 -10.9229 -13.3092 -15.3525 −∞

Table A.3 shows the log10 relative errors when using the N -point Gauss-
Legendre quadrature. Comparing to Tables A.1 and A.2, we can see that
Gaussian quadrature is overwhelmingly more accurate than Newton-Cotes.

If (a, b) = (−∞,∞) and
∫∞

−∞ w(x) dx = 1 in (A.12), then w(x) can be
viewed as a probability density and (A.12) becomes an expectation. After
a suitable transformation, the Gauss-Legendre, Gauss-Hermite, and Gauss-
Laguerre quadratures can then be viewed as approximations to the uniform,
normal, and exponential distributions. The same idea can be applied to a wider
class of distributions. Since by Theorem A.8 all we need for implementing
the Gaussian quadrature are the polynomial moments

∫
w(x)xn dx of the

weighting functions w, Gaussian quadrature can be used for approximating
any distribution that has explicit moments. Toda (2021a) uses this idea to
discretize nonparametric distributions from data.

A.5 DISCRETIZATION

If the goal is to solve a single optimization problem that involves expecta-
tions (e.g., static optimal portfolio problem as in §8.5), a highly accurate
Gaussian quadrature is a natural choice. However, many economic problems
are dynamic, in which case one needs to compute conditional expectations.
Furthermore, to reduce the computational complexity of the problem, it is de-
sirable that the quadrature nodes are preassigned instead of being dependent
on the particular state of the model. Discretization is a useful tool for solving
such problems. This section explains the Farmer and Toda (2017) method
of discretizing Markov processes, which is based on the maximum entropy
discretization method of distributions introduced in Tanaka and Toda (2013,
2015).

Example

For concreteness, consider the Gaussian AR(1) process

xt = ρxt−1 + ut, ut ∼ N(0, σ2).

Then the conditional distribution of xt given xt−1 is N(ρxt−1, σ2). How can we
discretize (find a finite-state Markov chain approximation) of this stochastic



278 ■ Essential Mathematics for Economics

process? One of the classic methods, the Tauchen and Hussey (1991) method,
is based on the Gauss-Hermite quadrature (Example A.3). First consider dis-
cretizing N(0, σ2). Letting {xn}N

n=1 and {wn}N
n=1 be the nodes and weights

of the N -point Gauss-Hermite quadrature, since for any integrand g we have

E[g(X)] =
∫ ∞

−∞
g(x) 1√

2πσ2
e− x2

2σ2 dx =
∫ ∞

−∞
g(
√

2σy) 1√
π

e−y2
dy

≈
N∑

n=1

wn√
π

g(
√

2σxn),

we can use the nodes x′
n =

√
2σxn and weights w′

n = wn/
√

π to discretize
N(0, σ2).

The same idea can be used to discretize the Gaussian AR(1) process. Let
us fix the nodes {x′

n}
N
n=1 as constructed above. For any integrand g, letting

µ = ρx′
m we have

E[g(xt) | xt−1 = x′
m] =

∫ ∞

−∞
g(x) 1√

2πσ2
e− (x−µ)2

2σ2 dx

=
∫ ∞

−∞
g(x)e− µ2−2xµ

2σ2
1√

2πσ2
e− x2

2σ2 dx

≈
N∑

n=1
w′

ne− µ2−2x′
nµ

2σ2 g(x′
n).

Therefore we can construct the transition probability matrix P = (pmn) by

pmn ∝ w′
ne− µ2−2x′

nµ

2σ2 ,

where µ = ρx′
m and the constant of proportionality is determined such that∑N

n=1 pmn = 1. The Tauchen-Hussey method is relatively accurate if ρ ≤ 0.5,
although a drawback is that it assumes Gaussian shocks. Furthermore, the
performance deteriorates quickly when ρ becomes larger.

Maximum entropy discretization of probability distributions

The maximum entropy discretization method of Farmer and Toda (2017) is
generally applicable and accurate. Thus it should be the first choice for dis-
cretizing general Markov processes. We start the discussion from discretizing
a single probability distribution. Suppose that we are given a continuous prob-
ability density function f : RK → R, which we would like to discretize. Let
X be a random vector with density f , and g : RK → R be any bounded
continuous function. The first step is to choose a quadrature formula

E[g(X)] =
∫
RK

g(x)f(x) dx ≈
N∑

n=1
wng(xn), (A.22)
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where N is the number of quadrature nodes {xn}N
n=1 and {wn}N

n=1 are weights
such that wn > 0.

For now, we do not take a stance on the choice of the initial quadrature
formula but take it as given. Given the quadrature formula (A.22), a coarse but
valid discrete approximation of the density f would be to assign probability
qn to the point xn proportional to wn, so

qn = wn∑N
n=1 wn

. (A.23)

However, this is not necessarily a good approximation because the moments
of the discrete distribution {qn} do not generally match those of f .

Tanaka and Toda (2015) propose to match a finite set of moments exactly
by updating the probabilities {qn} in a particular way. Let T : RK → RL

be a function that defines the moments that we wish to match and let T̄ =∫
RK T (x)f(x) dx be the vector of exact moments. For example, if we want to

match the first and second moments in the one dimensional case (K = 1),
then T (x) = (x, x2)′. Tanaka and Toda (2015) update the probabilities {qn}
by solving the optimization problem

minimize
{pn}

N∑
n=1

pn log pn

qn

subject to
N∑

n=1
pnT (xn) = T̄ ,

N∑
n=1

pn = 1, pn ≥ 0. (P)

The objective function in the primal problem (P) is known as the Kullback-
Leibler information or the relative entropy of {pn} relative to {qn}. This
method matches the given moments exactly while keeping the probabilities
{pn} as close to the initial approximation {qn} in (A.23) as possible in the
sense of the Kullback-Leibler information. Note that since (P) is a convex
minimization problem, the solution (if it exists) is unique.

The optimization problem (P) is a constrained minimization problem with
a large number (N) of unknowns ({pn}) with L+1 equality constraints and N
inequality constraints, which is in general computationally intensive to solve.
However, we may efficiently solve it by applying duality theory introduced in
§12.6 to convert the primal problem (P) to the dual problem

max
λ∈RL

[
λ′T̄ − log

(
N∑

n=1
qneλ′T (xn)

)]
, (D)

which is a low dimensional (L unknowns) unconstrained concave maximization
problem and hence computationally tractable. The following theorem shows
how the solutions to the two problems (P) and (D) are related.

Theorem A.9. Let XN = {xn}N
n=1 be the set of initial quadrature nodes.

Then the following statements are true.
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(i) The primal problem (P) has a solution if and only if T̄ ∈ co T (XN ). If
a solution exists, it is unique.

(ii) The dual problem (D) has a solution if and only if T̄ ∈ int co T (XN ). If
a solution exists, it is unique.

(iii) If the dual problem (D) has a (unique) solution λN , then the (unique)
solution to the primal problem (P) is given by

pn = qneλ′
N T (xn)∑N

n=1 qneλ′
N

T (xn)
= qneλ′

N (T (xn)−T̄ )∑N
n=1 qneλ′

N
(T (xn)−T̄ )

. (A.24)

Proof. See Farmer and Toda (2017, Theorem 2.1).

Theorem A.9 provides a practical way to implement the Tanaka-Toda
method. After choosing the initial discretization Q = {qn} and the moment
defining function T , one can numerically solve the unconstrained optimization
problem (D). To this end, we can instead solve

min
λ∈RL

N∑
n=1

qneλ′(T (xn)−T̄ ) (D′)

because the objective function in (D′) is a monotonic transformation (−1
times the exponential) of that in (D). Since (D′) is an unconstrained convex
minimization problem with a (relatively) small number (L) of unknowns (λ),
solving it is computationally simple. Letting JN (λ) be the objective function
in (D′), its gradient and Hessian can be analytically computed as

∇JN (λ) =
N∑

n=1
qneλ′(T (xn)−T̄ )(T (xn)− T̄ ), (A.25a)

∇2JN (λ) =
N∑

n=1
qneλ′(T (xn)−T̄ )(T (xn)− T̄ )(T (xn)− T̄ )′, (A.25b)

respectively. In practice, we can quickly solve (D′) numerically using optimiza-
tion routines by supplying the analytical gradient and Hessian.

If a solution to (D′) exists, it is unique, and we can compute the updated
discretization P = {pn} by (A.24). If a solution does not exist, it means that
the regularity condition T̄ ∈ int co T (XN ) does not hold and we cannot match
moments. Then one needs to select a smaller set of moments. Numerically
checking whether moments are matched is straightforward: by (A.24), (D′),
and (A.25a), the error is

N∑
n=1

pnT (xn)− T̄ =
∑N

n=1 qneλ′
N (T (xn)−T̄ )(T (xn)− T̄ )∑N

n=1 qneλ′
N

(T (xn)−T̄ )
= ∇JN (λN )

JN (λN ) . (A.26)
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Maximum entropy discretization of Markov processes

Next we show how to extend the Tanaka-Toda method to the case of time-
homogeneous Markov processes. Consider the time-homogeneous first-order
Markov process

P (xt ≤ x′ | xt−1 = x) = F (x′; x),

where xt is the vector of state variables and F (·; x) is the conditional cumula-
tive distribution function (CDF) that determines the distribution of xt = x′

given xt−1 = x. We can discretize the continuous process x by applying the
Tanaka-Toda method to each conditional distribution separately.

More concretely, suppose that we have a set of grid points XN = {xn}N
n=1

and an initial coarse approximation Q = (qnn′), which is an N×N probability
transition matrix. Suppose we want to match some conditional moments of
x, represented by the moment defining function T (x). The exact conditional
moments when the current state is xt−1 = xn are

T̄n = E [T (xt) |xn] =
∫

T (x) dF (x; xn),

where the integral is over x, fixing xn. By Theorem A.9, we can match these
moments exactly by solving the optimization problem

minimize
{pnn′ }N

n′=1

N∑
n′=1

pnn′ log pnn′

qnn′

subject to
N∑

n′=1
pnn′T (xn′) = T̄n,

N∑
n′=1

pnn′ = 1, pnn′ ≥ 0 (Pn)

for each n = 1, 2, . . . , N , or equivalently the dual problem

min
λ∈RL

N∑
n′=1

qnn′eλ′(T (xn′ )−T̄n). (D′
n)

By Theorem A.9, (D′
n) has a unique solution if and only if the regularity

condition
T̄n ∈ int co T (XN ) (A.27)

holds. This discretization method can be summarized as follows.

Algorithm A.4 (Maximum entropy discretization of Markov processes).

(i) Select a finite set of points XN = {xn}N
n=1 and an initial approximation

Q = (qnn′).

(ii) Select a moment defining function T (x) and corresponding exact con-
ditional moments

{
T̄n

}N

n=1. If necessary, approximate the exact condi-
tional moments with a highly accurate numerical integral.
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(iii) For each n = 1, . . . , N , solve minimization problem (D′
n) for λn. Check

whether moments are matched using formula (A.26), and if not, select
a smaller set of moments. Compute the conditional probabilities corre-
sponding to row n of P = (pnn′) using (A.24).

The resulting discretization of the process is given by the transition prob-
ability matrix P = (pnn′). Since the dual problem (D′

n) is an unconstrained
convex minimization problem with a typically small number of variables, stan-
dard Newton type algorithms (Algorithm A.2) can be applied. Furthermore,
since the probabilities (A.24) are strictly positive by construction, the transi-
tion probability matrix P = (pnn′) is a strictly positive matrix, so the resulting
Markov chain is stationary and ergodic (Theorem 9.1).
Remark. Farmer and Toda (2017) contain several applications to solving asset
pricing models as well as performance evaluation against other methods. The
Matlab package at

https://github.com/alexisakira/discretization

provides codes for discretizing various stochastic processes. Farmer (2021)
applies discretization methods to efficiently estimate state-space models.

PROBLEMS

A.1. Let f(x) =
√

x2 + 1.
(i) Compute f ′(x), f ′′(x), and show that f is convex.

(ii) Find the minimum of f .

(iii) Using your favorite programming language, implement the Newton
method for finding the minimum (solving f ′(x) = 0). Experiment what
happens when the initial values are x0 = 0.9, 1, 1.1.

A.2. Let g : RN → RN be C2. Suppose that g(x̄) = 0 and the Jacobian
Dg(x̄) is invertible. Show that the Newton algorithm converges to x̄ double
exponentially fast if the initial value is close enough to x̄. (Hint: use the mean
value inequality (Proposition 8.2.)
A.3. Consider the nonlinear equation

g(x) = x3 − 2 = 0,

where x > 0. Clearly the solution is x = 21/3 ∈ (1, 2). Using your favorite pro-
gramming language, implement the bisection, linear interpolation, quadratic
interpolation, and Newton methods and compare the speed of convergence.
What if g(x) = x100 − 2?
A.4. This problem asks you to derive the order of convergence of the linear
interpolation method. Let g be a twice continuously differentiable function
with g(x̄) = 0 and g′(x̄) ̸= 0. Consider the linear interpolation algorithm
(A.4).
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(i) Let ϕ(x; a) = g(x)−g(a)
x−a for x ̸= a. Show that

xk+1 − x̄ = (xk − x̄)ϕ(xk−1; xk)− ϕ(x̄; xk)
ϕ(xk−1; xk) .

(ii) Using the mean value theorem, show that there exists ξk between xk

and xk−1 such that ϕ(xk−1; xk) = g′(ξk).

(iii) Regard ϕ(x; a) as a function of x. Using the mean value theorem, show
that there exists a number ηk between xk−1 and x̄ such that

ϕ(xk−1; xk)− ϕ(x̄; xk) = ϕ′(ηk; xk)(xk−1 − x̄).

(iv) Compute ϕ′(x; a) explicitly.

(v) Using Taylor’s theorem, show that there exists a number ζk such that

ϕ′(ηk; xk) = 1
2g′′(ζk).

(vi) Show that if xk, xk−1 are sufficiently close to x̄, there exists a constant
C > 0 such that

|xk+1 − x̄| ≤ C |xk − x̄| |xk−1 − x̄| .

(vii) Show that the order of convergence of the linear interpolation method
is at least α = 1+

√
5

2 = 1.618 . . . .

A.5. Using your favorite programming language, write a code that computes
the coefficients of a Chebyshev polynomial of a given degree.

A.6. Using your favorite programming language, write codes that implement
various Gaussian quadratures.
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