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Chapter 0

Road map
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Typical problem in economics

▶ N goods indexed by n = 1, . . . ,N

▶ When agent consumes xn ≥ 0 units of good n, derives utility

u(x1, . . . , xN)

▶ Unit price of good n is pn > 0

▶ Agent has disposable income w > 0

▶ What is optimal choice of x = (x1, . . . , xN)?
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Setting up problem mathematically

▶ If agent consumes xn units of good n, expenditure is pnxn
▶ Hence total expenditure is p1x1 + · · ·+ pNxN
▶ Mathematically, problem is

maximize u(x1, . . . , xN)

subject to p1x1 + · · ·+ pNxN ≤ w ,

(∀n)xn ≥ 0

▶ This problem is called utility maximization problem (UMP)

▶ One of most basic constrained optimization problems studied
in economics
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Many questions to ask

1. How do we define solution?

2. Does solution exist?

3. What are necessary or sufficient conditions that characterize
solution?

4. Is solution unique?

5. How do we compute solution?

6. How does solution change if we change parameters pn or w?
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Chapter 1

Existence of Solutions
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Introduction

The real number system

The space RN

Topology of RN

Continuous functions

Extreme value theorem
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Constrained minimization

▶ We would like to solve

minimize f (x)

subject to x ∈ C ,

where
▶ C is constraint set
▶ f is objective function from C to R = (−∞,∞)

▶ We say x̄ ∈ C is solution if f (x̄) ≤ f (x) for all x ∈ C

▶ x̄ is also called minimizer or minimum, and we write

f (x̄) = min
x∈C

f (x),

x̄ ∈ argmin
x∈C

f (x)
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Maximization

▶ We focus on minimization because maximization problems can
be turned into minimization

▶ For example, consider

maximize g(x)

subject to x ∈ C

▶ We can convert to

minimize f (x) = −g(x)
subject to x ∈ C
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Not all minimization problems have solutions

▶ Constraint set unbounded

C
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Not all minimization problems have solutions

▶ Constraint set has hole

C
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Not all minimization problems have solutions

▶ Graph of objective function has gap

C
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Not all minimization problems have solutions

▶ Minimum exists, but not unique

C
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Real number system

▶ N = {1, 2, . . .}: set of natural numbers

▶ Z = {0,±1,±2, . . .}: set of integers
▶ Q = {m/n : m ∈ Z, n ∈ N}: set of rational numbers

▶ R: set of real numbers

▶ We assume you know what R is

▶ Essentially, R is set on which we can do addition, subtraction,
multiplication, and division, and has some continuity property
(
√
2 is not in Q but is in R)
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Some terminology

▶ Absolute value of x ∈ R is denoted by

|x | =

{
x if x ≥ 0,

−x if x < 0

▶ A ⊂ R is bounded above if there exists b ∈ R such that x ≤ b
for all x ∈ A

▶ b is called upper bound of A

▶ Bounded below/lower bound analogous

▶ If both bounded above and below, we just say bounded: there
exists b ≥ 0 such that |x | ≤ b for all x ∈ A
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Extended real numbers

▶ Often convenient to consider set of extended real numbers
that includes plus or minus infinity: ±∞

▶ Rules of algebra:

x ±∞ = ±∞ if x ∈ R,
∞+∞ =∞,
x × (±∞) = ±∞ if x > 0,

x × (±∞) = ∓∞ if x < 0,

x/(±∞) = 0 if x ∈ R

▶ Note: ∞−∞ and ∞/∞ are undefined, though convenient to
define 0×∞ = 0
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Least-upper-bound property

▶ If x ≤ a (x ≥ a) for all x ∈ A and a ∈ A, we call a maximum
(minimum) of A

▶ Defining property of R is least-upper-bound property: if A is
bounded above, there exists least upper bound

▶ More precisely, if ∅ ≠ A ⊂ R is bounded above and B is set of
upper bounds of A, then α = minB exists

▶ Least upper bound α is called supremum of A and is denoted
by α = supA

▶ Symmetric argument shows that if A is bounded below, then
greatest lower bound exists, called infimum of A and denoted
by inf A
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Convergence of sequences

▶ Real sequence (x1, x2, . . . ) = {xk}∞k=1 is function from N to R
▶ We say {xk} converges to x if

(∀ϵ > 0)(∃K > 0)(∀k ≥ K ) |xk − x | < ϵ

▶ In words: give me any error tolerance ϵ > 0; I can take K
large enough such that error between xk and x is less than ϵ if
k ≥ K

▶ Write limk→∞ xk = x or xk → x (k →∞) and call x limit of
{xk}

▶ We say {xk}∞k=1 ⊂ R converges to infinity if

(∀ϵ > 0)(∃K > 0)(∀k ≥ K ) xk > ϵ
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Monotone sequences are convergent

▶ {xk} is monotone increasing (decreasing) if x1 ≤ x2 ≤ · · ·
(x1 ≥ x2 ≥ · · · )

Proposition

If {xk}∞k=1 ⊂ [−∞,∞] is monotone, it is convergent.

Proof.
▶ Without loss of generality (wlog), assume {xk} increasing
▶ Let x = sup {xk : k ∈ N}
▶ If x <∞, take any ϵ > 0; then by definition of supremum,

(∃K )xK ∈ (x − ϵ, x ]
▶ By monotonicity, xk ∈ (x − ϵ, x ] for all k ≥ K , so |xk − x | < ϵ

and xk → x

▶ If x =∞, analogous argument
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Limit superior and inferior

▶ Let {xk}∞k=1 ⊂ [−∞,∞] be any sequence

▶ Define
αk = sup {xk , xk+1, . . .} = sup

l≥k
xl

▶ Since the set {xl : l ≥ k} decreasing with k , clearly {αk}∞k=1

is decreasing sequence in [−∞,∞]

▶ Hence by previous proposition, limit

α := lim
k→∞

αk = lim
k→∞

sup
l≥k

xl

exists, called limit superior of {xk} and denoted by

α = lim sup
k→∞

xk

▶ Limit inferior analogous
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The space RN

▶ We are often interested in functions of several variables

▶ Let RN denote set of N-tuples of real numbers
x = (x1, . . . , xN) = (xn)

▶ For x , y ∈ RN , define sum entrywise by x + y = (xn + yn)

▶ For α ∈ R and x ∈ RN , define scalar multiplication entrywise
by αx = (αxn)

▶ In general, we call set X (real) vector space if sum x + y and
scalar product αx are defined and belong to X for all vectors
x , y ∈ X and scalar α ∈ R
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Linear functions

▶ If X is vector space and f : X → R, we say f is linear if f
preserves addition and scalar multiplication:

f (αx + βy) = αf (x) + βf (y)

for all x , y ∈ X and α, β ∈ R
▶ An obvious example of linear function f : RN → R is

f (x) = a1x1 + · · ·+ aNxN =
N∑

n=1

anxn,

where a1, . . . , aN ∈ R
▶ We can prove converse too, because if f linear, write

x = x1e1 + · · ·+ xNeN for unit vectors {en}, and

f (x) = f (x1e1 + · · ·+ xNeN) = x1f (e1) + · · ·+ xN f (eN)
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Inner product

▶ Expression of form a1x1 + · · ·+ aNxN appears so often that it
deserves special name and notation

▶ Let x = (x1, . . . , xN) and y = (y1, . . . , yN) be two vectors in
RN

▶ Then

⟨x , y⟩ := x1y1 + · · ·+ xNyN =
N∑

n=1

xnyn

is called inner product of x and y

▶ Other common notations are (x , y), x · y , and ⟨x | y⟩, etc.
▶ Fixing x , inner product ⟨x , y⟩ is linear in y , so we have

⟨x , α1y1 + α2y2⟩ = α1 ⟨x , y1⟩+ α2 ⟨x , y2⟩

©Alexis Akira Toda Instruction slides for Essential Mathematics for Economics



Euclidean norm

▶ To do analysis, it is convenient to have notion of size of vector
or distance between two vectors

▶ Motivated by Pythagorean theorem in elementary geometry,
(Euclidean) norm of x ∈ RN is defined by

∥x∥ :=
√
⟨x , x⟩ =

√
x21 + · · ·+ x2N

▶ Euclidean norm is also called ℓ2 norm for reason that will
become clear later
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Normed space

▶ More generally, for real vector space X , function ∥·∥ : X → R
is called norm if:

1. (Nonnegativity) ∥x∥ ≥ 0 for all x ∈ X , with equality if and
only if x = 0

2. (Positive homogeneity) ∥αx∥ = |α| ∥x∥ for all α ∈ R and
x ∈ X

3. (Triangle inequality) ∥x + y∥ ≤ ∥x∥+ ∥y∥ for all x , y ∈ X

▶ Vector space X equipped with norm ∥·∥ is called normed space

x

yx + y
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Examples of norms

▶ There are many norms

(ℓ1 norm) ∥x∥1 :=
N∑

n=1

|xn| ,

(ℓ∞ or sup norm) ∥x∥∞ := max
n
|xn| ,

(ℓp norm for p ≥ 1) ∥x∥p :=

(
N∑

n=1

|xn|p
)1/p

▶ Proofs that ∥·∥1 and ∥·∥∞ are norms straightforward

▶ Proof that ∥·∥p is norm uses Minkowski inequality, discussed
much later
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Equivalence of norms

Theorem
Let ∥·∥1, ∥·∥2 be two norms on RN . Then there exist constants
0 < c ≤ C such that

c ∥x∥1 ≤ ∥x∥2 ≤ C ∥x∥1

for all x ∈ RN .

▶ See textbook for proof (complicated)

▶ Hence in RN , it does not matter which norm to use to define
convergence: (∀ϵ > 0)(∃K > 0)(∀k ≥ K ) ∥xk − x∥ < ϵ

▶ To see equivalence of Euclidean (ℓ2) and sup (ℓ∞) norms, note

∥x∥2 =
√∑N

n=1 x
2
n ≥ |xn| =⇒ ∥x∥2 ≥ ∥x∥∞ ,

∥x∥2 =
√∑N

n=1 x
2
n ≤

√
N ∥x∥2∞ =

√
N ∥x∥∞
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Balls

▶ For x ∈ RN and ϵ > 0, set

Bϵ(x) :=
{
y ∈ RN : ∥y − x∥ < ϵ

}
is called ball with center x and radius ϵ

▶ Shape of ball depends on norm used

ℓ1 norm

x1

x2

0

1

ℓ2 norm

x1

x2

0

1

ℓ∞ norm

x1

x2

0

1
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Open sets

▶ Let X be normed space and A ⊂ X

▶ We say x is interior point of A if there exists ϵ > 0 such that
Bϵ(x) ⊂ A (we can draw ball with center x and radius ϵ that
is entirely contained in A)

▶ If every x ∈ A is interior point of A, we say that A is open set

▶ We often use symbols U and V to denote open set because
French word for “open” is ouvert but letter O is confusing due
to resemblance to 0

▶ By definition, empty set ∅ and entire space X are open
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Complement, closed sets

▶ For A ⊂ X , let Ac := X\A = {x ∈ X : x /∈ A} denote its
complement

▶ We say that A is closed set if Ac is open

▶ We often use symbol F to denote closed set because French
word for “closed” is fermé

▶ By definition, both ∅,X are closed
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Examples

▶ Interval (a, b) = {x ∈ R : a < x < b} is open
▶ Interval [a, b] = {x ∈ R : a ≤ x ≤ b} is closed
▶ Interval (a, b] = {x ∈ R : a < x ≤ b} is neither open nor

closed

▶ ϵ-ball is open

Proof.
▶ Let y ∈ Bϵ(x); by definition, ∥y − x∥ < ϵ; define
δ := ϵ− ∥y − x∥ > 0

▶ If z ∈ Bδ(y), then by triangle inequality,

∥z − x∥ ≤ ∥z − y∥+ ∥y − x∥ < δ + ∥y − x∥ = ϵ,

so z ∈ Bϵ(x)

▶ Therefore Bδ(y) ⊂ Bϵ(x), so Bϵ(x) is open
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Unions and intersections of open sets

Proposition

Any union of open sets is open: if I is any set and Ui is open for
each i ∈ I , so is

⋃
i∈I Ui . Any finite intersection of open sets is

open: if Uj is open for each j = 1, . . . , J, so is
⋂J

j=1 Uj .

Proof.
▶ Suppose Ui open for each i ∈ I and let U =

⋃
i∈I Ui

▶ If x ∈ U, then x ∈ Ui for some i ; since Ui is open, we can
take some ϵ > 0 such that Bϵ(x) ⊂ Ui ⊂ U, so U is open

▶ Suppose Uj is open for each j = 1, . . . , J and let U =
⋂J

j=1 Uj

▶ If x ∈ U, then in particular x ∈ Uj , so we can take ϵj > 0 such
that Bϵj (x) ⊂ Uj

▶ Let ϵ = minj ϵj ; then Bϵ(x) ⊂ Bϵj (x) ⊂ Uj for all j , so

Bϵ(x) ⊂
⋂J

j=1 Uj = U and U is open
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Unions and intersections of closed sets

Corollary

Any intersection of closed sets is closed: if I is any set and for each
i ∈ I the set Fi is closed, so is

⋂
i∈I Fi . Any finite union of closed

sets is closed: if for each j = 1, . . . , J the set Fj is closed, so is⋃J
j=1 Fj .

Proof.
Let Ui = F c

i and apply
(⋂

i∈I Fi
)c

=
⋃

i∈I F
c
i etc.
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Interior, closure, boundary

▶ Largest open set included in A is called interior of A and is
denoted by intA

▶ Smallest closed set including A is called closure of A and is
denoted by clA

▶ The set clA\ intA is called boundary of A and is denoted by
∂A

Interior

Exterior

Boundary
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Continuous functions

▶ Earlier discussion suggests that minimization problem may not
have solution if graph of function has “gaps”

▶ Continuous functions have no gaps in their graphs, which
avoids this problem

▶ It is often convenient to allow function f to take values in
extended real numbers [−∞,∞] instead of just R

▶ Example: instead of saying log x is defined for x > 0, it is
convenient to define log 0 = −∞
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Continuous functions

▶ In R̄ = [−∞,∞], we declare open intervals to be
▶ (a, b) =

{
x ∈ R̄ : a < x < b

}
for −∞ ≤ a < b ≤ ∞,

▶ (a,∞] =
{
x ∈ R̄ : a < x ≤ ∞

}
for −∞ ≤ a <∞, and

▶ [−∞, b) =
{
x ∈ R̄ : −∞ ≤ x < b

}
for −∞ < b ≤ ∞

▶ We say {xk}∞k=1 ⊂ R̄ converges to x if

(∀open interval I ∋ x)(∃K > 0)(∀k ≥ K ) xk ∈ I

▶ Generalization of previous definitions
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Continuous functions

▶ Let X be normed space and A ⊂ X

▶ We say f : A→ [−∞,∞] is continuous at x0 ∈ A if

(∀open interval I ∋ f (x0))(∃δ > 0)(∀x ∈ A∩Bδ(x0)) f (x) ∈ I

▶ In words, if x ∈ A is sufficiently close to x0 in sense that
∥x − x0∥ < δ, then function value f (x) is close to f (x0) in
sense that f (x) is contained in neighborhood I of f (x0)

Proposition

f : A→ [−∞,∞] is continuous at x0 ∈ A if and only if for any
sequence {xk}∞k=1 ⊂ A with xk → x0, we have f (xk)→ f (x0).
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Semicontinuous functions

▶ Sometimes, asking for continuity is too much

▶ Let X be normed space, A ⊂ X , and f : A→ [−∞,∞]

▶ We say f is upper semicontinous (usc) at x0 ∈ A if

(∀y > f (x0))(∃δ > 0)(∀x ∈ A ∩ Bδ(x0)) f (x) < y

▶ We say f is lower semicontinuous (lsc) if −f is usc

▶ Intuitively, upper (lower) semicontinuous functions are those
that function value can suddenly jump upward (downward)

x

Upper semicontinuous (usc)

x

Lower semicontinuous (lsc)
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Sequential characterization

Proposition

f : A→ [−∞,∞] is upper (lower) semicontinuous at x0 ∈ A if and
only if for any sequence {xk}∞k=1 ⊂ A with xk → x0, we have
lim supk→∞ f (xk) ≤ f (x0) (lim infk→∞ f (xk) ≥ f (x0)).

Proof.
Similar to continuous functions
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Sequential compactness

▶ Previous observations suggest solution to minimization
problem may not exist if constraint is unbounded or has hole
or function is not continuous

▶ Does solution exist if constraint set closed and bounded and
function continuous? Yes!

▶ We say S ⊂ X is sequentially compact if every sequence in S
has subsequence converging to point in S , that is, if
{xk}∞k=1 ⊂ S , we can take x ∈ S and indices k1 < k2 < · · ·
such that xkl → x ∈ S as l →∞
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Bolzano-Weierstrass theorem

Theorem (Bolzano-Weierstrass theorem)

A set S ⊂ RN is sequentially compact if and only if it is closed and
bounded.

Proof.
▶ If S unbounded, we can take {xk} ⊂ S such that ∥xk∥ → ∞
▶ Then for any x ∈ S and subsequence, we have
∥xkl − x∥ ≥ ∥xkl∥ − ∥x∥ → ∞, so {xkl} does not converge to
x ; hence S not sequentially compact

▶ Suppose S closed and bounded; if N = 1, can take convergent
subsequence by finding {xkl} such that xkl → lim sup xk

▶ For general N, use mathematical induction and pass to
subsequence
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Extreme value theorem

Theorem (Extreme value theorem)

Let ∅ ≠ S ⊂ RN be sequentially compact and f : S → [−∞,∞] be
lower (upper) semicontinuous. Then f attains a minimum
(maximum) over S .

Proof.
▶ Let m = infx∈S f (x)

▶ Take sequence {xk} ⊂ S such that f (xk)→ m

▶ Since S is sequentially compact, there is subsequence such
that xkl → x for some x ∈ S

▶ Since f is lsc, we obtain

m ≤ f (x) ≤ lim inf
l→∞

f (xkl ) = m,

so f (x) = m
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Important points

▶ Closed sets include boundary; open sets do not

▶ All norms are equivalent in RN ; use whatever convenient
(usually ℓ1, ℓ2, ℓ∞ norms)

▶ In RN , bounded sequence has convergent subsequence
(Bolzano-Weierstrass); proof is by induction on dimension N

▶ Extreme value theorem: continuous functions achieve minima
and maxima on closed and bounded sets (existence of solution
guaranteed)
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Chapter 2

One-variable Optimization
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Introduction

Differentiation

Necessary condition

Mean value and Taylor’s theorem

Sufficient condition

Optimal savings problem
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Introduction

▶ We would like to solve

minimize f (x)

subject to x ∈ C

▶ In practice, we are not only interested in proving existence of
solution but also in its characterization

▶ Some terminology:
▶ x is feasible if x ∈ C
▶ x̄ is (global) solution if f (x̄) ≤ f (x) for all x ∈ C
▶ x̄ ∈ C is local solution if there exists neighborhood U ⊂ C of x

such that f (x̄) ≤ f (x) for all x ∈ U
▶ If inequality strict whenever x ̸= x̄ , then x̄ is strict local

solution
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Local solutions need not be global

▶ m1 is global minimum

▶ m2 is local minimum but not global minimum

▶ M is local maximum but not global maximum

x
m1 M m2
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Differentiation

▶ Powerful tool for solving nonlinear optimization problems is
differentiation (taking derivatives)

▶ Basically, linear approximation

▶ Suppose for some p, q, we have

f (x) ≈ p(x − a) + q

▶ Requiring exact value at x = a, get q = f (a)

▶ Solve for p, and require good approximation as x → a:

p = f ′(a) := lim
x→a

f (x)− f (a)

x − a

▶ f ′(a) is derivative of f at a
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First-order approximation

▶ Hence first-order approximation is

f (x) ≈ f (a) + f ′(a)(x − a)

Slope = f ′(a)

a

f (a)

x
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Some terminology

▶ f : (a, b)→ R is differentiable if f ′(x) exists for all x ∈ (a, b)

▶ If f differentiable and f ′(x) continuous in x , we say f is
continuously differentiable or C 1

▶ High-order derivatives denoted by f ′′, f ′′′, etc.

▶ If f is r times continuously differentiable (so f , f ′, f ′′, . . . , f (r)

all exist and are continuous), we say f is C r
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Some remarks

▶ Differentiable functions are continuous

▶ Continuous functions need not be differentiable (e.g.,
f (x) = |x |)

▶ Differentiable functions need not have continuous derivatives,
for example

f (x) =

{
x2 sin(1/x) if x ̸= 0,

0 if x = 0

▶ Check above example
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Necessary condition

▶ Let C ⊂ R, and consider

minimize f (x)

subject to x ∈ C

Proposition (Necessity of first-order condition)

If x̄ ∈ intC is local solution and f is differentiable at x̄ , then
f ′(x̄) = 0.
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Proof

▶ Since x̄ is interior point of C , we have x + h ∈ C for small
enough |h|

▶ Since x̄ attains the minimum of f in a neighborhood of x̄ , we
have

f (x̄ + h) ≥ f (x̄)

for sufficiently small |h|
▶ Subtracting f (x̄) from both sides and dividing by h > 0, we

obtain
f (x̄ + h)− f (x̄)

h
≥ 0

▶ Letting h→ 0 and using definition of derivative, we get
f ′(x̄) ≥ 0

▶ Reverse inequality similar
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First-order condition is necessary

f ′(x̄) = 0

x̄

f (x̄)

x
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First-order condition is not sufficient

▶ Consider f (x) = x3/3− x

▶ Then f ′(x) = x2 − 1 = (x − 1)(x + 1), so f (x) = 0 at x = ±1
▶ But neither point (global) minimum nor maximum

x
−1

1
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Mean value theorem

Proposition (Mean value theorem)

Let f be continuous on [a, b] and differentiable on (a, b). Then
there exists c ∈ (a, b) such that

f (b)− f (a)

b − a
= f ′(c).

Proof.
▶ Let ϕ(x) := f (x)− f (a)− f (b)−f (a)

b−a (x − a)

▶ Then ϕ(a) = ϕ(b) = 0, so achieve some minimum or
maximum at c ∈ (a, b)

▶ Then ϕ′(c) = 0 implies claim
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Taylor’s theorem

▶ In mean value theorem, changing notation to b → x and
c → ξ, there exists ξ between a and x such that

f ′(ξ) =
f (x)− f (a)

x − a
⇐⇒ f (x) = f (a) + f ′(ξ)(x − a)

▶ Taylor’s theorem is generalization: for second order (most
useful),

f (x) = f (a) + f ′(a)(x − a) +
1

2
f ′′(ξ)(x − a)2

▶ More generally, if f is Cn, we can take ξ such that

f (x) =
n−1∑
k=0

f (k)(a)

k!
(x − a)k +

f (n)(ξ)

n!
(x − a)n
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Sufficient condition

▶ So far, we have seen that for interior optimum, f ′(x̄) = 0 is
necessary

▶ Is there simple sufficient condition?

▶ Yes, if f is convex or concave

▶ We say f is convex if for all x1, x2 and α ∈ [0, 1], we have

f ((1− α)x1 + αx2) ≤ (1− α)f (x1) + αf (x2)

▶ Graphically, function is convex if segment joining points
(x1, f (x1)) and (x2, f (x2)) lies above graph of f

▶ f is concave if inequality flipped:

f ((1− α)x1 + αx2) ≥ (1− α)f (x1) + αf (x2)
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Convex function
▶ f is convex if for all x1, x2 and α ∈ [0, 1], we have

f ((1− α)x1 + αx2) ≤ (1− α)f (x1) + αf (x2)

▶ Can prove: if f is C 2, then convex if and only if f ′′ ≥ 0

x

y = f (x)

x1 x2

f (x1)

f (x2)
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Sufficiency of first-order condition for convex f

Proposition

Let f be C 2 and convex (concave). If f ′(x̄) = 0, then x̄ is the
minimum (maximum) of f .

Proof.
▶ Suppose f is convex, so f ′′(x) ≥ 0

▶ Applying Taylor’s theorem for n = 2, for any x there exists ξ
such that

f (x) = f (x̄) + f ′(x̄)(x − x̄) +
1

2
f ′′(ξ)(x − x̄)2

▶ Since by assumption f ′(x̄) = 0 and f ′′(ξ) ≥ 0, we obtain
f (x) ≥ f (x̄), so x̄ is minimum of f

▶ Same argument for maximum

©Alexis Akira Toda Instruction slides for Essential Mathematics for Economics



Characterization of local solution

Proposition

Let U ⊂ R be open and f : U → R be C 2. Then following
statements are true.

1. If x̄ ∈ U is a local minimum, then f ′(x̄) = 0 and f ′′(x̄) ≥ 0.

2. If f ′(x̄) = 0 and f ′′(x̄) > 0, then x̄ is a strict local minimum.

Proof.
Similar to convex case
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Optimal savings problem

▶ We consider example with step-by-step analysis

▶ Agent lives for two dates indexed by t = 1, 2

▶ At t = 1, agent endowed with initial wealth w > 0

▶ Needs to decide how much to consume when gross interest
rate is R

▶ Utility function is

U(c1, c2) =
c1−γ
1

1− γ
+ β

c1−γ
2

1− γ
,

where 0 < γ ̸= 1 is curvature parameter and β > 0 is discount
factor
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Optimal savings problem

▶ Letting c1 = c, savings is w − c

▶ Hence consumption at t = 2 is c2 = R(w − c)

▶ Objective function is

f (c) :=
c1−γ

1− γ
+ β

(R(w − c))1−γ

1− γ

=
1

1− γ
(
c1−γ + βR1−γ(w − c)1−γ

)
▶ Derivatives are

f ′(c) = c−γ − βR1−γ(w − c)−γ ,

f ′′(c) = −γ(c−γ−1 + βR1−γ(w − c)−γ−1)
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Optimal savings problem

▶ Clearly f ′′(c) < 0, so f is concave

▶ First-order condition is

f ′(c) = 0 ⇐⇒ c−γ = βR1−γ(w − c)−γ

⇐⇒ c = (βR1−γ)−1/γ(w − c)

⇐⇒ c =
w

1 + (βR1−γ)1/γ

▶ Since f concave, first-order condition is sufficient for
optimality, so this c is optimal consumption
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Important points

▶ Differentiation is basically linear approximation

▶ Taylor’s theorem allows polynomial approximation of smooth
functions (n = 1, 2 most useful)

▶ At interior optimum, f ′(x̄) = 0 (first-order condition)

▶ For convex/concave functions, first-order condition is
sufficient for optimality
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Chapter 3

Multi-variable Unconstrained

Optimization
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Introduction

Linear maps and matrices

Differentiation

Chain rule

Necessary condition
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Introduction

▶ We would like to solve

minimize f (x)

subject to x ∈ C

▶ In previous slides, we learned how to do this when C ⊂ R and
solution is interior

▶ We now consider case C ⊂ RN

▶ Generalization is conceptually straightforward, but we need to
use vectors and matrices to make notation manageable
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Linear maps and matrices
▶ Let f : RN → RM be linear map, meaning

1. for each x ∈ RN , map f associates vector f (x) ∈ RM ,
2. f is linear (preserves addition and scalar multiplication):

f (αx + βy) = αf (x) + βf (y) for all x , y ∈ RN and α, β ∈ R
▶ Let fm(x) be m-th entry of f ; then fm linear, so we can write

fm(x) = am1x1 + · · ·+ amNxN

for some am1, . . . , amN

▶ Hence linear map f has one-to-one correspondence with
numbers (amn); we write

A = (amn) =


a11 · · · a1n · · · a1N
...

. . .
...

. . .
...

am1 · · · amn · · · amN
...

. . .
...

. . .
...

aM1 · · · aMn · · · aMN


and call it matrix
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Linear maps and matrices

▶ If f : RN → RM linear, can write f (x) = Ax , where A = (amn)
is M × N matrix and

(Ax)m = am1x1 + · · ·+ amNxN =
N∑

n=1

amnxn

▶ MM,N(R): set of M × N real matrices, can identify as RMN

▶ If M = N, then A called square matrix; then f : RN → RN is
self map

▶ f : RM → RN defined by f (x) = 0 is clearly linear;
corresponding matrix is null matrix and write A = 0

▶ Identity map f : RN → RN defined by f (x) = x also linear;
corresponding matrix is identity matrix and write A = I
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Composition of linear maps

▶ Consider two linear maps f : RN → RM and g : RM → RL

▶ Since f , g linear, we can find A = (amn) ∈MM,N and
B = (blm) ∈ML,M such that f (x) = Ax and g(y) = By

▶ We can also consider composition of these two maps,
h = g ◦ f defined by h(x) := g(f (x))

▶ Easy to see h : RN → RL is linear, so can write h(x) = Cx
with C = (cln) ∈ML,N

▶ Using definition h(x) = g(f (x)) = B(Ax), easy to see

cln =
M∑

m=1

blmamn
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Matrix multiplication

▶ If f : RN → RM and g : RM → RL linear, so is
h = g ◦ f : RN → RL

▶ h(x) = B(Ax), so we define matrix multiplication by C = BA,
where

cln =
M∑

m=1

blmamn

▶ Can use all standard rules of algebra such as
B(A1 + A2) = BA1 + BA2, A(BC ) = (AB)C , etc.

▶ Proofs immediate by carrying out algebra or thinking about
linear maps
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Inner product

▶ Identify 1× 1 matrix as scalar, soM1(R) = R
▶ Then for x , y ∈ RN , can write inner product as

⟨x , y⟩ = x1y1 + · · ·+ xNyN =
[
x1 · · · xN

] y1...
yN

 ,
product of row and column vectors
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Transpose

▶ Let x = (xm) ∈ RM , y = (yn) ∈ RN , A = (amn) ∈MM,N

▶ Then

⟨x ,Ay⟩ =
M∑

m=1

xm

(
N∑

n=1

amnyn

)
=

M∑
m=1

N∑
n=1

xmamnyn

▶ Right-hand side is also ⟨A′x , y⟩, where A′ := (anm) ∈MN,M

▶ A′ is called transpose of A

▶ Hence we can write inner product as ⟨x , y⟩ = x ′y

▶ If matrix product AB defined, then by definition〈
(AB)′x , y

〉
= ⟨x ,ABy⟩ =

〈
A′x ,By

〉
=
〈
B ′A′x , y

〉
,

so (AB)′ = B ′A′
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Differentiation

▶ For one-variable function, we defined derivative by

f ′(x) = lim
h→0

f (x + h)− f (x)

h

▶ Not useful for multi-variable function, because cannot divide
by vector h

▶ But we can write

f (x + h)− f (x) ≈ f ′(x)h

▶ More precisely,

lim
|h|→0

|f (x + h)− f (x)− f ′(x)h|
|h|

= 0.
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Differentiation

▶ Motivated by this, we say f : RN → RM differentiable at x if
there exists matrix A ∈MM,N such that

lim
∥h∥→0

∥f (x + h)− f (x)− Ah∥
∥h∥

= 0

▶ By letting h = ten and, can show A = (amn) satisfies

amn =
∂fm
∂xn

(x) := lim
t→0

fm(x1, . . . , xn + t, . . . , xN)− fm(x)

t
,

▶ Hence A is matrix of partial derivatives; we write
A = Df (x) = (∂fm(x)/∂xn) and call Jacobian
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Some terminology

▶ We already defined “differentiable”

▶ If partial derivatives ∂fm(x)/∂xn exist, we say “f is partially
differentiable”

▶ If f is partially differentiable and partial derivatives are
continuous, we say “f is C 1”

▶ Can prove

differentiable =⇒ partially differentiable,

C 1 =⇒ differentiable

▶ C r means f is r times continuously differentiable

▶ If f is C r , order of taking partial derivatives doesn’t matter
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Chain rule

▶ For one-variable functions, chain rule is
(g(f (x)))′ = g ′(f (x))f ′(x)

▶ We generalize this for multi-variable functions

Proposition

Let U ⊂ RN and V ⊂ RM be open. Let f : U → V be
differentiable at a ∈ U and g : V → RL be differentiable at
b := f (a) ∈ V . Then g ◦ f : U → RL defined by
(g ◦ f )(x) = g(f (x)) is differentiable at a and

D(g ◦ f )(a)︸ ︷︷ ︸
L×N

= Dg(b)︸ ︷︷ ︸
L×M

Df (a)︸ ︷︷ ︸
M×N

.

▶ Intuition: differentiation is linear approximation, and
composition of linear maps is matrix product
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Gradient
▶ We would like to solve

minimize f (x)

subject to x ∈ C

▶ If f one-variable function, first-order condition was f ′(x) = 0

▶ If f partially differentiable, Jacobian is

Df (x) =
[
∂f
∂x1

· · · ∂f
∂xN

]
▶ Its transpose

∇f (x) := Df (x)⊤ =


∂f
∂x1
...
∂f
∂xN


and is called gradient

©Alexis Akira Toda Instruction slides for Essential Mathematics for Economics



Necessary condition

Proposition (Necessity of first-order condition)

If x̄ ∈ intC is local solution and f is differentiable at x̄ , then
∇f (x̄) = 0.

Proof.
▶ Take any v ∈ RN and define ϕ : R→ RN by ϕ(t) = x̄ + vt

▶ Since x̄ is an interior point of C , the function

g(t) := (f ◦ ϕ)(t) = f (x̄ + vt)

is well defined for t close enough to 0

▶ Since x̄ is local solution, clearly t = 0 is local minimum of g

▶ Hence by previous result and chain rule,

0 = g ′(0) = Df (x̄)v = ⟨∇f (x̄), v⟩

▶ Since v ∈ RN arbitrary, we obtain ∇f (x̄) = 0
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Important points

▶ Differentiation is basically linear approximation

▶ Chain rule: D(g ◦ f ) = (Dg)(Df ): obvious because
differentiation is linear approximation and composition of
linear maps is matrix multiplication

▶ At interior optimum, ∇f (x̄) = 0 (first-order condition)

▶ We will talk about sufficient conditions much later
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Chapter 4

Introduction to Constrained

Optimization
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Introduction

One linear constraint

Multiple linear constraints

Karush-Kuhn-Tucker theorem

Dropping nonnegativity constraints
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Introduction

▶ We would like to solve

minimize f (x)

subject to x ∈ C

▶ In previous slides, we learned how to do this when C ⊂ RN

and solution is interior

▶ Assumption of interior solution unsatisfactory, because
constraints bind in most problems
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Utility maximization problem

▶ Consider utility maximization problem

maximize u(x1, . . . , xN)

subject to p1x1 + · · ·+ pNxN ≤ w ,

(∀n)xn ≥ 0

▶ Constraint set is

C =
{
x ∈ RN

+ : ⟨p, x⟩ ≤ w
}
,

▶ If agent likes goods, budget constraint ⟨p, x⟩ ≤ w will bind, so
⟨p, x⟩ = w

▶ We will learn general approach when constraints can bind
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One linear constraint

▶ To build intuition, we start from one linear constraint

▶ Problem is

minimize f (x)

subject to ⟨a, x⟩ ≤ c ,

where f : differentiable, a ̸= 0

▶ Constraint set is

C =
{
x ∈ RN : ⟨a, x⟩ ≤ c

}
.

▶ Suppose x̄ ∈ C is local solution
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One linear constraint

▶ If ⟨a, x̄⟩ < c , then x̄ is interior point of C

▶ Then we already know ∇f (x̄) = 0 is necessary

▶ Hence assume constraint binds, and ⟨a, x̄⟩ = c

▶ Consider moving towards direction v from solution x̄

▶ Since x̄ is on boundary, we have ⟨a, x̄⟩ = c

▶ Hence point x = x̄ + tv is feasible for small t > 0 if and only if

⟨a, x̄ + tv⟩ ≤ c = ⟨a, x̄⟩ ⇐⇒ ⟨a, v⟩ ≤ 0

▶ Hence for feasibility, vectors a, v must form obtuse angle
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One linear constraint

⟨a, x⟩ = c

a

v

x̄
−∇f (x̄)

C
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Necessary condition

▶ Since x̄ is solution, we have f (x̄ + tv) ≥ f (x̄) for small t > 0

▶ Hence by chain rule,

0 ≤ lim
t↓0

f (x̄ + tv)− f (x̄)

t
= ⟨∇f (x̄), v⟩ ⇐⇒ ⟨−∇f (x̄), v⟩ ≤ 0

▶ We obtain following general principle for optimality:

If a and v form obtuse angle, then so do −∇f (x̄) and v

▶ Only case −∇f (x̄) and v form obtuse angle whenever a and v
do so is when −∇f (x̄) and a point to same direction

▶ Hence there exists λ ≥ 0 such that

−∇f (x̄) = λa ⇐⇒ ∇f (x̄) + λa = 0
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Necessary condition

⟨a, x⟩ = c

a

x̄

−∇f (x̄)

v

C
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Necessary condition with one constraint

Proposition

Consider the optimization problem

minimize f (x)

subject to ⟨a, x⟩ ≤ c ,

where f : RN → R is differentiable, 0 ̸= a ∈ RN , and c ∈ R. If x̄ is
a local solution, then there exists λ ≥ 0 such that

∇f (x̄) + λa = 0.
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Multiple linear constraints

▶ We next consider optimization problem

minimize f (x)

subject to ⟨a1, x⟩ ≤ c1,

⟨a2, x⟩ ≤ c2,

where f differentiable, a1, a2 ̸= 0, and c1, c2 are constants

▶ Let x̄ be local solution

▶ Constraint set is

C = {x : g1(x) ≤ 0, g2(x) ≤ 0} ,

where gi (x) = ⟨ai , x⟩ − ci for i = 1, 2 are affine

▶ Assume both constraints are active (bind) at solution
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Multiple linear constraints

a1 = ∇g1
a2 = ∇g2

v

x̄

−∇f (x̄)

C
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Necessary condition with two constraints

▶ Principle

If ai and v form obtuse angle, then so do −∇f (x̄) and v

still valid

▶ By looking at picture, for x̄ to be solution, it is necessary that
−∇f (x̄) lies between a1 and a2

▶ This is true if and only if there are numbers λ1, λ2 ≥ 0 such
that

−∇f (x̄) = λ1a1 + λ2a2

⇐⇒ ∇f (x̄) + λ1∇g1(x̄) + λ2∇g2(x̄) = 0
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Karush-Kuhn-Tucker theorem

Theorem (KKT theorem with linear constraints)

Consider the optimization problem

minimize f (x)

subject to gi (x) ≤ 0 (i = 1, . . . , I ),

where f is differentiable and gi (x) = ⟨ai , x⟩ − ci is affine with
ai ̸= 0. If x̄ is a local solution, then there exist Lagrange
multipliers λ1, . . . , λI such that

(First-order condition) ∇f (x̄) +
I∑

i=1

λi∇gi (x̄) = 0,

(Complementary slackness) (∀i) λi ≥ 0, gi (x̄) ≤ 0, λigi (x̄) = 0.
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Remembering KKT theorem

1. Express problem as

minimize f (x)

subject to gi (x) ≤ 0 (i = 1, . . . , I ),

2. Define Lagrangian

L(x , λ) := f (x) +
I∑

i=1

λigi (x)

3. Pretend taking unconstrained FOC, and derive

0 = ∇L(x , λ) = ∇f (x) +
I∑

i=1

λi∇gi (x)

4. Complementary slackness is just λigi (x) = 0 for all i
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William Karush (1917-1997)

▶ A version of KKT theorem appeared in 1939 master’s thesis
(U of Chicago) of William Karush, who became teaching prof
at California State U

▶ Received no attention, because applied mathematics gained
respect only after World War II

▶ Rediscovered by Princeton profs Harold Kuhn (1925-2014)
and Albert Tucker (1905-1995) in 1950 conference paper, so
often called “Kuhn-Tucker theorem”

▶ We should obviously call Karush-Kuhn-Tucker theorem
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Constrained maximization
▶ What if problem is maximization

maximize f (x)

subject to gi (x) ≥ 0 (i = 1, . . . , I )?

▶ Append minus sign to convert to minimization:

minimize − f (x)

subject to − gi (x) ≤ 0 (i = 1, . . . , I )

▶ Then KKT conditions are

−∇f (x̄)−
I∑

i=1

λi∇gi (x̄) = 0,

(∀i) λi (−gi (x̄)) = 0,

same as minimization after putting minus sign!
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Tips for formulating problems

▶ For minimization problems, use format

minimize f (x)

subject to g(x) ≤ 0

▶ For maximization problems, use format

maximize f (x)

subject to g(x) ≥ 0

▶ In either case, Lagrangian is L(x , λ) = f (x) + λg(x) with
λ ≥ 0

▶ First-order condition is ∇xL(x , λ) = 0

▶ Always stick to this convention to avoid stupid mistakes
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Utility maximization problem

▶ As application and illustration of KKT theorem, we provide
step-by-step analysis of utility maximization problem

▶ Consider

maximize u(x) = α log x1 + (1− α) log x2
subject to p1x1 + p2x2 ≤ w ,

x1, x2 ≥ 0

▶ Here
▶ α ∈ (0, 1) is preference parameter,
▶ p1, p2 > 0 are prices of goods,
▶ w > 0 is disposable income of agent
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Existence of solution

▶ Define constraint set by

C :=
{
x ∈ R2

+ : p1x1 + p2x2 ≤ w
}

▶ Clearly C is nonempty, closed, and bounded

▶ u : R2
+ → [−∞,∞) is continuous

▶ Hence by extreme value theorem, solution x̄ exists

▶ If x̄1 = 0 or x̄2 = 0, we have u(x̄) = −∞, which is clearly not
optimum

▶ Hence x̄ ≫ 0
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Formulating problem

▶ Because it is maximization problem, we need to convert to
format

maximize f (x)

subject to g(x) ≥ 0

▶ Thus problem is

maximize α log x1 + (1− α) log x2
subject to w − p1x1 − p2x2 ≥ 0,

x1 ≥ 0

x2 ≥ 0
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Deriving KKT conditions

▶ Define Lagrangian by

L(x , λ, µ) = α log x1 + (1− α) log x2
+ λ(w − p1x1 − p2x2) + µ1x1 + µ2x2

▶ First-order conditions are

0 =
∂L

∂x1
=
α

x1
− λp1 + µ1,

0 =
∂L

∂x2
=

1− α
x2
− λp2 + µ2

▶ Complementary slackness conditions are

λ(w − p1x1 − p2x2) = 0,

µ1x1 = µ2x2 = 0
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Solving KKT conditions

▶ Since we argued x̄ ≫ 0, complementary slackness implies
µ1 = µ2 = 0

▶ Solving for first-order condition, get x1 =
α
λp1

, x2 =
1−α
λp2

▶ Substituting into remaining complementary slackness
condition, get

α

λ
+

1− α
λ

= w ⇐⇒ λ =
1

w

▶ Therefore

(x1, x2) =

(
αw

p1
,
(1− α)w

p2

)
▶ We know solution exists, and we arrived at unique candidate

using only necessary condition, so this must be (unique)
solution
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Nonnegativity constraints

▶ In many economic applications such as UMP, some
constraints are nonnegative: x ≥ 0

▶ In previous example, we used log 0 = −∞ to rule out
solutions of form x1 = 0 or x2 = 0

▶ We seek to provide more general sufficient condition for
dropping nonnegativity constraints in

minimize f (x)

subject to x ∈ C

©Alexis Akira Toda Instruction slides for Essential Mathematics for Economics



Dropping nonnegativity constraints

Proposition

Let f : RN
+ → (−∞,∞] be continuous and C ⊂ RN

+. Suppose that

1. C is a convex set, so x1, x2 ∈ C and t ∈ [0, 1] imply
(1− t)x1 + tx2 ∈ C ; furthermore, there exists x0 ≫ 0 such
that x0 ∈ C ,

2. f is differentiable on RN
++ with partial derivatives that are

uniformly bounded above, so there exists b ≥ 0 such that
maxn supx∈C

∂f
∂xn
≤ b,

3. f satisfies the Inada condition with respect to xn, so

lim
y→x

∂f

∂xn
(y) = −∞

whenever x = (x1, . . . , xN) satisfies xn = 0.

If x̄ ∈ C is a solution, then x̄n > 0.
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Proof

▶ Since C is convex and x0 ∈ C , we may define
g : [0, 1]→ (−∞,∞] by g(t) = f (x(t)), where
x(t) := (1− t)x̄ + tx0

▶ By assumption, g is continuous on [0, 1] and differentiable on
(0, 1]

▶ Applying chain rule and using uniform boundedness, we get

g ′(t) =
N∑

n=1

∂f

∂xn
(x(t))(x0n − x̄n)

≤ ∂f

∂xn
(x(t))(x0n − x̄n) + (N − 1)b ∥x0 − x̄∥ ,

where ∥·∥ is supremum (l∞) norm
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Proof

▶ If x̄n = 0, then x0n − x̄n > 0, so letting t ↓ 0 and using Inada
condition, we obtain limt↓0 g

′(t) = −∞
▶ In particular, g ′(t) < 0 for sufficiently small t

▶ By mean value theorem, we can take s ∈ (0, t) such that

g(t)− g(0) = g ′(s)(t − 0) = g ′(s)t < 0

=⇒ f (x(t)) = g(t) < g(0) = f (x̄),

which is contradiction
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Important points

▶ Consider

minimize f (x)

subject to gi (x) ≤ 0 (i = 1, . . . , I )

▶ KKT theorem: if x̄ local solution, then

(First-order condition) ∇f (x̄) +
I∑

i=1

λi∇gi (x̄) = 0,

(Complementary slackness) (∀i) λi ≥ 0, gi (x̄) ≤ 0, λigi (x̄) = 0

▶ One of most important theorems in economics

▶ For maximization, remember to flip inequality for constraint:
gi (x) ≥ 0
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Chapter 5

Vector Space, Matrix, and Determinant
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Vector space

Solving linear equations

Determinant
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Vector space

▶ Roughly speaking, vector space is set on which addition and
scalar multiplication are defined

▶ Thus if V is vector space, for each vector v ,w ∈ V, there
corresponds sum

v + w ∈ V,

and for each v ∈ V and scalar α, there corresponds scalar
multiplication

αv ∈ V

▶ By “scalar”, for practical purposes we use either set of real
numbers R or set of complex numbers C

▶ See standard textbooks for precise axioms
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Examples of vector spaces

▶ Typical example of vector space is N-dimensional Euclidean
space RN

▶ Other examples are

V1 := {v : R→ R : v is a continuous function} ,
V2 := {v : R→ R : v is a bounded continuous function} ,
V3 := {v : R→ R : v is a polynomial} ,
V4 := {v : R→ R : v is a polynomial of degree ≤ N − 1} ,

etc., where addition and scalar multiplication of functions are
defined pointwise

▶ If subset W ⊂ V is itself vector space, we say W is subspace
of V

▶ Obviously, V2,V3 are subspaces of V1 and V4 is subspace of
V3
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Linear combination, span

▶ If v1, . . . , vK ∈ V and α1, . . . , αK ∈ R, then

v := α1v1 + · · ·+ αKvK =
K∑

k=1

αkvk ∈ V

is linear combination of {vk} with coefficients {αk}
▶ The set

span[v1, . . . , vK ] :=

{
v =

K∑
k=1

αkvk : (∀k)αk ∈ R

}

is span of {vk}
▶ If span[v1, . . . , vK ] = V, we say {vk} spans V
▶ If V has finite set of vectors {vk} that spans V, we say V is

finite dimensional
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Linear independence, dimension

▶ Set of vectors {vk} is linearly independent if

K∑
k=1

αkvk = 0 =⇒ (∀k)αk = 0

▶ Otherwise (
∑K

k=1 αkvk = 0 for nontrivial {αk}), linearly
dependent

▶ If {vk}Kk=1 linearly independent and spans V, we say {vk} is
basis of V

▶ K is dimension of V and we write dimV = K

▶ Clearly dimRN = N
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Maps

▶ Let V,W be general sets

▶ ϕ : V→W is one-to-one (or injective) if
v1 ̸= v2 =⇒ ϕ(v1) ̸= ϕ(v2)

▶ ϕ is onto (or surjective) if for all w ∈W, there exists v ∈ V
such that ϕ(v) = w

▶ If ϕ is both one-to-one and onto, we say it is bijective

▶ If ϕ bijective, then for each w ∈W, there exists unique v ∈ V
such that ϕ(v) = w , which we denote as v = ϕ−1(w)

▶ The map ϕ−1 : W→ V is called inverse of ϕ
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Isomorphism
▶ Roughly speaking, when bijective map ϕ : V→W preserves

properties that we are interested in, we call it isomorphism

▶ If V,W are vector spaces (which are characterized by
linearity), bijection ϕ : V→W is isomorphism if it is linear:

ϕ(α1v1 + α2v2) = α1ϕ(v1) + α2ϕ(v2)

▶ Two sets that are isomorphic can be regarded as identical, as
long as we are concerned with properties that we are
interested in

▶ Can show any N-dimensional (real) vector space is isomorphic
to RN

▶ For example, space of polynomials with degree ≤ N − 1 is
isomorphic to RN through

v(x) =
N∑

n=1

αnx
n−1 ←→ α = (α1, . . . , αN) ∈ RN
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Solving linear equations

▶ In practice, we often want to solve Ax = b

▶ If we define ϕ : RN → RN by ϕ(x) = Ax , then can write
ϕ(x) = b

▶ If ϕ bijective, we may solve x = ϕ−1(b)

▶ Clearly ϕ−1 linear, so has matrix representation denoted by
A−1, called inverse of A

▶ Thus x = A−1b

▶ But argument vacuous unless we know how to compute
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Solving linear equations

▶ If N = 1, can solve ax = b as x = b/a if a ̸= 0

▶ If N = 2, Ax = b is

a11x1 + a12x2 = b1,

a21x1 + a22x2 = b2,

and we can solve by eliminating one variable from two
equations

▶ This process involves elementary row operations

1. swapping two equations,
2. multiplying equation by nonzero scalar, and
3. adding scalar multiple of equation to another
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Swapping equations

▶ Let P = I (identity matrix), and define P(i , j) = (pmn) by
setting pii = pjj = 0 and pij = pji = 1 in P

▶ For instance, if N = 3 and (i , j) = (2, 3), we have

P(i , j) =

1 0 0
0 0 1
0 1 0


▶ Then swapping rows i and j of Ax = b corresponds to

P(i , j)Ax = P(i , j)b

▶ Note that P(i , j)2 = I , so multiplying P(i , j) from left, we
recover Ax = b, so these equations are equivalent

©Alexis Akira Toda Instruction slides for Essential Mathematics for Economics



Multiplying equation

▶ Let Q = I , and define Q(i ; c) = (qmn) by setting qii = c in Q

▶ For instance, if N = 3 and i = 2, we have

Q(i ; c) =

1 0 0
0 c 0
0 0 1


▶ Then multiplying row i of Ax = b by c ̸= 0 corresponds to

Q(i ; c)Ax = Q(i ; c)b

▶ Note that Q(i ; 1/c)Q(i ; c) = I , so multiplying Q(i ; 1/c) from
left, we recover Ax = b
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Adding scalar multiple of equation

▶ Let R = I , and define R(i , j ; c) = (rmn) by setting rij = c in R

▶ For instance, if N = 3 and (i , j) = (2, 3), we have

R(i , j ; c) =

1 0 0
0 1 c
0 0 1


▶ Then adding c times row j of Ax = b to row i corresponds to

R(i , j ; c)Ax = R(i , j ; c)b

▶ Note that R(i , j ;−c)R(i , j ; c) = I , so multiplying R(i , j ;−c)
from left, we recover Ax = b
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Gaussian elimination

▶ Multiplying P,Q,R matrices from left leaves equation
equivalent

▶ Find (i , j) such that aij ̸= 0; if j ̸= 1, consider equation
AP(1, j)P(1, j)x = b

▶ By redefining AP(1, j) as A and P(1, j)x as x (swapping x1
and xj), we may assume ai1 ̸= 0 for some i

▶ If i ̸= 1, consider equation P(i , 1)Ax = P(i , 1)b; by redefining
P(i , 1)A as A and P(i , 1)b as b (swapping rows 1 and i), we
may assume a11 ̸= 0

▶ Multiply Q(1, 1; 1/a11) from left to Ax = b; then we may
assume a11 = 1
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Gaussian elimination
▶ For each m = 2, . . . ,N, multiply R(m, 1;−am1) from left to

Ax = b; then we may assume am1 = 0 for all m > 1

▶ System of equations can now be written as[
1 A12

0 Ã

] [
x1
x̃

]
=

[
b1
b̃

]
,

▶ Continuing this process, we may write Ax = b equivalently as

(LAP)Px = Lb,

where L is product of finitely many P(i , j), Q(i ; c), R(i , j ; c)
matrices, P is product of finitely many P(i , j) matrices, and

LAP =

[
Ir B

0N−r ,r 0N−r ,N−r

]
for some 0 ≤ r ≤ N and B ∈Mr ,N−r
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Gaussian elimination

▶ Write y = Px , c = Lb, and partition (LAP)Px = Lb as[
I B
0 0

] [
y1
y2

]
=

[
c1
c2

]
,

which is equivalent to y1 + By2 = c1 and c2 = 0

▶ Therefore, there exists solution if and only if c2 = 0, in which
case solution takes form y1 = c1 − By2 for any y2 ∈ RN−r

▶ There exists unique solution if and only if r = N, in which
case y = Px = Lb ⇐⇒ x = PLb (because P2 = I )

▶ Number r in Gaussian elimination algorithm is called rank of
matrix A (which is uniquely determined by A)
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Determinant

▶ Although Gaussian elimination is practical for computational
purposes, it does not provide theoretical insights

▶ We define determinant of square matrices

▶ A ∈MN can be written as A = [a1, . . . , aN ]

▶ Consider function D :MN → R satisfying

1. (Multi-linearity) For each n, D(. . . , xn, . . . ) is linear in
xn ∈ RN : for all xn, yn ∈ RN and α, β ∈ R, we have

D(. . . , αxn + βyn, . . . ) = αD(. . . , xn, . . . ) + βD(. . . , yn, . . . )

2. (Alternation) For each m < n, sign of D flips whenever we flip
columns m, n:

D(. . . , xm, . . . , xn, . . . ) = −D(. . . , xn, . . . , xm, . . . )

3. (Normalization) D(I ) = 1
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Determinant

▶ It turns out that these properties uniquely determine D

▶ For N = 1, we can write A = (a) (scalar), so it must be

D(A) = D(a) = D(aI ) = aD(I ) = a

▶ For general N we need a few lemmas

Lemma
If A has two identical columns, then D(A) = 0

Proof.
By flipping two identical columns,

D(A) = D(. . . , a, . . . , a . . . ) = −D(. . . , a, . . . , a . . . ) = −D(A),

so D(A) = 0
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Determinant

Lemma
If columns of A are linearly dependent, then D(A) = 0

Proof.
▶ By assumption, there is nontrivial linear combination

N∑
n=1

αnan = 0

▶ αj ̸= 0 for some j , so we may write aj = − 1
αj

∑
n ̸=j αnan for

some j

▶ Using multi-linearity and previous lemma, get D(A) = 0
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The case N = 2

▶ Suppose N = 2 and A =

[
a b
c d

]
▶ Using properties of D, we get

D(A)

= aD

(
1 b
0 d

)
+ cD

(
0 b
1 d

)
= abD

(
1 1
0 0

)
+ adD

(
1 0
0 1

)
+ bcD

(
0 1
1 0

)
+ cdD

(
0 0
1 1

)
= adD

(
1 0
0 1

)
− bcD

(
1 0
0 1

)
= ad − bc,

so D uniquely determined
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Laplace expansion formula

▶ General case proceeds by induction

▶ Let A = (amn) ∈MN . For fixed i , define

DN(A) =
N∑

m=1

(−1)m+iamiDN−1(Ami ),

where Ami is (N − 1)× (N − 1) submatrix of A obtained by
removing row m and column i

▶ We can show DN(A) does not depend on i and is unique
function satisfying three properties

▶ Unique value D(A) is called determinant of A and is denoted
by detA or |A|
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Laplace expansion formula

▶ For N = 2 and i = 1, we may compute∣∣∣∣a b
c d

∣∣∣∣ = a(d)− c(b) = ad − bc

▶ For N = 3 and i = 1, we may compute∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣e f
h i

∣∣∣∣− d

∣∣∣∣b c
h i

∣∣∣∣+ g

∣∣∣∣b c
e f

∣∣∣∣
= a(ei − fh)− d(bi − ch) + g(bf − ce),

etc.
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Dropping normalization

Lemma
If F :MN → R satisfies multi-linearity and alternation, then
F (A) = |A|F (I ).

Proof.
▶ Repeatedly using multi-linearity and alternation as we did for

2× 2 case, we may write F (A) = g(A)F (I ) for some function
g independent of F

▶ If F (I ) = 1, then by uniqueness it must be F = det, so
g(A) = detA = |A|

▶ Hence F (A) = |A|F (I )
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Determinant of product

Proposition

If A,B ∈MN , then |AB| = |A| |B| = |BA|.

Proof.
▶ Fix A ∈MN and define F :MN → R by F (X ) = |AX |
▶ Using linearity of X 7→ AX , we can see that F satisfies

multi-linearity and alternation

▶ Hence by previous lemma, we obtain

|AX | = F (X ) = |X |F (I ) = |X | |A| = |A| |X |

▶ Setting X = B, we obtain |AB| = |A| |B|
▶ Interchanging role of A,B, get
|BA| = |B| |A| = |A| |B| = |AB|
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Block matrices

▶ We may write matrices in blocks, for example

A =

[
A11 A12

A21 A22

]
▶ Block upper triangular:

A =

[
A11 A12

0 A22

]
▶ Block diagonal:

A =

[
A11 0
0 A22

]
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Determinant of block upper triangular matrix

Proposition

If A is block upper triangular, then |A| = |A11| |A22|.

Proof.
▶ Let A11 ∈Mr ; for general matrix X ∈Mr , define

F (X ) =

∣∣∣∣X A12

0 A22

∣∣∣∣
▶ Then F satisfies multi-linearity and alternation, so

F (X ) = |X |F (I )
▶ Hence suffices to show F (I ) = |A22|
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Determinant of block upper triangular matrix

Proof.
▶ Now

F (I ) =

∣∣∣∣I A12

0 A22

∣∣∣∣ = ∣∣∣∣I 0
0 A22

∣∣∣∣
by subtracting some multiples of first r columns from last
N − r columns

▶ If we view last expression as function of A22, all properties of
D satisfied, so F (I ) = |A22|
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Determinant of upper triangular matrix

▶ We say square matrix A = (amn) is upper triangular if amn = 0
whenever m > n, so A can be written as

A =

a11 · · · a1N
...

. . .
...

0 · · · aNN


▶ Obviously, upper triangular matrix is block upper triangular

with N diagonal blocks of size 1× 1

▶ Hence |A| = a11 · · · aNN : determinant is product of diagonal
entries

©Alexis Akira Toda Instruction slides for Essential Mathematics for Economics



Formula for inverse matrix

▶ Let A = (amn) be square matrix

▶ Let Amn be submatrix of A obtained by removing row m and
column n

▶ Then cmn := (−1)m+n |Amn| is called (m, n) cofactor of A

▶ The matrix C = (cmn) is called cofactor matrix

Proposition

Let A be square matrix and C be cofactor matrix. Then A is
invertible if and only if |A| ≠ 0, in which case A−1 = 1

|A|C
′.
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Proof

▶ By definition of cofactor, for each i Laplace expansion formula
implies

|A| =
N∑

m=1

amicmi

▶ Let A[i ← j ] be matrix obtained by replacing column i with
column j

▶ If i ̸= j , since column j appears twice in A[i ← j ], we have

0 = |A[i ← j ]| =
N∑

m=1

amjcmi
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Proof

▶ Define Kronecker’s delta by δij = 1 if i = j and δij = 0 if i ̸= j

▶ Combining cases i = j (hence A[i ← j ] = A) and i ̸= j , we
obtain

δij |A| =
N∑

m=1

cmiamj

▶ Collecting terms into a matrix, we obtain |A| I = C ′A

▶ Therefore if |A| ≠ 0, then A is invertible and claim holds

▶ Conversely, if A is invertible, then
1 = |I | =

∣∣AA−1
∣∣ = |A| ∣∣A−1

∣∣, so it must be |A| ≠ 0
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2× 2 case

▶ Let A be 2× 2 and

A =

[
a b
c d

]
▶ Cofactor matrix is

C =

[
d −c
−b a

]
▶ Inverse matrix is

A−1 =
1

|A|
C ′ =

1

ad − bc

[
d −b
−c a

]
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Equivalent conditions of invertibility

Theorem
Let A be a square matrix. Then the following conditions are
equivalent.

1. A is invertible.

2. The column vectors of A are linearly independent.

3. For any b, the equation Ax = b has a unique solution.

4. A has full rank.

5. |A| ≠ 0.
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Order of operations

▶ How many operations are required to solve Ax = b?

▶ With Gaussian elimination, for each i and m ̸= i , we subtract
constant multiple of row i from row m, which involves N
numbers; repeating this for each m and iterating over i , order
of operations is N × N × N = N3

▶ If we use Gaussian elimination to compute A−1 first (so
applying Gaussian elimination to b = en for each n) and
compute x = A−1b, order of operations is N3 × N = N4

▶ With Laplace expansion to compute |A|, letting o(n) be order
for computing determinant of A ∈Mn, then Laplace
expansion implies o(n) = no(n − 1), so o(n) = n!; thus
computing A−1 requires N2 × (N − 1)! ∼ (N + 1)! operations

▶ Hence Laplace expansion is impractical
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Chapter 6

Spectral Theory
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Introduction

Eigenvalue and eigenvector

Diagonalization

Inner product and norm

Upper triangularization

Second-order optimality condition

Matrix norm and spectral radius
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Introduction

▶ In economic analysis, we often want to know behavior of
matrix power Ak as k →∞

▶ For instance, linearization of economic models often imply
dynamics

xt = Axt−1 + ut ,

where xt is vector of state variables, A is square matrix, and
ut is vector of shocks

▶ Iterating this, we obtain

xt = ut + Aut−1 + · · ·+ At−1u1 + Atx0

▶ Thus if limt→∞ At = 0, then Atx0 → 0, so initial condition
becomes irrelevant as time goes by
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Analysis for diagonal matrix

▶ We say square matrix A = (amn) is diagonal if amn = 0
whenever m ̸= n, so we can write

A = diag[d1, . . . , dN ] :=

d1 · · · 0
...

. . .
...

0 · · · dN


▶ If A is diagonal, straightforward calculation shows

Ak = diag[dk
1 , . . . , d

k
N ] for all k ∈ N

▶ Hence Ak → 0 as k →∞ if and only if |dn| < 1 for all n

▶ We generalize this argument for any square matrix

©Alexis Akira Toda Instruction slides for Essential Mathematics for Economics



Eigenvalue and eigenvector

▶ Let A be square matrix (real or complex)

▶ If there is vector v ̸= 0 and scalar α such that Av = αv , we
say α is eigenvalue of A and v is eigenvector corresponding to
α

▶ If Av = αv , by iteration we may compute Akv = αkv , so we
can easily understand behavior of Akv as k →∞
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Characterization of eigenvalues

▶ By definition, α is eigenvalue if and only if there exists v ̸= 0
such that

Av = αv ⇐⇒ (αI − A)v = 0

▶ By previous results, such v ̸= 0 exists if and only if
|αI − A| = 0

▶ For any complex number z ∈ C, define function ΦA : C→ C
by ΦA(z) = |zI − A|

▶ Then by applying Laplace expansion of determinant and
induction, ΦA is polynomial of degree N with leading
coefficient 1

▶ By fundamental theorem of algebra, ΦA(z) = 0 has exactly N
roots if we count multiplicity, so any A ∈MN(C) has exactly
N eigenvalues

▶ Polynomial ΦA is called characteristic polynomial of A
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2× 2 case

▶ Let A be 2× 2 and

A =

[
a b
c d

]
▶ Then

ΦA(z) = |zI − A| =
∣∣∣∣z − a −b
−c z − d

∣∣∣∣
= z2 − (a+ d)z + ad − bc
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Eigenvalues need not be real

▶ Even if A is real matrix, eigenvalues (hence eigenvectors) need
not be real

▶ Example: let

A =

[
cos θ − sin θ
sin θ cos θ

]
,

▶ Then characteristic polynomial and roots are

z2 − 2(cos θ)z + 1 = 0 ⇐⇒ z = cos θ ± i sin θ,

which are complex whenever sin θ ̸= 0

▶ Hence when we discuss eigenvalues and eigenvectors, we
always consider complex vector space CN unless otherwise
specified
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Eigenvalues of upper triangular matrix

Proposition

If A = (amn) is upper triangular (so amn = 0 whenever m > n),
then the eigenvalues of A are the diagonal entries a11, . . . , aNN .

Proof.
▶ If A is upper triangular, so is zI − A

▶ n-th diagonal entry of zI − A is z − ann
▶ Since determinant of upper triangular matrix is product of

diagonal entries, we have

ΦA(z) = |zI − A| = (z − a11) · · · (z − aNN)
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Change of basis
▶ We usually take standard basis {e1, . . . , eN} in RN or CN , but

that is not necessary

▶ Suppose we take different basis {p1, . . . , pN}
▶ By definition, {pn} is linearly independent, so

P = [p1, . . . , pN ] is invertible

▶ Let x be any vector and y = P−1x ; then

x = PP−1x = Py = y1p1 + · · ·+ yNpN ,

so entries of y can be interpreted as coordinates of x when
expressed with basis P

▶ Then x 7→ Ax becomes

y = P−1x 7→ P−1Ax = (P−1AP)(P−1x) = (P−1AP)y ,

so linear map x 7→ Ax has matrix representation B = P−1AP
under basis P
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Similarity

▶ When there exists invertible matrix P such that B = P−1AP,
we say A,B are similar

▶ When A,B are similar, they can be regarded as identical
because they can be mapped to each other by change of basis

▶ For instance, characteristic polynomial of B = P−1AP is

ΦB(z) = |zI − B| =
∣∣zI − P−1AP

∣∣
=
∣∣P−1(zI − A)P

∣∣ = |zI − A| = ΦA(z),

so A,B have identical eigenvalues
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Diagonalization

▶ For analysis, often useful to find matrix P such that P−1AP is
simple

▶ For instance, let B = P−1AP and suppose computing Bk is
easy (e.g., diagonal)

▶ Then Bk = (P−1AP)k = P−1AkP, so we may compute
Ak = PBkP−1

▶ Simplest matrices of all is diagonal

Proposition

If the eigenvalues of the square matrix A are distinct, A is
diagonalizable.
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Proof

▶ Let {αn}Nn=1 be eigenvalues and Apn = αnpn; we show {pn} is
linearly independent

▶ Suppose
∑N

n=1 xnpn = 0, and multiply Bm :=
∏

n ̸=m(A− αnI )

▶ Then

0 = Bm0 = Bm

N∑
n=1

xnpn = xm
∏
n ̸=m

(αm − αn)pm,

so xm = 0 for all m

▶ Let P = [p1, . . . , pN ], which is invertible

▶ Stacking Apn = αnpn as column vectors, we obtain

AP = A[p1, . . . , pN ] = [α1pn, . . . , αNpN ] = P diag[α1, . . . , αN ],

so P−1AP = diag[α1, . . . , αN ]
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Inner product and norm

▶ When eigenvalues not distinct, matrix may not be
diagonalizable; need additional structure

▶ For real vector space V, we say ⟨·, ·⟩ : V × V→ R is inner
product if

1. (Nonnegativity) ⟨x , x⟩ ≥ 0 for all x ∈ V, with equality if and
only if x = 0,

2. (Symmetry) ⟨x , y⟩ = ⟨y , x⟩ for all x , y ∈ V,
3. (Linearity) ⟨x , y⟩ is linear in y

▶ Real vector space equipped with inner product ⟨·, ·⟩ is called
inner product space

▶ Obvious example is RN , but there are many more

▶ Can show Cauchy-Schwarz ∥x∥ ∥y∥ ≥ |⟨x , y⟩| and triangle
inequality ∥x + y∥ ≤ ∥x∥+ ∥y∥, so inner product space is
automatically normed space
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Example

▶ Let a < b and w : [a, b]→ (0,∞) be positive continuous
function

▶ Let V be space of continuous functions defined on [a, b]

▶ For f , g ∈ V, define

⟨f , g⟩ =
∫ b

a
f (x)g(x)w(x) dx

▶ Then V is inner product space
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Complex inner product space

▶ When V is complex vector space, symmetry is replaced by

2’ (Conjugate symmetry) ⟨x , y⟩ = ⟨y , x⟩
▶ Here ᾱ denotes complex conjugate of the scalar α ∈ C
▶ For example, if V = CN and x , y ∈ CN , inner product is

defined by

⟨x , y⟩ = x∗y = x̄ ′y =
N∑

n=1

x̄nyn

▶ Here x∗ = x̄ ′ is transpose of complex conjugate of x , or
conjugate transpose for short
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Gram-Schmidt orthonormalization

▶ Vectors x , y ∈ V satisfying ⟨x , y⟩ = 0 are called orthogonal

▶ If any two vectors of {vk}Kk=1 are orthogonal and ∥vk∥ = 1 for

all k, we say that {vk}Kk=1 is orthonormal

▶ From any linearly independent {vk}Kk=1, we may construct

orthonormal vectors {uk}Kk=1 as follows

1. Define u1 = v1/ ∥v1∥, so ∥u1∥ = 1
2. Proceed by induction; suppose u1, . . . , uk have already been

defined and span[u1, . . . , uk ] = span[v1, . . . , vk ]

3. Define v = vk+1 −
∑k

l=1 ⟨vk+1, ul⟩ ul and uk+1 = v/ ∥v∥
4. Then clearly ∥uk+1∥ = 1 and ⟨uk+1, ul⟩ = 0 for all l = 1, . . . , k
5. Continuing this process, we obtain desired orthonormal vectors
{uk}
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Conjugate transpose, unitary matrix

▶ For complex A, let A∗ = Ā′ be conjugate transpose

▶ Using property of inner product,

⟨A∗x , y⟩ = (A∗x)∗y = x∗(A∗)∗y = x∗Ay = ⟨x ,Ay⟩

▶ Let {u1, . . . , uN} be orthonormal basis and U = [u1, . . . , uN ]

▶ Then ⟨um, un⟩ = δmn (Kronecker delta), so U∗U = I

▶ Hence U∗ = U−1 and U∗U = UU∗ = I ; such matrix called
unitary matrix

▶ If P = U is real, then called orthogonal matrix
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Schur triangularization theorem

Theorem (Schur triangularization theorem)

For any A ∈MN(C), there exists a unitary matrix U such that
U−1AU = U∗AU is upper triangular.

Proof.
▶ Trivial if N = 1 by taking U = (1)

▶ General case is by induction; suppose true up to N − 1

▶ Let u1 be eigenvector of A, so Au1 = α1u1, with ∥u1∥ = 1

▶ Use Gram-Schmidt to construct unitary U0 = [u1, . . . , uN ]

▶ Then

U∗
0AU0 =

[
α1 b∗1
0 A1

]
,

and apply induction hypothesis to A1
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Spectral theorem

▶ Schur triangularization theorem has many applications

▶ One of them is to diagonalize self-adjoint matrices, which
satisfy A∗ = A

▶ If A = (amn) real, it is self-adjoint if it is symmetric: A′ = A
and amn = anm

Corollary (Spectral theorem)

A self-adjoint matrix is diagonalizable by a unitary matrix.

Proof.
▶ By Schur, can take unitary U such that U∗AU is upper

triangular

▶ Then (U∗AU)∗ = U∗A∗U = U∗AU lower triangular, so
diagonal
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Diagonalization of real symmetric matrices

Proposition

If A ∈MN(C) is self-adjoint, then
1. for any x ∈ CN , the quadratic form ⟨x ,Ax⟩ is real,
2. all eigenvalues of A are real.

Proof.
▶ Note that ⟨x ,Ax⟩ = ⟨Ax , x⟩ = ⟨A∗x , x⟩ = ⟨x ,Ax⟩
▶ If α ∈ C an eigenvalue of A, so Av = αv for some v ̸= 0, then

R ∋ ⟨v ,Av⟩ = ⟨v , αv⟩ = α ⟨v , v⟩ = α ∥v∥2

▶ Therefore α = ⟨v ,Av⟩ / ∥v∥2 is also real

Corollary

A real symmetric matrix is diagonalizable by an orthogonal matrix.
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Quadratic form

▶ For A ∈MN(R) and x ∈ RN , inner product ⟨x ,Ax⟩ is called
quadratic form

▶ Since ⟨x ,Ax⟩ is scalar, we have ⟨x ,Ax⟩ = ⟨Ax , x⟩ = ⟨x ,A′x⟩
▶ Hence

⟨x ,Ax⟩ = 1

2
(⟨x ,Ax⟩+ ⟨Ax , x⟩) =

〈
x ,

(
A+ A′

2

)
x

〉
,

so without loss of generality we may assume A is symmetric

▶ We say A is positive semidefinite (psd) if ⟨x ,Ax⟩ ≥ 0 for all x

▶ We say A is positive definite (pd) if ⟨x ,Ax⟩ > 0 for all x ̸= 0

▶ Negative definite/semidefinite defined analogously
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Characterization of positive (semi)definite matrices

Proposition

A real symmetric matrix is positive semidefinite (definite) if and
only if all eigenvalues are nonnegative (positive).

Proof.
▶ We can take orthogonal matrix P such that

P ′AP = diag[α1, . . . , αN ]

▶ For any x , let y = P ′x ; since PP ′ = I , we have

⟨x ,Ax⟩ = x ′Ax = x ′PP ′APP ′x

= y ′ diag[α1, . . . , αN ]y =
N∑

n=1

αny
2
n

▶ Last expression is nonnegative (positive) for all x (hence for
all y) if and only if all αn’s are nonnegative (positive)
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Characterization using principal minors

▶ For square A, determinant of matrix obtained by keeping first
k rows and columns of A is called k-th principal minor

▶ For example, if A = (amn) is N × N, first principal minor is
a11, second principal minor is a11a22 − a12a21, and N-th
principal minor is |A|, etc.

Proposition

A real symmetric matrix is positive definite if and only if its
principal minors are all positive.

Proof.
By induction on N
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Second-order optimality condition

▶ When we discussed multi-variable optimization, we only
considered first-order condition

▶ This is because we need matrices for second-order condition

▶ Let U ⊂ RN be open and f : U → R be C 2

▶ Fix some a ∈ U, let x ∈ U be sufficiently close to a, and
define g : [0, 1]→ R by g(t) = f (a+ t(x − a))

▶ Then g(0) = f (a) and g(1) = f (x), so applying chain rule
and Taylor, get

f (x) = f (a) + ⟨∇f (a), x − a⟩+ 1

2

〈
x − a,∇2f (ξ)(x − a)

〉
,

where ξ = (1− θ)a+ θx for some 0 < θ < 1

▶ ∇2f =
(

∂2f
∂xm∂xn

)
is matrix of second partial derivatives of f ,

known as Hessian
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Second-order optimality condition

Proposition

Let U ⊂ RN be open and f : U → R be C 2. Then:

1. If x̄ ∈ U is a local minimum, then ∇f (x̄) = 0 and ∇2f (x̄) is
positive semidefinite.

2. If ∇f (x̄) = 0 and ∇2f (x̄) is positive definite, then x̄ is a strict
local minimum.
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Proof of necessity

▶ Let x̄ be a local minimum; by FOC, we have ∇f (x̄) = 0

▶ Take any v ∈ RN ; then for small enough t > 0, letting a = x̄
and x = a+ tv in Taylor, we obtain

f (x̄) ≤ f (x) = f (x̄) + t ⟨∇f (x̄), v⟩+ 1

2
t2
〈
v ,∇2f (x̄ + θtv)v

〉
=⇒ 0 ≤

〈
v ,∇2f (x̄ + θtv)v

〉
▶ Letting t → 0 and noting that f is C 2, we obtain〈

v ,∇2f (x̄)v
〉
≥ 0, so ∇2f (x̄) is psd
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Proof of sufficiency

▶ Suppose ∇f (x̄) = 0 and ∇2f (x̄) is pd

▶ Since determinant of matrix is continuous in its entries, signs
of principal minors of ∇2f (x) remain same if x is sufficiently
close to x̄

▶ Hence ∇2f (x) is pd in neighborhood of x̄

▶ Let ∥v∥ = 1 and x = x̄ + tv for sufficiently small t > 0; by
Taylor,

f (x) = f (x̄) + t ⟨∇f (x̄), v⟩+ 1

2
t2
〈
v ,∇2f (x̄ + θtv)v

〉
= f (x̄) +

1

2
t2
〈
v ,∇2f (x̄ + θtv)v

〉
> f (x̄),

so x̄ is local minimum
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Matrix norm

▶ SinceMN(R) (set of N × N matrices) can be viewed as RN2
,

we may use norms to measure sizes of matrices

▶ But distinctive property of matrices is that they can be
multiplied

▶ We define matrix norm as follows

1. (Nonnegativity) ∥A∥ ≥ 0, with equality if and only if A = 0,
2. (Positive homogeneity) ∥αA∥ = |α| ∥A∥,
3. (Triangle inequality) ∥A+ B∥ ≤ ∥A∥+ ∥B∥,
4. (Submultiplicativity) ∥AB∥ ≤ ∥A∥ ∥B∥

▶ When submultiplicativity is dropped, we call ∥·∥ vector norm
▶ For any norm ∥·∥ on RN , we can define operator norm on
MN(R) as follows
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Operator norm

Proposition

For any norm ∥·∥ on RN , ∥A∥ := supx ̸=0 ∥Ax∥ / ∥x∥ is matrix norm
onMN(R).

Proof.
▶ Nonnegativity and positive homogeneity easy

▶ Triangle inequality: Note that ∥Ax∥ ≤ ∥A∥ ∥x∥ for all x , so

∥(A+ B)x∥ = ∥Ax + Bx∥ ≤ ∥Ax∥+∥Bx∥ ≤ (∥A∥+∥B∥) ∥x∥

▶ Dividing both sides by ∥x∥ and taking supremum, we obtain
∥A+ B∥ ≤ ∥A∥+ ∥B∥

▶ Submultiplicativity: For all x , we have

∥ABx∥ = ∥A(Bx)∥ ≤ ∥A∥ ∥Bx∥ ≤ ∥A∥ ∥B∥ ∥x∥

▶ Dividing both sides by ∥x∥ and taking supremum, we obtain
∥AB∥ ≤ ∥A∥ ∥B∥
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Example: ℓ∞ norm

▶ Let ∥·∥ denote ℓ∞ norm and A = (amn)

▶ Then

∥Ax∥ = max
m

∣∣∣∣∣
N∑

n=1

amnxn

∣∣∣∣∣
▶ Taking maximum over all x with ∥x∥ = maxn |xn| = 1, we get

∥A∥ = max
m

N∑
n=1

|amn|
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Spectral radius

▶ Let A ∈MN(C)
▶ Set of eigenvalues {αn}Nn=1 is called spectrum of A

▶ Largest absolute value of all eigenvalues,

ρ(A) := max
n
|αn| ,

is called spectral radius

▶ As we shall see below, spectral radius is important measure of
matrix
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Convergence of matrix power

Proposition

Let A ∈MN(C). Then limk→∞ Ak = 0 if and only if ρ(A) < 1.

Proof of necessity.

▶ By Schur, we may assume that A is upper triangular; then
diagonal entries of A are eigenvalues

▶ If Ak → 0, then αk → 0 for all eigenvalues, so |α| < 1 for all
α and ρ(A) < 1
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Proof of sufficiency

▶ Conversely, suppose A is upper triangular and r := ρ(A) < 1

▶ Write A = D + T , where D is diagonal and T is upper
triangular with zero diagonal entries

▶ Then |A| = |D|+ |T | ≤ rI + |T | entrywise
▶ Since T upper triangular with zero diagonal entries, we can

easily check |T |N = 0

▶ Hence by binomial theorem, for k ≥ N we have

0 ≤
∣∣∣Ak
∣∣∣ ≤ |A|k ≤ (rI + |T |)k

=
k∑

l=0

(
k

l

)
rk−l |T |l =

N−1∑
l=0

(
k

l

)
rk−l |T |l ,

which tends to 0 as k →∞ because 0 ≤ r < 1 and
(k
l

)
is

polynomial of k with degree at most N − 1
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Gelfand spectral radius formula

Theorem (Gelfand spectral radius formula)

Let ∥·∥ be any matrix norm onMN(C). Then ρ(A) ≤
∥∥Ak

∥∥1/k
and ρ(A) = limk→∞

∥∥Ak
∥∥1/k .

Proof of first statement.
▶ If Av = αv , then Akv = αkv for all k

▶ For V = (v , . . . , v), we have AkV = αkV , so

|α|k ∥V ∥ =
∥∥∥AkV

∥∥∥ ≤ ∥∥∥Ak
∥∥∥ ∥V ∥ =⇒ |α|k ≤

∥∥∥Ak
∥∥∥

▶ Since α is any eigenvalue, ρ(A) ≤
∥∥Ak

∥∥1/k
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Proof of second statement

▶ Take any ϵ > 0 and let Ã = 1
ρ(A)+ϵA

▶ Then ρ(Ã) = ρ(A)
ρ(A)+ϵ < 1, so limk→∞ Ãk = 0

▶ Therefore
∥∥∥Ãk

∥∥∥ < 1 for large enough k , and hence∥∥Ak
∥∥ ≤ (ρ(A) + ϵ)k

▶ Taking k-th root, letting k →∞, and ϵ ↓ 0, we obtain

lim supk→∞
∥∥Ak

∥∥1/k ≤ ρ(A)
▶ Since ρ(A) ≤

∥∥Ak
∥∥1/k , it follows that

ρ(A) = limk→∞
∥∥Ak

∥∥1/k
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Matrix series

▶ By Gelfand, “size” of matrix power Ak is approximately ρ(A)k

▶ Suppose power series f (z) =
∑∞

k=0 akz
k converges for |z | < r

▶ Then matrix series

f (A) =
∞∑
k=0

akA
k

well defined if ρ(A) < r

▶ Example:

exp(A) :=
∞∑
k=0

1

k!
Ak
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Important points

▶ Eigenvalue and eigenvector: Av = αv

▶ Any matrix can be upper triangularized by unitary matrix
(Schur)

▶ Real symmetric matrix can be diagonalized by orthogonal
matrix

▶ Real symmetric matrix is positive definite if and only if all
eigenvalues positive, related to second-order optimality
condition

▶ Gelfand spectral radius formula lim
∥∥Ak

∥∥1/k = ρ(A), so matrix
power Ak behaves like ρ(A)k
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Chapter 7

Metric Space and Contraction
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Metric space

Completeness and Banach space

Contraction mapping theorem

Blackwell’s sufficient condition

Perov contraction

Implicit function theorem
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Metric space

▶ Recall that normed space is vector space V equipped with
norm ∥·∥

▶ For any two elements v1, v2 of V, we may define distance by

d(v1, v2) := ∥v1 − v2∥

▶ Using properties of norm, we can easily show that d satisfies:

1. (Nonnegativity) d(v1, v2) ≥ 0, with equality if and only if
v1 = v2,

2. (Symmetry) d(v1, v2) = d(v2, v1),
3. (Triangle inequality) d(v1, v3) ≤ d(v1, v2) + d(v2, v3)

▶ In general, if V is equipped with d : V × V→ R satisfying
above properties, we say (V, d) is metric space
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Space of bounded functions

▶ Let X ⊂ RN be nonempty and V be space of bounded
functions on X :

V = {v : X → R : v is bounded}

▶ For v ∈ V, define
∥v∥ = sup

x∈X
|v(x)|

▶ Then (V, ∥·∥) is normed space

▶ ∥·∥ is called supremum norm or sup norm
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Proof

▶ Since v ∈ V is bounded, clearly 0 ≤ ∥v∥ <∞; if ∥v∥ = 0,
then |v(x)| = 0 for all x ∈ X , so v = 0

▶ If α ∈ R and v ∈ V, then

∥αv∥ = sup
x∈X
|αv(x)| = |α| sup

x∈X
|v(x)| = |α| ∥v∥

▶ Noting that |v(x)| ≤ ∥v∥ for all x ∈ X , for v1, v2 ∈ V, we have

|v1(x) + v2(x)| ≤ |v1(x)|+ |v2(x)| ≤ ∥v1∥+ ∥v2∥

▶ Taking supremum of left-hand side over x ∈ X , we obtain

∥v1 + v2∥ ≤ ∥v1∥+ ∥v2∥
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Examples

▶ Let V be space of bounded functions on X

▶ For any subset V1 ⊂ V and v1, v2 ∈ V1, define sup distance

d(v1, v2) = ∥v1 − v2∥

▶ Then (V1, d) is metric space
▶ Examples:

▶ Set of bounded increasing functions
▶ Set of bounded convex functions
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Topology on metric spaces

▶ If (V, d) is metric space, define (open) ball with center v ∈ V
and radius ϵ > 0 by

Bϵ(v) := {w ∈ V : d(v ,w) < ϵ}

▶ Then we may define convergence of sequences in V and
topology (open sets) of V exactly as RN

▶ For instance, U ⊂ V is open if and only if for any v ∈ U, we
can take ϵ > 0 such that Bϵ(v) ⊂ U

▶ Similarly, a sequence {vk}∞k=1 ⊂ V converges to v ∈ V if and
only if d(vk , v)→ 0 as k →∞

▶ All previous results for RN generalize to metric spaces, with
identical proofs
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Complete metric space and Banach space

▶ Let (V, d) be metric space

▶ We say that sequence {vk}∞k=1 ⊂ V is Cauchy if

(∀ϵ > 0)(∃K > 0)(∀k , l ≥ K ) d(vk , vl) < ϵ

▶ Can show Cauchy sequences in RN are convergent, called
completeness of RN

▶ When metric space (V, d) is complete (Cauchy sequences are
convergent), we call it complete metric space

▶ Normed space (V , ·) can be viewed as metric space with sup
distance d(v1, v2) = ∥v1 − v2∥; complete normed spaces are
called Banach spaces
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Space of bounded functions is Banach

Proposition

The normed space (V, ∥·∥) of bounded functions is complete and
hence Banach.

Proof.
▶ Let {vk}∞k=1 ⊂ V be Cauchy; since |v(x)| ≤ ∥v∥ for all x ,

(∀ϵ > 0)(∃K > 0)(∀k , l ≥ K )(∀x ∈ X ) |vk(x)− vl(x)| < ϵ

▶ Therefore for fixed x ∈ X , {vk(x)} is Cauchy in R and
convergent; let v(x) be its limit

▶ Letting l →∞, we obtain

(∀ϵ > 0)(∃K > 0)(∀k ≥ K )(∀x ∈ X ) |vk(x)− v(x)| ≤ ϵ

▶ Taking supremum over x ∈ X , we obtain

(∀ϵ > 0)(∃K > 0)(∀k ≥ K ) ∥vk − v∥ ≤ ϵ
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Closed subsets of complete metric space

▶ Let (V, d) be complete metric space

▶ Let V1 ⊂ V be closed

▶ Then clearly (V1, d) is complete metric space
▶ Examples:

▶ Set of bounded increasing functions
▶ Set of bounded convex functions

▶ Note: above examples are complete metric spaces but not
Banach (because increasing or convex functions do not form
vector space)
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Space of bounded continuous functions is Banach

Corollary

The space of bounded continuous functions is Banach. Any closed
subset of it is a complete metric space.

Proof.
▶ Let X ⊂ RN and bX be Banach space of bounded functions

on X with sup norm ∥·∥
▶ Let bcX be space of bounded continuous functions on X ,

which is normed space; let {vk}∞k=1 be Cauchy in bcX

▶ Then it is Cauchy in bX and converges to some v ; thus
suffices to show v is continuous

▶ For any ϵ > 0, since vk → v in bX , we can take K such that
∥v − vk∥ < ϵ/3 for k > K
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Proof

▶ Fix such k and take any x ∈ X ; by continuity, we can take
neighborhood U of x such that |vk(y)− vk(x)| < ϵ/3 for
y ∈ U

▶ Then

|v(y)− v(x)|
= |v(y)− vk(y) + vk(y)− vk(x) + vk(x)− v(x)|
≤ |v(y)− vk(y)|+ |vk(y)− vk(x)|+ |vk(x)− v(x)|

≤ ∥v − vk∥+
ϵ

3
+ ∥v − vk∥ < ϵ,

so v is continuous
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Contraction

▶ In general, if V is set and T is function from V to itself
(T : V→ V), we say that T is self map or operator

▶ If T is self map on V and v ∈ V satisfies T (v) = v , we say v
is fixed point of T

▶ For metric space (V, d), we say T : V→ V is contraction with
modulus β if β ∈ [0, 1) and

d(T (v1),T (v2)) ≤ βd(v1, v2)

for all v1, v2 ∈ V

▶ Intuitively, when we apply T , distance between two points
shrinks by factor β < 1
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Contraction mapping theorem

Theorem (Contraction mapping theorem)

Let (V, d) be a complete metric space and T : V→ V be a
contraction with modulus β ∈ [0, 1). Then

1. T has a unique fixed point v∗ ∈ V,

2. for any v0 ∈ V, we have v∗ = limk→∞ T k(v0), and

3. the approximation error d(T k(v0), v
∗) has order of magnitude

βk .

▶ Contraction mapping theorem is also called Banach fixed
point theorem
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Proof
▶ By definition, contraction is (uniformly) continuous
▶ Take any v0 ∈ V and define vk = T (vk−1) for k ≥ 1
▶ Since T is contraction, we have

d(vk , vk−1) = d(T (vk−1),T (vk−2)) ≤ βd(vk−1, vk−2)

≤ · · · ≤ βk−1d(v1, v0)

▶ If k > l ≥ K , by triangle inequality we have

d(vk , vl) ≤ d(vk , vk−1) + · · ·+ d(vl+1, vl)

≤ (βk−1 + · · ·+ βl)d(v1, v0)

=
βl − βk

1− β
d(v1, v0) ≤

βl

1− β
d(v1, v0) ≤

βK

1− β
d(v1, v0)

▶ Since 0 ≤ β < 1, we have βK → 0 as K →∞, so {vk} is
Cauchy and v∗ = limk→∞ vk exists

▶ Since d(T (vk), vk) = d(vk+1, vk) ≤ βkd(v1, v0), letting
k →∞ and using the continuity of T , we get
d(T (v∗), v∗) = 0, so T (v∗) = v∗
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Proof

▶ To show uniqueness, suppose v1, v2 are fixed points of T , so
T (v1) = v1 and T (v2) = v2

▶ Since T is contraction, we have

0 ≤ d(v1, v2) = d(T (v1),T (v2)) ≤ βd(v1, v2)
=⇒ (β − 1)d(v1, v2) ≥ 0

▶ Since β < 1, it must be d(v1, v2) = 0 and hence v1 = v2
▶ Finally, take any v0 and let vk = T k(v0); then

d(vk , v
∗) = d(T (vk−1),T (v∗)) ≤ βd(vk−1, v

∗)

≤ · · · ≤ βkd(v0, v∗)

▶ Letting k →∞ we have vk → v∗, and error has order of
magnitude βk
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Blackwell’s sufficient condition

Proposition (Blackwell’s sufficient condition)

Let X be a set and V be a space of functions on X with the
following properties:

(a) (Upward shift) For v ∈ V and c ∈ R+, we have v + c ∈ V.

(b) (Bounded difference) For all v1, v2 ∈ V, we have

d(v1, v2) := sup
x∈X
|v1(x)− v2(x)| <∞.

Suppose that (V, d) is a complete metric space and T : V→ V
satisfies

1. (Monotonicity) v1 ≤ v2 implies Tv1 ≤ Tv2,

2. (Discounting) there exists β ∈ [0, 1) such that, for all v ∈ V
and c ∈ R+, we have T (v + c) ≤ Tv + βc .

Then T is a contraction with modulus β.
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Proof

▶ Take any v1, v2 ∈ V and let c = d(v1, v2) ≥ 0

▶ For any x ∈ X , we have

v1(x) = v1(x)− v2(x) + v2(x) ≤ v2(x) + c ,

so v1 ≤ v2 + c ∈ V by upward shift property

▶ Using monotonicity and discounting, we obtain

Tv1 ≤ T (v2 + c) ≤ Tv2 + βc =⇒ Tv1 − Tv2 ≤ βc

▶ Interchanging role of v1, v2, we obtain Tv2 − Tv1 ≤ βc
▶ Thus |(Tv1)(x)− (Tv2)(x)| ≤ βd(v1, v2) for any x ∈ X

▶ Taking supremum over x , we obtain d(Tv1,Tv2) ≤ βd(v1, v2),
so T is contraction with modulus β
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Vector-valued metric space

▶ Let V be set, I ∈ N, and d : V × V→ RI

▶ We say d is vector-valued metric if:

1. (Nonnegativity) d(v1, v2) ≥ 0, with equality if and only if
v1 = v2,

2. (Symmetry) d(v1, v2) = d(v2, v1),

3. (Triangle inequality) d(v1, v3) ≤ d(v1, v2) + d(v2, v3)

▶ In conditions 1 and 3, note that for a = (a1, . . . , aI ) ∈ RI and
b = (b1, . . . , bI ) ∈ RI , we write a ≤ b if and only if ai ≤ bi for
all i

▶ Set V endowed with vector-valued metric d is called
vector-valued metric space

▶ Obviously, I = 1 corresponds to metric space
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Complete vector-valued metric space

▶ Let ∥·∥ denote supremum norm on RI , so ∥a∥ = maxi |ai | for
a = (a1, . . . , aI ) ∈ RI

▶ Note that supremum norm is monotone: if a, b ∈ RI and
0 ≤ a ≤ b, then ∥a∥ = maxi ai ≤ maxi bi = ∥b∥

▶ If (V, d) is vector-valued metric space and we define
∥d∥ : V × V→ R by ∥d∥ (v1, v2) = ∥d(v1, v2)∥, then (V, ∥d∥)
is metric space in usual sense

▶ To see why, nonnegativity and symmetry are obvious, and

∥d∥ (v1, v3)
= ∥d(v1, v3)∥ ≤ ∥d(v1, v2) + d(v2, v3)∥
≤ ∥d(v1, v2)∥+ ∥d(v2, v3)∥ = ∥d∥ (v1, v2) + ∥d∥ (v2, v3)

▶ We say (V, d) is complete if (V, ∥d∥) is complete
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Perov contraction

▶ Let ∥·∥ be supremum norm as well as operator norm for I × I
matrices

▶ Recall that for square matrix A, spectral radius ρ(A) is largest
absolute value of all eigenvalues

▶ Let (V, d) be vector-valued metric space; we say T : V→ V is
Perov contraction with coefficient matrix B ≥ 0 if ρ(B) < 1
and

d(Tv1,Tv2) ≤ Bd(v1, v2)

for all v1, v2 ∈ V

▶ Here B ≥ 0 means B = (bij) is nonnegative: bij ≥ 0 for all i , j
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Perov contraction theorem

Theorem (Perov contraction theorem)

Let (V, d) be a complete vector-valued metric space and
T : V→ V be a Perov contraction with coefficient matrix B ≥ 0.
Then

1. T has a unique fixed point v∗ ∈ V,

2. for any v0 ∈ V, we have v∗ = limk→∞ T kv0, and

3. for any β ∈ (ρ(B), 1), the approximation error d(T kv0, v
∗)

has order of magnitude βk .

Proof.
▶ Almost identical to proof of contraction mapping theorem

▶ Monotonicity of sup norm ∥·∥ and Gelfand spectral radius

formula ρ(B) = limk→∞
∥∥Bk

∥∥1/k play key role
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Sufficient condition for Perov contraction

Proposition

Let X be a set and V be a space of functions v : X → RI with the
following properties:

(a) (Upward shift) For v ∈ V and c ∈ RI
+, we have v + c ∈ V.

(b) (Bounded difference) For all u, v ∈ V and i , we have

di (u, v) := sup
x∈X
|ui (x)− vi (x)| <∞.

Let d = (d1, . . . , dI ). Suppose that (V, d) is a complete
vector-valued metric space and T : V→ V satisfies

1. (Monotonicity) u ≤ v implies Tu ≤ Tv ,

2. (Discounting) there exists a nonnegative matrix B ∈MI (R)
with ρ(B) < 1 such that, for all v ∈ V and c ∈ RI

+, we have
T (v + c) ≤ Tv + Bc .

Then T is a Perov contraction with coefficient matrix B.
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Comparative statics

▶ When solving economic problems, we often encounter
equations like f (x , y) = 0, where y is endogenous variable and
x is exogenous variable

▶ Oftentimes y does not have explicit expression, but we might
be interested in how y changes with x

▶ Such exercise is called comparative statics

▶ Implicit function theorem allows us to compute derivative
dy/dx
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Implicit function theorem

Theorem (Implicit function theorem)

Let f : RM × RN → RN be C 1. If f (x0, y0) = 0 and Dy f (x0, y0) is
invertible, then there exist neighborhoods U of x0 and V of y0 and
a function g : U → V such that

1. for all x ∈ U, f (x , y) = 0 ⇐⇒ y = g(x),

2. g is C 1, and

3. Dxg(x) = −[Dy f (x , y)]
−1Dx f (x , y), where y = g(x).

Proof.
▶ Proof is application of inverse function theorem

▶ Proof of inverse function theorem is hard and uses contraction
mapping theorem
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Remembering implicit function theorem

▶ No need to remember precise statement of implicit function
theorem, but important to know how to apply

▶ Simple way to remember assumption and statement of
implicit function theorem: start from equation f (x , y) = 0

▶ Set y = g(x), differentiate f (x , g(x)) = 0 applying chain rule,
and derive

Dx f + Dy fDxg = 0 ⇐⇒ Dxg = −[Dy f ]
−1Dx f

▶ For this equation to be meaningful, we need Dy f to be
invertible, which is exactly assumption

©Alexis Akira Toda Instruction slides for Essential Mathematics for Economics



Chapter 8

Nonnegative Matrices
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Introduction

Markov chain

Perron’s theorem

Irreducible nonnegative matrices
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Model of employment-unemployment

▶ Suppose worker can be either employed or unemployed
▶ If employed, worker becomes unemployed with probability

p ∈ (0, 1) next period
▶ If unemployed, worker becomes employed with probability

q ∈ (0, 1) next period

▶ Let xt = (et , ut) be (row) probability vector of being employed
and unemployed at time t, where ut = 1− et ; then

et+1 = (1− p)et + qut ,

ut+1 = pet + (1− q)ut

▶ Collecting these equations into vector, we obtain xt+1 = xtP,
where

P =

[
1− p p
q 1− q

]

©Alexis Akira Toda Instruction slides for Essential Mathematics for Economics



Model of employment-unemployment
▶ Since xt = x0P

t , suffices to know behavior of Pt as t →∞
▶ Characteristic polynomial of P is

ΦP(x) = |xI − P| =
∣∣∣∣x − 1 + p −p
−q x − 1 + q

∣∣∣∣
= x2 + (p + q − 2)x + 1− p − q

= (x − 1)(x + p + q − 1)

▶ Since eigenvalues are 1 and 1− p − q ∈ (−1, 1), can
diagonalize to compute Pt

▶ We omit details, but easy to show

Pt → 1

p + q

[
q p
q p

]
and hence xt → 1

p+q (q, p), so worker eventually unemployed

with probability p
p+q
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Markov process

▶ When random variable is indexed by time, we call stochastic
process

▶ For stochastic process {Xt}∞t=0, when distribution of Xt

conditional on past information Xt−1,Xt−2, . . . depends only
on most recent past (Xt−1), we say {Xt} is Markov process

▶ For example, vector autoregression (VAR)

Xt = AXt−1 + ut

(where A is a matrix and the shock ut is iid over time) is
Markov process
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Markov chain

▶ When Markov process {Xt} takes on finitely many values, it is
called finite-state Markov chain

▶ Let {Xt} be (finite-state) Markov chain and n = 1, . . . ,N
index values {xn}Nn=1 process can take

▶ We write Xt = xn when state at t is n

▶ Since there are finitely many states, distribution of Xt

conditional on Xt−1 is multinomial

▶ Hence Markov chain is completely characterized by transition
probability (stochastic) matrix P = (pnn′), where pnn′ is
probability of transitioning from state n to n′

▶ Clearly, we have pnn′ ≥ 0 and
∑N

n′=1 pnn′ = 1
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Unconditional distribution of Markov chain

▶ Let {Xt} be Markov chain with transition probability matrix P

▶ If X0 distributed according to distribution µ = (µ1, . . . , µN),
what is distribution of Xt?

▶ Using Markov property,

Pr(X1 = n′) =
N∑

n=1

Pr(X0 = n)pnn′ =
N∑

n=1

µnpnn′

▶ Collecting into vector, distribution of X1 is µP

▶ By induction, distribution of Xt is µP
t

▶ What is long run behavior as t →∞?
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Invariant distribution of Markov chain

Theorem
Let P = (pnn′) be a stochastic matrix such that pnn′ > 0 for all
n, n′. Then there exists a unique invariant distribution π such that
π = πP, and limt→∞ µPt = π for all initial distribution µ.

Proof.
▶ Let ∆ =

{
x ∈ RN

+ :
∑N

n=1 xn = 1
}
be set of all multinomial

distributions

▶ Since ∆ ⊂ RN is closed and RN is complete metric space with
ℓ1 norm, ∆ is complete metric space

▶ View x ∈ RN as row vector and define T : ∆→ RN by
T (x) = xP

▶ Let us show T∆ ⊂ ∆
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Proof

▶ Note that if x ∈ ∆, since pnn′ ≥ 0 for all n, n′, we have xP ≥ 0

▶ Since
∑N

n′=1 pnn′ = 1, we have

N∑
n′=1

(xP)n′ =
N∑

n′=1

N∑
n=1

xnpnn′ =
N∑

n=1

xn

N∑
n′=1

pnn′ =
N∑

n=1

xn = 1,

so T (x) = xP ∈ ∆

▶ Next we show T is contraction

▶ Since P ≫ 0, we can take ϵ > 0 such that pnn′ − ϵ > 0 for all
n, n′

▶ Let qnn′ =
pnn′−ϵ
1−Nϵ > 0 and Q = (qnn′)

▶ Since
∑

n′ pnn′ = 1, we obtain
∑

n′ qnn′ = 1, so Q is also
stochastic matrix; letting J be matrix with all entries equal to
1, we have P = (1− Nϵ)Q + ϵJ
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Proof
▶ For µ, ν ∈ ∆, we have

µP − νP = (1− Nϵ)(µQ − νQ) + ϵ(µJ − νJ)

▶ Since all entries of J are 1 and vectors µ, ν sum to 1, we have
µJ = νJ = 1 = (1, . . . , 1)

▶ Therefore letting 0 < β = 1− Nϵ < 1, we get

∥T (µ)− T (ν)∥ = ∥µP − νP∥ = β ∥µQ − νQ∥

= β

N∑
n′=1

|(µQ)n′ − (νQ)n′ | = β

N∑
n′=1

∣∣∣∣∣
N∑

n=1

(µn − νn)qnn′

∣∣∣∣∣
≤ β

N∑
n′=1

N∑
n=1

|µn − νn| qnn′ = β

N∑
n=1

|µn − νn|
N∑

n′=1

qnn′

= β

N∑
n=1

|µn − νn| = β ∥µ− ν∥

and T is contraction
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Nonnegative matrices

▶ Recall convention for vector inequalities: for real matrices
A = (amn) and B = (bmn) of the same size, we write A ≤ B
(A≪ B) if amn ≤ bmn (amn < bmn) for all m, n

▶ Reverse inequalities ≥,≫ are defined analogously

▶ If A ≥ 0 (A≫ 0), we say A is nonnegative (positive)

▶ For example, stochastic matrices are nonnegative

▶ Nonnegative matrices often appear in economics, for instance
input-output analysis
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Spectral radius of nonnegative matrices

Proposition

For A,B ∈MN(C), if 0 ≤ |A| ≤ B, then ρ(A) ≤ ρ(|A|) ≤ ρ(B).

Proof.
▶ Let ∥·∥ denote supremum norm on CN as well as operator

norm induced by it

▶ Then by triangle inequality for complex numbers, we have∥∥Ak
∥∥ ≤ ∥∥∥|A|k∥∥∥ ≤ ∥∥Bk

∥∥
▶ Taking 1/k-th power and letting k →∞, by Gelfand spectral

radius formula, we obtain ρ(A) ≤ ρ(|A|) ≤ ρ(B)
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Perron’s theorem

Theorem (Perron’s theorem)

If A ∈MN(R) is positive, the following statements are true.

1. ρ(A) > 0, which is an eigenvalue of A (called the Perron root.

2. There exist x , y ≫ 0 (called the right and left Perron vectors)
such that Ax = ρ(A)x and y ′A = ρ(A)y ′.

3. The vectors x , y are unique up to scalar multiplication (in
CN).

4. If x , y are chosen such that y ′x = 1, then
limk→∞[ 1

ρ(A)A]
k = xy ′.

▶ Generalization for when A = P is stochastic matrix
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Proof

▶ Let α = ρ(A), λ be eigenvalue of A with |λ| = α, and
u = (u1, . . . , uN)

′ ̸= 0 be corresponding eigenvector

▶ Let v = (|u1| , . . . , |uN |)′ > 0 be vector of absolute values

▶ Since Au = λu, taking absolute value of each entry and
noting that A is positive, we obtain

α |um| =

∣∣∣∣∣
N∑

n=1

amnun

∣∣∣∣∣ ≤
N∑

n=1

amn |un| ⇐⇒ αv ≤ Av

▶ To show Av = αv , suppose to contrary w := Av > αv

▶ Then w − αv > 0, so multiplying A from left and noting that
A≫ 0, we obtain

A(w − αv)≫ 0 ⇐⇒ Aw ≫ αAv = αw
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Proof

▶ Since A is finite-dimensional, we can take ϵ > 0 such that
Aw ≥ (1 + ϵ)αw

▶ Multiplying both sides from left by Ak−1, we obtain

Akw ≥ (1 + ϵ)αAk−1w ≥ · · · ≥ [(1 + ϵ)α]kw

▶ Let ∥·∥ be sup norm as well as operator norm induced by it;
then∥∥∥Ak

∥∥∥ ∥w∥ ≥ ∥∥∥Akw
∥∥∥ ≥ [(1+ϵ)α]k ∥w∥ =⇒

∥∥∥Ak
∥∥∥1/k ≥ (1+ϵ)α

▶ Letting k →∞, by Gelfand, we obtain α ≥ (1 + ϵ)α, which is
contradiction

▶ Therefore Av = αv , so A has positive eigenvector
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Proof

▶ Let x = v ≫ 0 be right Perron vector of A

▶ Then
∑N

n=1 amnxn = αxm
▶ Define D = diag[x1, . . . , xN ] and P = 1

αD
−1AD ≫ 0

▶ Comparing (m, n) entry, we obtain pmn = amnxn
αxm

, so

N∑
n=1

pmn =
N∑

n=1

amnxn
αxm

= 1

▶ Thus P is positive stochastic matrix, and rest of proof follows
from previous case
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Irreducible nonnegative matrices

▶ Perron’s theorem generalizes to irreducible nonnegative
matrices

▶ Irreducibility is best understood with stochastic matrices

▶ Let {Xt}∞t=0 be finite-state Markov chain with state space
{x1, . . . , xN} and transition probability matrix P = (pmn)

▶ If we write Pk = (p
(k)
mn) for k = 1, 2, . . . , we obtain

Pr(Xt+k = xn | Xt = xm) = p
(k)
mn

▶ We say Markov chain is irreducible if for each (m, n) pair, we

have p
(k)
mn > 0 for some k

▶ In other words, irreducibility means that starting from any
state m, we may transition to any other state n some time in
future with positive probability
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Directed graph and adjacency matrix

▶ More generally, irreducibility is related to directed graphs or
networks

▶ Let {1, . . . ,N} be finite set, and for each (m, n) pair, suppose
we can determine whether some property holds or not;
example:
▶ “person m likes person n”,
▶ “chapter m is required to understand chapter n”,
▶ “in Markov chain, it is possible to transition from state m to n

in one step”

▶ For each (m, n) pair, define amn = 1 (0) if property holds
(does not hold)

▶ Mathematically, directed graph is defined by adjacency matrix
A = (amn) such that amn ∈ {0, 1} for all m, n
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Example: four seasons

▶ Let {1, 2, 3, 4} denote four seasons (spring, summer, fall,
winter)

▶ Let amn = 1 if season n immediately follows season m, and set
amn = 0 otherwise

▶ Thus adjacency matrix and graph are

A =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0



1 2

34
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Example: animal crossing river
▶ Animal randomly crosses a river

▶ Conditional on being on left (right) side of river, it attempts
to cross with probability p (q)

▶ Each time animal crosses river, it drowns with probability r

▶ Let {L,R,D} denote states left, right, and drown

▶ Transition probability matrix P and graph are

P =

 1− p p(1− r) pr
q(1− r) 1− q qr

0 0 1



L R

D

1− p 1− q

p(1− r)

q(1− r)

pr qr
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Equivalent characterizations of irreducibility

▶ For A ∈MN(C), we say A = (amn) is irreducible if for all
m ̸= n, there exist k ∈ N and indices m = i0, i1, . . . , ik = n
such that ail il+1

̸= 0 for all l = 0, . . . , k

Proposition

For A ∈MN(C), the following conditions are equivalent.

1. The complex matrix A is irreducible.

2. The nonnegative matrix |A| is irreducible.

3. For all m ̸= n, there exist k ∈ {1, . . . ,N − 1} and indices
m = i0 ̸= i1 ̸= · · · ̸= ik = n such that ail il+1

̸= 0 for all
l = 0, . . . , k .

4.
∑N−1

k=0 |A|
k ≫ 0.

5. (I + |A|)N−1 ≫ 0.
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Perron-Frobenius theorem

Theorem (Perron-Frobenius theorem)

If A ∈MN(R) is nonnegative and irreducible, the following
statements are true.

1. ρ(A) is an eigenvalue of A (called the Perron root).

2. There exist x , y ≫ 0 (called the right and left Perron vectors)
such that Ax = ρ(A)x and y ′A = ρ(A)y ′.

3. The vectors x , y are unique up to scalar multiplication (in
CN).

▶ Many interesting applications in economics
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Chapter 9

Convex Sets
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Convex sets

Convex hull

Hyperplanes and half spaces

Separation of convex sets

Cone and dual cone
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Convex sets

▶ We say C ⊂ RN is convex if line segment joining any two
points in C is entirely contained in C

▶ More formally, C is convex if for any x , y ∈ C and α ∈ [0, 1],
we have (1− α)x + αy ∈ C

x

y

(1− α)x + αy
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Examples

Rectangle Circle Ellipse Convex

Convex

Non-convex
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My favorite joke

▶ Chinese character for “convex”

▶ is not convex
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My favorite joke

▶ Chinese character for “convex”

▶ is not convex
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Convex hull

▶ Let A ⊂ RN be any set

▶ Smallest convex set that includes A is called convex hull of A
and is denoted by coA

▶ To see coA is well defined, let {Ci}i∈I be collection of all
convex sets containing A and C =

⋂
i∈I Ci

▶ For any x , y ∈ C and α ∈ [0, 1], since x , y ∈ Ci and Ci is
convex, we have (1− α)x + αy ∈ Ci

▶ Hence (1− α)x + αy ∈ C , so C is convex

▶ But clearly A ⊂ C , and C was intersection of all such convex
sets, so C is smallest convex set containing A
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Example

AA coA
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Convex combination

▶ Let xk ∈ RN for k = 1, . . . ,K

▶ Take any numbers αk for k = 1, . . . ,K such that αk ≥ 0 and∑K
k=1 αk = 1

▶ Point of form x =
∑K

k=1 αkxk is called convex combination of

{xk}Kk=1 with weights (or coefficients) {αk}Kk=1

Lemma
Let A ⊂ RN be any set. Then coA consists of all convex
combinations of points of A.

▶ Actually, in above lemma, we may set K = N + 1 when
forming convex combination (Carathéodory theorem)
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Hyplerplanes and half spaces

▶ In R2, equation of line is a1x1 + a2x2 = c

▶ In R3, equation of plane is a1x1 + a2x2 + a3x3 = c

▶ In RN , hyperplane is{
x ∈ RN : ⟨a, x⟩ = c

}
▶ Half spaces:

H+ =
{
x ∈ RN : ⟨a, x⟩ ≥ c

}
,

H− =
{
x ∈ RN : ⟨a, x⟩ ≤ c

}
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Separation of sets

▶ Let C ,D be two (not necessarily convex) sets

▶ We say that hyperplane H: ⟨a, x⟩ = c separates C ,D if
C ⊂ H− and D ⊂ H+:

x ∈ C =⇒ ⟨a, x⟩ ≤ c,

x ∈ D =⇒ ⟨a, x⟩ ≥ c.

▶ Then we call H a separating hyperplane

©Alexis Akira Toda Instruction slides for Essential Mathematics for Economics



Separation of sets

C

D

H−

H+

⟨a, x⟩ = c

a
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Separating hyperplane theorem

▶ Clearly C ,D can be separated if and only if

sup
x∈C
⟨a, x⟩ ≤ inf

x∈D
⟨a, x⟩

▶ We say C ,D can be strictly separated if

sup
x∈C
⟨a, x⟩ < inf

x∈D
⟨a, x⟩

▶ One of most important theorems applied in economics is

Theorem (Separating hyperplane theorem)

Let C ,D ⊂ RN be nonempty, convex, and C ∩ D = ∅. Then there
exists a hyperplane that separates C ,D. If in addition C ,D are
closed and one of them is bounded, then they can be strictly
separated.
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Necessity of convexity for separation

C

D
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Necessity of empty intersection for separation

C

D
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Necessity of boundedness for strict separation

C

D
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Proof of separating hyperplane theorem

Lemma
Let C ⊂ RN be nonempty, closed, and convex. Then for any
x0 ∈ RN , the minimum distance problem minx∈C ∥x − x0∥ has a
unique solution x = x̄ . Furthermore, for any x ∈ C we have
⟨x0 − x̄ , x − x̄⟩ ≤ 0.

δ

x0

x̄

x

C
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Proof of separating hyperplane theorem

Proposition

Let C ⊂ RN be nonempty and convex and x0 /∈ intC . Then there
exist 0 ̸= a ∈ RN and c ∈ R such ⟨a, x⟩ ≤ c ≤ ⟨a, x0⟩ for any
x ∈ C . If x0 /∈ clC , then the above inequalities can be made strict.

δ

x0

x̄

x

C
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Proof of separating hyperplane theorem

▶ Define set

E = C − D := {z = x − y : x ∈ C , y ∈ D}

▶ Since C ,D are nonempty and convex, so is E

▶ Since C ∩ D = ∅, we have 0 /∈ E

▶ By above Proposition, there exists a ̸= 0 such that
⟨a, z⟩ ≤ 0 = ⟨a, 0⟩ for all z ∈ E

▶ By definition of E , we have

⟨a, x − y⟩ ≤ 0 ⇐⇒ ⟨a, x⟩ ≤ ⟨a, y⟩

for all x ∈ C and y ∈ D

▶ Taking supremum over x ∈ C and infimum over y ∈ D, we
obtain claim
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Cone
▶ We say C ⊂ RN is cone if x ∈ C implies λx ∈ C for all λ > 0
▶ Graphically, ray originating from 0 and passing through x is

contained in C
▶ Example: polyhedral cone

C = cone[a1, . . . , aK ] :=

{
x =

K∑
k=1

αkak : (∀k)αk ≥ 0

}
,

where a1, . . . , aK ∈ RN

a1

a2

0

cone[a1, a2]
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Dual cone
▶ Let C ⊂ RN be any nonempty set
▶ The set

C ∗ =
{
y ∈ RN : (∀x ∈ C ) ⟨x , y⟩ ≤ 0

}
is called dual cone of C

▶ Dual cone C ∗ consists of all vectors that make obtuse angle
with any vector in C

0

C

C ∗
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Properties of dual cone

Proposition

Let ∅ ≠ C ⊂ D. Then

1. the dual cone C ∗ is a nonempty closed convex cone,

2. C ∗ ⊃ D∗, and

3. C ∗ = (coC )∗.

Proof.
▶ Clearly 0 ∈ C ∗, so C ∗ ̸= ∅
▶ If y ∈ C ∗, then by definition ⟨x , y⟩ ≤ 0 for all x ∈ C

▶ Then for any λ > 0 and x ∈ C , we have
⟨x , λy⟩ = λ ⟨x , y⟩ ≤ 0, so λy ∈ C ∗ and C ∗ is cone

▶ C ∗ is intersection of half spaces
H−
x :=

{
y ∈ RN : ⟨x , y⟩ ≤ 0

}
, so it is closed and convex
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Proof

▶ If C ⊂ D and y ∈ D∗, then ⟨x , y⟩ ≤ 0 for all x ∈ D, so in
particular for all x ∈ C ; hence y ∈ C ∗

▶ Setting D = coC , clearly C ∗ ⊃ (coC )∗

▶ To prove reverse inclusion, take any x ∈ coC ; then there
exists convex combination x =

∑K
k=1 αkxk such that xk ∈ C

for all k

▶ If y ∈ C ∗, it follows that

⟨x , y⟩ =
〈∑

αkxk , y
〉
=
∑

αk ⟨xk , y⟩ ≤ 0,

so y ∈ (coC )∗ and C ∗ ⊂ (coC )∗
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Dual dual cone

▶ Let C ∗∗ := (C ∗)∗ be dual cone of dual cone

▶ C and C ∗∗ closely related

Proposition

Let C ⊂ RN be a nonempty cone. Then C ∗∗ = cl coC .

Proof of cl coC ⊂ C ∗∗.

▶ If x ∈ C , then ⟨x , y⟩ ≤ 0 for all y ∈ C ∗; hence x ∈ C ∗∗

▶ But C ∗∗ = (C ∗)∗ is closed convex cone, so cl coC ⊂ C ∗∗
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Proof of cl coC ⊃ C ∗∗

▶ If x /∈ cl coC , by separating hyperplane theorem we can take
a ̸= 0 and c ̸= 0 such that

sup
z∈cl coC

⟨a, z⟩ < c < ⟨a, x⟩

▶ In particular,
sup
z∈C
⟨a, z⟩ < c < ⟨a, x⟩

▶ Since C is cone, for any λ > 0 we have λz ∈ C and

λ ⟨a, z⟩ = ⟨a, λz⟩ < c < ⟨a, x⟩

▶ Letting λ→∞, it must be ⟨a, z⟩ ≤ 0 for all z ∈ C , and hence
a ∈ C ∗

▶ Letting λ→ 0, get ⟨a, x⟩ > c ≥ 0, so x /∈ C ∗∗
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Farkas’ lemma

Proposition (Farkas’ lemma)

Let {ak}Kk=1 ⊂ RN be vectors and define the sets C ,D ⊂ RN by

C = cone[a1, . . . , aK ],

D =
{
y ∈ RN : (∀k) ⟨ak , y⟩ ≤ 0

}
.

Then D = C ∗ and C = D∗.

a1

a2

0

C = D∗

D = C ∗
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Proof

▶ For any x ∈ C , by definition of polyhedral cone, we can take
{αk}Kk=1 ⊂ R+ such that x =

∑
k αkak

▶ Then for any y ∈ D, we have

⟨x , y⟩ =
∑
k

αk ⟨ak , y⟩ ≤ 0,

so y ∈ C ∗, which shows D ⊂ C ∗

▶ Conversely, let y ∈ C ∗; since ak ∈ C , we get ⟨ak , y⟩ ≤ 0 for
all k, so y ∈ D, which shows C ∗ ⊂ D

▶ Therefore D = C ∗

▶ Since C is closed convex cone, by previous proposition, we get

C = cl coC = C ∗∗ = (C ∗)∗ = D∗
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Chapter 10

Convex Functions
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Convex and quasi-convex functions

Convexity-preserving operations

Differential characterization

Continuity of convex functions

Homogeneous quasi-convex functions
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Convex function
▶ Previously we introduced convex functions of single variable

and showed that first-order necessary condition for optimality
is actually sufficient

▶ We discuss properties of convex and quasi-convex functions in
general setting

▶ For f : RN → (−∞,∞], its epigraph is

epi f :=
{
(x , y) ∈ RN × R : f (x) ≤ y

}
▶ We say f is convex function if epi f is convex set

▶ Easy to show that f is convex if and only if for any
x1, x2 ∈ RN and α ∈ [0, 1], we have convex inequality

f ((1− α)x1 + αx2) ≤ (1− α)f (x1) + αf (x2)

▶ If inequality strict whenever x1 ̸= x2 and α ∈ (0, 1), we say f
is strictly convex
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Convex function

x

y = f (x)

epi f

x1 x2

f (x1)

f (x2)

©Alexis Akira Toda Instruction slides for Essential Mathematics for Economics



Quasi-convex function

▶ Set of form

Lf (y) :=
{
x ∈ RN : f (x) ≤ y

}
is called lower contour set of f at level y

▶ We say that f is quasi-convex if lower contour sets are convex
for all values of y

▶ Easy to show that f is quasi-convex if and only if for any
x1, x2 ∈ RN and α ∈ [0, 1], we have

f ((1− α)x1 + αx2) ≤ max {f (x1), f (x2)}

▶ If inequality strict whenever x1 ̸= x2 and α ∈ (0, 1), we say f
is strictly quasi-convex
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Uniqueness of solution with strict quasi-convexity

Proposition

If C ⊂ RN is nonempty and convex and f : C → R is strictly
quasi-convex, then the solution to minx∈C f (x) is unique.

Proof.
▶ Suppose to contrary that there are two solutions x1 ̸= x2
▶ Take any α ∈ (0, 1) and let x = (1− α)x1 + αx2
▶ Since C is convex, we have x ∈ C

▶ Since f is strictly quasi-convex, we obtain

f (x) = f ((1− α)x1 + αx2)

< max {f (x1), f (x2)} = f (x1) = min
x∈C

f (x),

which is contradiction
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Concave and quasi-concave functions

▶ f is concave if −f is convex, so

f ((1− α)x1 + αx2) ≥ (1− α)f (x1) + αf (x2)

▶ f is quasi-concave if −f is quasi-convex, so

f ((1− α)x1 + αx2) ≥ min {f (x1), f (x2)}

▶ Strict (quasi-)concavity analogous

▶ If f strictly quasi-concave, maximum is unique
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Convex functions are quasi-convex

▶ Let f be convex

▶ If x1, x2 ∈ Lf (y) and α ∈ [0, 1], we have

f ((1− α)x1 + αx2) ≤ (1− α)f (x1) + αf (x2)

≤ (1− α)y + αy = y ,

so (1− α)x1 + αx2 ∈ Lf (y)

▶ Hence Lf (y) is convex set, so f quasi-convex
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Quasi-convex functions are not necessarily convex

▶ Consider f (x) = x3

▶ Clearly f is quasi-convex

▶ But f is not convex

x
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Convexity-preserving operations
▶ There are many operations that preserve convexity
▶ Useful for constructing convex functions

Proposition

For each i = 1, . . . , I , let fi : RN → (−∞,∞] be convex. Then for
any βi ≥ 0, the function f :=

∑I
i=1 βi fi is convex.

Proof.
▶ Take any x1, x2 and α ∈ [0, 1]

▶ Then

f ((1− α)x1 + αx2) =
I∑

i=1

βi fi ((1− α)x1 + αx2)

≤
I∑

i=1

βi ((1− α)fi (x1) + αfi (x2))

= (1− α)f (x1) + αf (x2)
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Convexity-preserving operations

Proposition

Let I be a nonempty set, and for each i ∈ I , suppose that
fi : RN → (−∞,∞] is (quasi-)convex. Then f := supi∈I fi is
(quasi-)convex.

Proof.
▶ Suppose that each fi is convex

▶ Since fi ≤ f , it follows that

fi ((1− α)x1 + αx2) ≤ (1− α)f (x1) + αf (x2)

▶ Taking the supremum over i ∈ I in the left-hand side, we
obtain

f ((1− α)x1 + αx2) ≤ (1− α)f (x1) + αf (x2)

▶ Proof for quasi-convexity is similar
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Example: support function

▶ Let ∅ ≠ A ⊂ RN

▶ For each a ∈ A, linear function fa(x) := ⟨a, x⟩ is clearly convex

▶ Hence by Proposition, function hA := supa∈A fa defined by
hA(x) = supa∈A ⟨a, x⟩ is convex

▶ hA is called support function of set A
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Convexity-preserving operations

Proposition

If f : RN → RM is convex map and ϕ : RM → R is monotone
(quasi-)convex function, then g := ϕ ◦ f is (quasi-)convex.

Proof.
▶ Suppose ϕ is convex and take any x1, x2 ∈ RN and α ∈ [0, 1]

▶ Since f is convex map, applying ϕ to
f ((1− α)x1 + αx2) ≤ (1− α)f (x1) + αf (x2), we obtain

g((1− α)x1 + αx2))

= ϕ(f ((1− α)x1 + αx2))

≤ ϕ((1− α)f (x1) + αf (x2)) (∵ ϕ monotone)

≤ (1− α)ϕ(f (x1)) + αϕ(f (x2)) (∵ ϕ convex)

= (1− α)g(x1) + αg(x2)

▶ Proof when ϕ is quasi-convex is similar
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Convexity-preserving operations

Proposition

Let X ,Y be vector spaces, f : X × Y → (−∞,∞] be
(quasi-)convex, and define g : Y → [−∞,∞] by
g(y) = infx∈X f (x , y). Then g is (quasi-)convex.

Proof.
▶ Suppose f is convex and take y1, y2 ∈ Y and α ∈ [0, 1]

▶ For each j = 1, 2, take any uj > g(yj); by the definition of g ,
we can take xj such that g(yj) ≤ f (xj , yj) ≤ uj

▶ Define x = (1− α)x1 + αx2 and similarly for y ; using
definition of g and convexity of f , we obtain

g(y) ≤ f (x , y) ≤ (1−α)f (x1, y1)+αf (x2, y2) ≤ (1−α)u1+αu2

▶ Letting uj ↓ g(yj), we obtain

g(y) ≤ (1− α)g(y1) + αg(y2)
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First-order characterization of convexity

Proposition

Let U ⊂ RN be an open convex set and f : U → R be
differentiable. Then f is (strictly) convex if and only if

f (y)− f (x) ≥ (>) ⟨∇f (x), y − x⟩

for all x ̸= y .

xx y

P

Q

R

S

y − x

⟨∇f (x), y − x⟩

Slope = ∇f (x)
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Sufficiency of first-order condition

Proposition (Sufficiency of first-order condition for convex
minimization)

Let U ⊂ RN be open and convex and f : U → R be convex and
differentiable. If ∇f (x̄) = 0, then f (x̄) = minx∈U f (x).

Proof.
▶ Take any x ∈ U

▶ Since f is convex and ∇f (x̄) = 0, by previous proposition, we
have

f (x)− f (x̄) ≥ ⟨∇f (x̄), x − x̄⟩ = 0

▶ Therefore f (x̄) ≤ f (x) and f (x̄) = minx∈U f (x)
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Second-order characterization of convexity

Proposition (Second-order characterization of convexity)

Let U ⊂ RN be an open convex set and f : U → R be C 2. Then f
is convex if and only if the Hessian

∇2f (x) =

[
∂2f (x)

∂xm∂xn

]
is positive semidefinite for all x . Furthermore, if ∇2f is positive
definite for all x , then f is strictly convex.

Proof.
Use Taylor and first-order characterization
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First-order characterization of quasi-convexity

Proposition

Let U ⊂ RN be an open convex set and f : U → R be
differentiable. Then f is quasi-convex if and only if

f (y) ≤ f (x) =⇒ ⟨∇f (x), y − x⟩ ≤ 0

for all x ̸= y .
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Second-order characterization of quasi-convexity

Proposition

Let U ⊂ RN be an open convex set and f : U → R be C 2. Then
the following statements are true.

1. If f is quasi-convex, then for all x and v ̸= 0, we have

⟨∇f (x), v⟩ = 0 =⇒
〈
v ,∇2f (x)v

〉
≥ 0.

2. If for all x and v ̸= 0 we have

⟨∇f (x), v⟩ = 0 =⇒
〈
v ,∇2f (x)v

〉
> 0,

then f is strictly quasi-convex.
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Continuity of convex functions

Theorem
Let U ⊂ RN be an open convex set and f : U → R be convex.
Then f is continuous.

▶ In finite-dimensional spaces, convex functions are continuous
except at boundary points

▶ To see why convex function need not be continuous at
boundary points, consider

f (x) =


∞ if x < 0 or x > 1

0 if 0 ≤ x < 1

1 if x = 1

▶ Proof of this theorem is hard (see textbook)
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Homogeneous quasi-convex functions

▶ We say f : RN → [−∞,∞] is homogeneous (of degree 1) if
f (λx) = λf (x) for all x and λ > 0

▶ Following theorem shows homogeneous quasi-convex functions
are automatically convex, which is nice (proof is hard)

Theorem
Let C ⊂ RN be a nonempty convex cone. Let f : C → (−∞,∞]
be

1. quasi-convex,

2. homogeneous, and

3. either f (x) > 0 for all x ∈ C\ {0} or f (x) < 0 for all
x ∈ C\ {0}.

Then f is convex.
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Example

▶ Let 1 ≤ p <∞ and define f : RN → R by

f (x) = ∥x∥p :=

(
N∑

n=1

|xn|p
)1/p

▶ Let ϕ(y) = 1
p y

p for y ≥ 0

▶ Then ϕ′(y) = yp−1 ≥ 0 and ϕ′′(y) = (p − 1)yp−2 ≥ 0, so ϕ is
increasing and convex

▶ Hence

g(x) := ϕ(f (x)) =
1

p

N∑
n=1

|xn|p

is convex, and f = ϕ−1 ◦ g is quasi-convex

▶ Since f is homogeneous, it is convex

▶ Can use this to show ℓp norm is indeed norm
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Important points

▶ Convex functions: epigraph is convex

▶ Quasi-convex functions: lower contour sets are convex

▶ Convex functions are quasi-convex, but not vice versa

▶ Strict quasi-convexity implies uniqueness of solution to
minimization problem

▶ There are many convexity-preserving operations

▶ Monotonic transformation of quasi-convex functions are
quasi-convex, so quasi-concave functions are suitable for
modeling utility

▶ Homogeneous quasi-convex functions are convex
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Chapter 11

Nonlinear Programming
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Introduction

Necessary condition

Karush-Kuhn-Tucker theorem

Sufficient conditions

Parametric differentiability

Parametric continuity
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Introduction

▶ We would like to solve

minimize f (x)

subject to x ∈ C

▶ When objective function f or constraint set C don’t have
particular structure, we say nonlinear programming problem

▶ Recall
▶ x̄ ∈ C is (global) solution if f (x̄) ≤ f (x) for all x ∈ C
▶ x̄ is local solution if there exists open neighborhood U of x̄

such that f (x̄) ≤ f (x) for all x ∈ C ∩ U
▶ x̄ is strict local solution if above inequality strict whenever

x ̸= x̄
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Tangent cone

▶ To derive first-order necessary condition, we define tangent
cone

▶ Let ∅ ≠ C ⊂ RN be constraint set and x̄ ∈ C

▶ Tangent cone of C at x̄ is

TC (x̄) :=
{
y ∈ RN : (∃) {αk} ≥ 0, {xk} ⊂ C ,

lim
k→∞

xk = x̄ , y = lim
k→∞

αk(xk − x̄)
}

▶ Intuitively, tangent cone of C at x̄ consists of all directions y
that can be approximated by that from x̄ to another point in
C
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Tangent cone

x̄

TC (x̄)

C
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Tangent cone

Lemma
TC (x̄) is a nonempty closed cone.

Proof.
▶ 0 ∈ TC (x̄), so nonempty

▶ If αk(xk − x̄)→ y , then βαk(xk − x̄)→ βy for any β > 0, so
TC (x̄) is cone

▶ Can show closedness by usual sequential argument
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Normal cone

▶ Dual cone of tangent cone,

NC (x̄) = (TC (x̄))
∗ =

{
z ∈ RN : (∀y ∈ TC (x̄)) ⟨y , z⟩ ≤ 0

}
,

is called normal cone of C at x̄

x̄

NC (x̄)

C
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First-order necessary condition

Theorem (First-order necessary condition)

If f is differentiable and x̄ is a local solution, then
−∇f (x̄) ∈ NC (x̄).

Proof.
▶ Let y ∈ TC (x̄) and take sequence such that αk ≥ 0, xk → x̄ ,

and αk(xk − x̄)→ y

▶ Since x̄ is local solution and f is differentiable, we have

0 ≤ f (xk)− f (x̄) = ⟨∇f (x̄), xk − x̄⟩+ o(∥xk − x̄∥)

▶ Multiplying both sides by αk ≥ 0, we get

0 ≤ ⟨∇f (x̄), αk(xk − x̄)⟩+ ∥αk(xk − x̄)∥ · o(∥xk − x̄∥)
∥xk − x̄∥

→ ⟨∇f (x̄), y⟩+ ∥y∥ · 0 = ⟨∇f (x̄), y⟩
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Inequality and equality constraints

▶ Consider minimization problem

minimize f (x)

subject to gi (x) ≤ 0 (i = 1, . . . , I ),

hj(x) = 0 (j = 1, . . . , J),

where f , gi , hj ’s are differentiable

▶ Constraint set is

C =
{
x ∈ RN : (∀i)gi (x) ≤ 0, (∀j)hj(x) = 0

}
▶ We wish to study shape of C around x̄ ∈ C
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Linearizing cone

▶ Let x̄ ∈ C

▶ Active set is set of indices of binding constraints,
I (x̄) = {i : gi (x̄) = 0}

▶ Since
gi (x) ≈ gi (x̄) + ⟨∇gi (x̄), x − x̄⟩ ,

for i ∈ I (x̄), condition gi (x) ≤ 0 is approximately same as
⟨∇gi (x̄), y⟩ ≤ 0 for y = x − x̄

▶ Similarly, hj(x) = 0 approximately same as ⟨∇hj(x̄), y⟩ = 0
for y = x − x̄

▶ Motivated by this, define linearizing cone by

LC (x̄) =
{
y ∈ RN : (∀i ∈ I (x̄)) ⟨∇gi (x̄), y⟩ ≤ 0,

(∀j) ⟨∇hj(x̄), y⟩ = 0
}
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Linearizing cone

Proposition

If x̄ ∈ C , then coTC (x̄) ⊂ LC (x̄).

Proof.
▶ Let y ∈ TC (x̄) and take sequence such that αk ≥ 0, xk → x̄ ,

and αk(xk − x̄)→ y

▶ By same argument as showing necessary condition, we obtain
⟨∇gi (x̄), y⟩ ≤ 0 for i ∈ I (x̄) and ⟨∇hj(x̄), y⟩ = 0, so
y ∈ LC (x̄)

▶ Therefore TC (x̄) ⊂ LC (x̄)

▶ Since LC (x̄) is convex cone, we get coTC (x̄) ⊂ LC (x̄)
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Karush-Kuhn-Tucker theorem

Theorem (Karush-Kuhn-Tucker theorem for nonlinear
programming)

Suppose that f , gi , hj ’s are differentiable and x̄ is a local solution.
If LC (x̄) ⊂ coTC (x̄), then there exist λ ∈ RI

+ and µ ∈ RJ such
that

∇f (x̄) +
I∑

i=1

λi∇gi (x̄) +
J∑

j=1

µj∇hj(x̄) = 0,

(∀i) λi ≥ 0, gi (x̄) ≤ 0, λigi (x̄) = 0.
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Proof

▶ We know coTC (x̄) ⊂ LC (x̄); by assumption,
LC (x̄) ⊂ coTC (x̄); hence LC (x̄) = coTC (x̄)

▶ Hence normal cone is

NC (x̄) = (TC (x̄))
∗ = (coTC (x̄))

∗ = (LC (x̄))
∗

▶ By Farkas’ lemma, NC (x̄) = (LC (x̄))
∗ equals polyhedral cone

generated by {∇gi (x̄)}i∈I (x̄) and {±∇hj(x̄)}
▶ Since −∇f (x̄) ∈ NC (x̄), FOC holds

▶ Complementary slackness follows from feasibility

©Alexis Akira Toda Instruction slides for Essential Mathematics for Economics



Constraint qualification

▶ Condition of sort “LC (x̄) ⊂ coTC (x̄)” is called constraint
qualification

▶ It is necessary condition for deriving KKT conditions

▶ In general, we cannot omit those; example:

minimize x

subject to − x3 ≤ 0

▶ Solution is clearly x̄ = 0, but FOC violated because

∇xL(x̄ , λ) = 1− 3λx̄2 = 1 ̸= 0
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Constraint qualification

Guignard (GCQ) LC (x̄) ⊂ coTC (x̄).

Abadie (ACQ) LC (x̄) ⊂ TC (x̄).

Mangasarian-Fromovitz (MFCQ) {∇hj(x̄)}Jj=1 are linearly

independent, and there exists y ∈ RN such that
⟨∇gi (x̄), y⟩ < 0 for all i ∈ I (x̄) and ⟨∇hj(x̄), y⟩ = 0
for all j .

Slater (SCQ) gi ’s are convex, hj(x) = ⟨aj , x⟩ − cj with {aj}Jj=1

linearly independent, and there exists x0 ∈ RN such
that gi (x0) < 0 for all i and hj(x0) = 0 for all j .

Linear independence (LICQ) The set of vectors

{∇gi (x̄)}i∈I (x̄) ∪ {∇hj(x̄)}
J
j=1

is linearly independent.
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Constraint qualification

Theorem
The following implication holds for constraint qualifications:

LICQ or SCQ =⇒ MFCQ =⇒ ACQ =⇒ GCQ.

▶ No need to remember detail of each, but remember this:

1. If all constraints linear (so gi , hj are affine), then GCQ
automatically holds, and hence no need to check (see Problem)

2. Slater is for convex optimization, and it requires existence of
point satisfying strict inequalities (usually not hard to check)

3. Most textbooks only list LICQ or Slater

▶ Most economic problems have linear constraints (e.g., budget
or nonnegativity constraints), so OK
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Sufficiency of FOC for convex programming

▶ KKT theorem is only necessary condition for optimality

▶ We may derive sufficient conditions under additional structure
(e.g., convexity)

Theorem (KKT theorem for convex programming)

Consider the constrained minimization problem, where f , gi ’s are
differentiable and convex and hj ’s are affine. If x̄ , λ, µ satisfy the
KKT conditions, then x̄ is a solution.
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Proof
▶ Since f , gi ’s are convex, hj ’s are affine, and λ ≥ 0, Lagrangian

L(x , λ, µ) = f (x) +
I∑

i=1

λigi (x) +
J∑

j=1

µjhj(x)

is convex in x
▶ Since FOC holds, we have ∇xL(x̄ , λ, µ) = 0, so x̄ achieves

minimum of L
▶ Therefore, for any feasible x , it follows that

f (x̄) = f (x̄) +
I∑

i=1

λigi (x̄) +
J∑

j=1

µjhj(x̄)

= L(x̄ , λ, µ) ≤ L(x , λ, µ)

= f (x) +
I∑

i=1

λigi (x) +
J∑

j=1

µjhj(x) ≤ f (x)

▶ Therefore x̄ is solution
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Recipe for solving convex minimization problems

1. Verify the functions f , gi ’s are differentiable and convex and
hj ’s are affine

2. Define Lagrangian

L(x , λ, µ) = f (x) +
I∑

i=1

λigi (x) +
J∑

j=1

µjhj(x)

Derive first-order condition and complementary slackness
condition

3. Solve these conditions; if there is a solution x̄ , it is solution to
minimization problem

4. Note that for necessity, you need to check Slater; but for
sufficiency, you don’t need to
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Sufficiency of FOC for quasi-convex programming

Theorem (KKT theorem for quasi-convex programming)

Consider the minimization problem, where f , gi ’s are differentiable
and quasi-convex and hj ’s are affine. If the Slater condition holds,
x̄ , λ, µ satisfy the KKT conditions, and ∇f (x̄) ̸= 0, then x̄ is a
solution.

▶ Proof is harder and uses first-order characterization of
quasi-convex functions

▶ Important because objective function is often quasi-convex in
economic problems

▶ Unlike convex case, need to check Slater condition and
∇f (x̄) ̸= 0 (which are usually easy)
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Utility maximization problem

▶ As example, consider utility maximization problem

maximize u(x)

subject to ⟨p, x⟩ ≤ w ,

x ≥ 0

▶ Assume ∇u ≫ 0, and to prevent zero consumption, assume
Inada condition ∂u/∂xn →∞ as xn → 0 for each n

▶ Lagrangian is L(x , λ) = u(x) + λ(w − ⟨p, x⟩)
▶ If p ≫ 0 and w > 0, Slater condition trivial

▶ Hence if u is quasi-concave, then FOC ∇u(x) = λp sufficient
for optimality
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Parametric optimization problem

▶ Utility maximization problem contains price vector p and
income w as parameters

▶ Consider parametric optimization problem

minimize
x

f (x , θ)

subject to gi (x , θ) ≤ 0 (i = 1, . . . , I ),

where θ ∈ Θ (some subset of Euclidean space) is parameter

▶ Under some regularity conditions discussed in draft, we can
show solution x(θ) is differentiable in parameter θ (parametric
differentiability)

▶ Remembering each condition is not worth your time, but
essentially
▶ f is locally strictly quasi-convex in x , and
▶ {∇gi}i∈I (x̄) is linearly independent

©Alexis Akira Toda Instruction slides for Essential Mathematics for Economics



Envelope theorem

▶ Using parametric differentiability and chain rule, can show
Envelope theorem

▶ Essentially, to find rate of change of optimal value, just
differentiate Lagrangian with respect to parameter

Theorem (Envelope theorem)

Consider parametric optimization problem as above. Let
ϕ(θ) = f (x(θ), θ) be the local minimum value function and

L(x , λ, θ) = f (x , θ) +
I∑

i=1

λigi (x , θ)

the Lagrangian. Then ϕ is differentiable and

∇ϕ(θ) = ∇θL(x(θ), λ(θ), θ).
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Example: utility maximization problem
▶ Consider utility maximization problem

maximize u(x)

subject to ⟨p, x⟩ ≤ w

▶ Maximum value v(p,w) is called indirect utility function

▶ Lagrangian is L(x , λ) = u(x) + λ(w − ⟨p, x⟩)
▶ By envelope theorem, get

∇pv(p,w) = ∇pL = −λx ,
∇wv(p,w) = ∇wL = λ

▶ Therefore demand satisfies

x(p,w) = −∇pv(p,w)

∇wv(p,w)
,

which is called Roy’s identity
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Parametric continuity

▶ Sufficient conditions for parametric differentiability are rather
strong

▶ In many applications, we may not need differentiability but
only continuity

▶ For instance, in utility maximization problem

maximize u(x)

subject to ⟨p, x⟩ ≤ w ,

we may be interested only in continuity of solution x(p,w)
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Correspondence

▶ In utility maximization problem, solution need not be unique
unless utility function quasi-concave

▶ Let X ,Y be nonempty sets; if for each x ∈ X there
corresponds subset Γ(x) ⊂ Y , we say Γ is correspondence
from X to Y and write Γ : X ↠ Y

▶ Clearly, function f can be viewed as correspondence Γ by
considering singleton Γ(x) = {f (x)}

▶ For any property P (e.g., nonempty, compact, or convex, etc.),
we say Γ is P-valued if Γ(x) satisfies property P for all x ∈ X
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Continuity of correspondence

▶ Two natural notions of continuity, upper and lower
hemicontinuity

▶ Let X ,Y be sets and Γ : X ↠ Y

▶ We say Γ is upper hemicontinuous (uhc) at x0 if for any open
V ⊃ Γ(x0), there exists open U ∋ x0 such that x ∈ U implies
Γ(x) ⊂ V

▶ We say Γ is lower hemicontinuous (lhc) at x0 if for any open
V with Γ(x0) ∩ V ̸= ∅, there exists open U ∋ x0 such that
x ∈ U implies Γ(x) ∩ V ̸= ∅

▶ If both uhc and lhc, we say continuous

▶ Intuitively, uhc correspondences can “expand” but not
“shrink”, whereas lhc correspondences can “shrink” but not
“expand”
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Upper hemicontinuity

V
Γ(x0)

Γ(x)

(a) UHC.

V
Γ(x0)

Γ(x)

(b) Not UHC.
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Lower hemicontinuity

Γ(x0)

Γ(x)

V

(a) LHC.

Γ(x0)

Γ(x)

V

(b) Not LHC.
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Sequential characterization of UHC

Proposition (Sequential characterization of upper
hemicontinuity)

Let Γ : X ↠ Y be nonempty. Then the following conditions are
equivalent.

1. Γ is upper hemicontinuous at x and Γ(x) is compact.

2. For any sequence {(xk , yk)} ⊂ X × Y with xk → x and
yk ∈ Γ(xk), there exists a convergent subsequence {ykl} such
that ykl → y ∈ Γ(x).

▶ Intuitively, sequence “cannot escape Γ”

▶ UHC: can expand but not shrink
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Sequential characterization of LHC

Proposition (Sequential characterization of lower
hemicontinuity)

Let Γ : X ↠ Y be nonempty. Then the following conditions are
equivalent.

1. Γ is lower hemicontinuous at x .

2. For any sequence {xk} with xk → x and any y ∈ Γ(x), there
exists a subsequence {xkl} ⊂ X and a sequence {yl} ⊂ Y
such that yl ∈ Γ(xkl ) for all l and yl → y .

▶ Intuitively, “whatever point in destination, can choose
sequence to get there”

▶ LHC: can shrink but not expand
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Maximum theorem

▶ Following maximum theorem guarantees parametric continuity
of maximum value and solution

Theorem (Maximum theorem)

Let X ,Y be nonempty metric spaces, f : X × Y → R be a
continuous function, and Γ : X ↠ Y be a nonempty, compact,
continuous correspondence. Let

f ∗(x) = max
y∈Γ(x)

f (x , y),

Γ∗(x) = argmax
y∈Γ(x)

f (x , y) ̸= ∅,

which exist by the extreme value theorem. Then f ∗ : X → R is
continuous and Γ∗ : X ↠ Y is upper hemicontinuous.

Proof.
Immediate from following two lemmas
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USC and UHC lemma

Lemma
Let f : X × Y → R be upper semicontinuous and Γ : X ↠ Y be
nonempty, compact, and upper hemicontinuous. Then
f ∗(x) = maxy∈Γ(x) f (x , y) is upper semicontinuous.

Proof.
▶ Take any sequence {xk} with xk → x ; take subsequence {xkl}

such that f ∗(xkl )→ lim supk→∞ f ∗(xk)

▶ For each l , take ykl ∈ Γ(xkl ) such that f (xkl , ykl ) = f ∗(xkl );
since Γ is uhc and compact, by taking subsequence if
necessary, we may assume ykl → y ∈ Γ(x)

▶ Since f is usc, we have

f ∗(x) ≥ f (x , y) ≥ lim sup
l→∞

f (xkl , ykl )

= lim
l→∞

f ∗(xkl ) = lim sup
k→∞

f ∗(xk)
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LSC and LHC lemma

Lemma
Let f : X × Y → R be lower semicontinuous and Γ : X ↠ Y be
nonempty and lower hemicontinuous. Then
f ∗(x) = supy∈Γ(x) f (x , y) is lower semicontinuous.

Proof.
▶ Take any sequence {xk} with xk → x and any u < f ∗(x); by

definition of f ∗, we can take y ∈ Γ(x) such that f (x , y) > u;
by taking subsequence if necessary, assume
f ∗(xk)→ lim infk→∞ f ∗(xk)

▶ Since Γ is lhc, we may take subsequence {xkl} and a sequence
{yl} such that yl ∈ Γ(xkl ) for all l and yl → y ; then
f ∗(xkl ) ≥ f (xkl , yl)

▶ Since f is lower semicontinuous, we have

lim inf
k→∞

f ∗(xk) = lim inf
l→∞

f ∗(xkl ) ≥ lim inf
l→∞

f (xkl , yl) ≥ f (x , y) > u
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Important points

▶ For necessity of KKT conditions, we need constraint
qualifications
▶ If all constraints linear, then (luckily) no need to check
▶ If all constraints convex, then Slater is usually most convenient

▶ Sufficiency of KKT conditions:
▶ for convex programming, get for free
▶ for quasi-convex programming, get under Slater and
∇f (x) ̸= 0

▶ Parametric differentiability and envelope theorem

▶ Continuity concepts for correspondences: uhc and lhc
▶ Maximum theorem: for parametric maximization, if objective

function and feasible correspondence continuous, then
▶ value function continuous
▶ solution set upper hemicontinuous
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Chapter 12

Introduction to Dynamic Programming
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Knapsack problem

Shortest path problem

Optimal savings problem

Abstract formulation
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Introduction

▶ So far, we have only considered maximization or minimization
of given function subject to some constraints

▶ Such problem is sometimes called static optimization problem
because there is only one decision to make

▶ In some cases, writing down or evaluating objective function
itself may be complicated

▶ Furthermore, in many problems, decision maker makes
multiple decisions over time instead of single decision

▶ We will discuss several examples
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Knapsack problem

▶ You break into jewelry shop to steal jewelry

▶ Your knapsack has size (capacity) S , which is integer

▶ Types of jewelry: i = 1, . . . , I

▶ Type i jewelry has size si and worth wi

▶ Your goal is to maximize total value
∑I

i=1 wini of stolen
jewelry, where ni : number of type i jewelry to pack
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Formulating problem

▶ Knapsack problem is simple constrained optimization problem:

maximize
I∑

i=1

wini

subject to
I∑

i=1

sini ≤ S ,

(∀i)ni ∈ Z+

▶ However, cannot be solved by KKT theorem because ni is
contrained to be integer and cannot apply calculus
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Dynamic programming formulation

▶ We solve knapsack problem by dynamic programming

▶ Let V (S) be maximum total value of jewelry that can be
packed in size S knapsack (value function)

▶ Clearly V (S) = 0 if S < mini si since you cannot pack
anything in this case

▶ If you put anything at all in your knapsack (so S ≥ mini si ),
clearly you start packing with some type of jewelry

▶ If you put object i first (with si ≤ S), then you get value wi

and remaining size S − si
▶ By definition of value function, if continue packing optimally,

you get total value V (S − si ) from the remaining space
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Bellman equation

▶ Therefore maximum value that you can get (if you first pack
object i) is

wi + V (S − si )

▶ To pack optimally, need to choose i that maximizes this

▶ Hence
V (S) = max

i :si≤S
[wi + V (S − si )],

which is called Bellman equation

▶ In principle, can iterate Bellman equation backwards starting
from V (S) = 0 for S < mini si to find maximum value

▶ This process is called backward induction or value function
iteration
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Example
▶ Let I = 3 (three types), (s1, s2, s3) = (1, 2, 5), and

(w1,w2,w3) = (1, 3, 8)

▶ Then

V (0) = 0,

V (1) = w1 + V (0) = 1,

V (2) = max
i
[wi + V (2− si )] = max {1 + V (1), 3 + V (0)}

= max {2, 3} = 3,

V (3) = max
i
[wi + V (3− si )] = max {1 + V (2), 3 + V (1)}

= max {4, 4} = 4,

V (4) = max {1 + V (3), 3 + V (2)} = max {5, 6} = 6,

V (5) = max {1 + V (4), 3 + V (3), 8 + V (0)} = max {7, 7, 8} = 8

▶ No closed-form solution, but writing computer program to
solve numerically is straightforward
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Shortest path problem

▶ There are finitely many locations indexed by i = 1, . . . , I
▶ Traveling directly from i to j ̸= i costs cij ≥ 0

▶ (If there is no direct route from i to j , simply define cij =∞)

▶ You want to find cheapest way to travel from any point i to
any other point j
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Dynamic programming formulation

▶ Let VN(i , j) be minimum cost to travel from i to j in at most
N steps

▶ For convenience, allow possibility i = j (staying at same
location) and set cii = 0

▶ Let k be first connection (including possibly k = i); traveling
from i to k costs cik , and now need to travel from k to j in at
most N − 1 steps

▶ If continue optimally, cost from k to j is (by definition of
value function) VN−1(k , j)

▶ Therefore Bellman equation is

VN(i , j) = min
k
{cik + VN−1(k , j)}
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Optimal savings problem

▶ Time is indexed by t = 0, 1, . . . ,T

▶ Initial wealth w0 > 0

▶ At each point in time, you can either consume some of your
wealth or save it at gross interest rate R > 0

▶ You cannot go in debt; what is optimal consumption-saving
plan?
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Dynamic programming formulation

▶ Let wt be wealth at beginning of time t

▶ If consume ct , budget constraint is

wt+1 = R(wt − ct)

▶ For concreteness, assume that the utility function is

UT (c0, . . . , cT ) =
T∑
t=0

βt log ct ,

where subscript T in UT means that planning horizon is T

▶ Clearly we have

UT (c0, . . . , cT ) = log c0 + βUT−1(c1, . . . , cT )
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Dynamic programming formulation

▶ Let VT (w) be maximum utility when you start with initial
wealth w and planning horizon is T

▶ If T = 0, you consume everything, so V0(w) = logw

▶ If T > 0 and you consume c this period, by budget constraint
you have wealth w ′ = R(w − c) next period and planning
horizon will be T − 1

▶ Therefore Bellman equation is

VT (w) = max
0≤c≤w

[log c + βVT−1(R(w − c))]
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Value function iteration

▶ In principle, we can compute VT (w) by iterating backwards
from T = 0 using V0(w) = logw

▶ Let us compute V1(w), for example

▶ Using Bellman for T = 1 and V0(w) = logw , we have

V1(w) = max
0≤c≤w

[log c + βV0(R(w − c))]

= max
0≤c≤w

[log c + β log(R(w − c))]

▶ Right-hand side inside brackets is concave in c , so we can
maximize by setting derivative equal to zero: FOC is

1

c
+ β

−1
w − c

= 0 ⇐⇒ w − c = βc ⇐⇒ c =
w

1 + β
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Value function iteration

▶ Therefore value function for T = 1 is

V1(w) = log
w

1 + β
+ β log

(
R

βw

1 + β

)
= (1 + β) logw + constant,

where “constant” is some constant that depends only on
given parameters β and R

▶ For general T , we may guess that functional form of VT is

VT (w) = (1 + β + · · ·+ βT ) logw + constant,

and apply mathematical induction to confirm it

▶ See draft for details
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Abstract formulation

Definition
A dynamic program is a tuple D = {X,A, Γ,V,H}, where
▶ X is a nonempty set called the state space,

▶ A is a nonempty set called the action space,

▶ Γ : X ↠ A is a nonempty correspondence called the feasible
correspondence, with its graph denoted by

G := {(x , a) ∈ X× A : a ∈ Γ(x)} ,

▶ V is a nonempty space of functions v : X→ [−∞,∞] called
the value space,

▶ H : G× V→ [−∞,∞] is a function called the aggregator,
which is increasing in the last argument:

v1 ≤ v2 =⇒ H(x , a, v1) ≤ H(x , a, v2)
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Idea of abstract dynamic program

▶ Given state x ∈ X, decision maker can take some actions
a ∈ A

▶ Let Γ(x) ⊂ A denote all possible actions

▶ Let v(x ′) be continuation value that decision maker expects
when next state is x ′ ∈ X; write v ∈ V

▶ Now given current state x , action a ∈ Γ(x), and continuation
value v , decision maker should be able to evaluate reward
(utility); write it H(x , a, v) ∈ [−∞,∞]
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Bellman operator

▶ Let D = {X,A, Γ,V,H} be dynamic program

▶ Without loss of generality, we consider maximization problems

▶ Hence given v ∈ V, define function Tv : X→ [−∞,∞] by

(Tv)(x) := sup
a∈Γ(x)

H(x , a, v)

▶ Operator T defined on value space V is called the Bellman
operator
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Bellman equation

▶ Let D = {X,A, Γ,V,H} be dynamic program with Bellman
operator T

▶ We say that v ∈ V is value function of D if v is fixed point of
T , that is, v = Tv

▶ Equation v = Tv , or equivalently

v(x) = sup
a∈Γ(x)

H(x , a, v),

is called Bellman equation

▶ Condition v = Tv is also called principle of optimality:
optimal policy has property that whatever initial state and
actions are, remaining actions must constitute optimal policy
with regard to state resulting from first action

©Alexis Akira Toda Instruction slides for Essential Mathematics for Economics



Example: knapsack problem

▶ State space is X = {0, 1, . . .} = Z+, with state denoted by
S ∈ X

▶ Action space is A = {0, 1, . . . , I}, with action denoted by
i ∈ A (where “0” corresponds to packing nothing)

▶ Feasible correspondence is Γ(S) = {i = 1, . . . , I : si ≤ S} if
this is nonempty and Γ(S) = {0} otherwise

▶ Value space V is set of all functions v : X→ R with v(S) = 0
for S < mini si

▶ Aggregator is

H(S , i , v) =

{
wi + v(S − si ) if i ≥ 1,

v(S) if i = 0
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Example: shortest path problem

▶ State space is X = N× {1, . . . , I}2, with state denoted by
(n, i , j) ∈ X (where n is number of trips allowed and i , j
denote origin and destination)

▶ Action space is A = {1, . . . , I}, with action denoted by transit
point k ∈ A

▶ Feasible correspondence is Γ(n, i , j) = A, entire space

▶ Value space V is set of all functions v : X→ [0,∞]

▶ Aggregator is

H(n, i , j , k , v) =


cik + v(n − 1, k , j) if n > 1,

cij if n = 1 and k = j ,

∞ if n = 1 and k ̸= j
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Example: optimal savings problem

▶ State space is X = Z+ × R+, with state denoted by
(T ,w) ∈ X (where T is horizon and w ≥ 0 is wealth)

▶ Action space is A = R+, with action denoted by consumption
c ∈ A

▶ Feasible correspondence is Γ(T ,w) = [0,w ]

▶ Value space V is set of all functions v : X→ [−∞,∞)

▶ Aggregator is

H(T ,w , c , v) =

{
log c + βv(T − 1,R(w − c)) if T ≥ 1,

log c if T = 0
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Finite-horizon dynamic programs

▶ In general, analysis of dynamic programs is case-by-case basis

▶ For finite-horizon DPs, we have existence and uniqueness

Proposition

Let D = {X,A, Γ,V,H} be a dynamic program with Bellman
operator T : V→ V. Suppose that

1. there exists a sequence of subsets
∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ · · · ⊂ X with

⋃∞
n=1 Xn = X,

2. for any n, x ∈ Xn, a ∈ Γ(x), and v1, v2 ∈ V with v1 = v2 on
Xn−1, we have H(x , a, v1) = H(x , a, v2).

Then D has a unique value function.
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Proof
▶ Take any v0 ∈ V and define vn = T nv0; by condition 2, for

x ∈ X1, value of H(x , a, v) does not depend on v0
▶ Therefore for x ∈ X1, value of

v1(x) = (Tv0)(x) = sup
a∈Γ(x)

H(x , a, v0)

also does not depend on v0
▶ In particular, setting v0 = v1, we obtain v1 = Tv1 on X1

▶ We prove vn = Tvn on Xn by induction; suppose claim is true
up to some n, and let un = Tvn

▶ By induction hypothesis, we have vn = un on Xn, so by
condition 2, for x ∈ Xn+1, we have H(x , a, vn) = H(x , a, un),
and therefore

vn+1(x) = (Tvn)(x) = sup
a∈Γ(x)

H(x , a, vn) = sup
a∈Γ(x)

H(x , a, un)

= (Tun)(x) = (T 2vn)(x) = (Tvn+1)(x)
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Proof

▶ Next, define v ∈ V by v(x) = vn(x) if x ∈ Xn

▶ To see that v is well defined, suppose x ∈ Xm ∩ Xn for some
m < n

▶ Then by condition 1 Xm ⊂ Xn, and by what we have just
proved vn = T n−mvm = vm on Xm, so value of v is
unambiguous

▶ Furthermore, because {Xn} cover entire space X, we have
x ∈ Xn for some n, so v is defined on entire X

▶ Thus v ∈ V is well defined
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Proof

▶ To show that v is fixed point of T , take any x ∈ X

▶ Then by condition 1, we have x ∈ Xn for some n, so
v(x) = vn(x) = (Tvn)(x) = (Tv)(x)

▶ Since x is arbitrary, v = Tv

▶ If u, v are fixed points of T , then on X1, we have
H(x , a, u) = H(x , a, v), so u = Tu = Tv = v

▶ Using condition 2 and applying induction, we have u = v on
Xn for all n, and hence u = v on X
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Important points

▶ Bellman equation is

v(x) = sup
a∈Γ(x)

H(x , a, v),

where
▶ x ∈ X: state
▶ a ∈ Γ(x) ⊂ A: action (Γ: feasible correspondence),
▶ v ∈ V: value function,
▶ H: aggregator

▶ Principle of optimality is, first action needs to be optimal
fixing remaining plan

▶ To formulate dynamic programming problems, need a lot of
practice for identifying state space X, action space A, value
space V, and aggregator H

▶ Unique value function for finite-horizon dynamic programs
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Chapter 13

Contraction Methods
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Introduction

▶ Many interesting dynamic programs are infinite-horizon

▶ Example is optimal savings problem:

maximize E0

∞∑
t=0

βtu(ct)

subject to (∀t)wt+1 = R(zt , zt+1)(wt − ct) + y(zt+1)

(∀t)0 ≤ ct ≤ wt ,

w0 > 0, z0 given

▶ Here
▶ {zt} is Markov chain with transition probability matrix P
▶ R(z , z ′) ≥ 0 is gross return on wealth conditional on z → z ′

▶ y(z) ≥ 0 is non-financial income in state z

▶ How to study such problems?
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Markov dynamic program

▶ Let D = {X,A, Γ,V,H} be dynamic program (state, action,
feasible correspondence, value, aggregator)

▶ We say D is additive Markov dynamic program (MDP) if
▶ state space can be written as X× Z, where Z = {1, . . . ,Z} is

finite set associated with stochastic matrix
P = (P(z , z ′))z,z′∈Z,

▶ aggregator takes additive (expected utility) form

H(x , z , a, v) = r(x , z , a) + β

Z∑
z′=1

P(z , z ′)v(g(x , z , z ′, a), z ′),

where r : X× Z× A→ [−∞,∞) is reward function,
g : X× Z2 × A→ X is law of motion or transition function,
and β ∈ [0, 1) is discount factor

▶ Note that summation is conditional expectation
E[v(x ′, z ′) | z ] with x ′ = g(x , z , z ′, a)
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Bellman operator of MDP

▶ By definition, Bellman operator T is

(Tv)(x , z) := sup
a∈Γ(x ,z)

H(x , z , a, v)

= sup
a∈Γ(x ,z)

{
r(x , z , a) + β Ez [v(x

′, z ′)]
}

▶ Here Ez = E[· | z ] denotes conditional expectation and it is
understood that x ′ = g(x , z , z ′, a)

▶ We write additive Markov dynamic program as

D = {X,Z,P,A, Γ,V, r , g , β}
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Example: optimal savings problem

▶ For optimal savings problem, we may identify each object of
additive MDP as:

▶ State space is X = [0,∞), where state is wealth w ∈ X

▶ Action space is A = [0,∞), where action is consumption
c ∈ A

▶ Feasible correspondence is Γ(w , z) = [0,w ]

▶ Reward is utility r(w , z , c) = u(c)

▶ Transition function is

g(w , z , z ′, c) = R(z , z ′)(w − c) + y(z ′)
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Existence and uniqueness of value function for bounded
MDP

▶ Let bX or b(X) be space of all bounded functions defined on
X, which is Banach endowed with sup norm ∥·∥

Theorem
Let D = {X,Z,P,A, Γ,V, r , g , β} be an additive Markov dynamic
program, where V = b(X× Z). Suppose that r ∈ b(X× Z× A), so
r is bounded. Then the Bellman operator T is a contraction with
modulus β ∈ [0, 1). Consequently, the following statements are
true.

1. D has a unique value function v , which is the unique fixed
point of T .

2. For any v0 ∈ V, we have v = limk→∞ T kv0.

3. The approximation error
∥∥T kv0 − v

∥∥ has order of magnitude
βk .
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Proof

▶ By contraction mapping theorem, suffices to show T is
contraction

▶ We verify Blackwell’s sufficient conditions

▶ (Upward shift) If v ∈ V = b(X× Z), then v is bounded, so for
any c ≥ 0, we have v + c ∈ V

▶ (Bounded difference) If v1, v2 ∈ V, then triangle inequality
implies ∥v1 − v2∥ ≤ ∥v1∥+ ∥v2∥ <∞

▶ (Self map) If v ∈ V, then

|(Tv)(x , z)| =

∣∣∣∣∣ sup
a∈Γ(x ,z)

{
r(x , z , a) + β Ez [v(x

′, z ′)]
}∣∣∣∣∣

≤ ∥r∥+ β ∥v∥ <∞,

so T : V→ V
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Proof

▶ (Monotonicity) If v1, v2 ∈ V and v1 ≤ v2 pointwise, then

(Tv1)(x , z) = sup
a∈Γ(x ,z)

{
r(x , z , a) + β Ez [v1(x

′, z ′)]
}

≤ sup
a∈Γ(x ,z)

{
r(x , z , a) + β Ez [v2(x

′, z ′)]
}
= (Tv2)(x , z),

so Tv1 ≤ Tv2
▶ (Discounting) If v ∈ V and c ≥ 0, then

(T (v + c))(x , z) = sup
a∈Γ(x ,z)

{
r(x , z , a) + β Ez [v(x

′, z ′) + c]
}

= sup
a∈Γ(x ,z)

{
r(x , z , a) + β Ez [v(x

′, z ′)]
}
+ βc

= (Tv)(x , z) + βc,

so T (v + c) = Tv + βc (in particular, ≤)
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Sequential and recursive formulations

▶ Let D be additive MDP

▶ Bellman equation is

v(x , z) = sup
a∈Γ(x ,z)

{
r(x , z , a) + β Ez [v(x

′, z ′)]
}

▶ When we write Bellman equation, we formulate problem
recursively

▶ Alternatively, can formulate MDP sequentially as

maximize Ez0

∞∑
t=0

βtr(xt , zt , at)

subject to (∀t)xt+1 = g(xt , zt , zt+1, at)

(∀t)at ∈ Γ(xt , zt),

(x0, z0) ∈ X× Z given
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Sequential and recursive formulations

▶ What is relation between value function of Bellman and
solution to sequential problem?

▶ We say stochastic process of state-action pair {(xt , at)}∞t=0 is
feasible if at ∈ Γ(xt , zt) for all t given initial state x0 and
Markov chain {zt}∞t=0

▶ Function σ : X× Z→ A satisfying σ(x , z) ∈ Γ(x , z) is called
(feasible) policy function

▶ Given v ∈ V, if

σ(x , z) ∈ argmax
a∈Γ(x ,z)

{
r(x , z , a) + β Ez [v(x

′, z ′)]
}
,

we say σ is v -greedy
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Equivalence of sequential and recursive formulations

Theorem
Let everything be as in Theorem and v ∈ V be the unique fixed
point of the Bellman operator T . Then the following statements
are true.

1. The supremum value v̄(x0, z0) of the sequential dynamic
program is well-defined and finite.

2. We have v(x , z) = v̄(x , z) for all (x , z) ∈ X× Z.

3. If a v -greedy policy σ exists and we define the state-action
process {(xt , at)}∞t=0 by at = σ(xt , zt) for all t, then
{(xt , at)}∞t=0 solves the sequential dynamic program.

▶ Sequential and recursive formulations equivalent

▶ Hence we will focus on recursive formulation because more
tractable

©Alexis Akira Toda Instruction slides for Essential Mathematics for Economics



Proof
▶ Since r bounded, value of objective function in sequential

problem is bounded as∣∣∣∣∣Ez0

∞∑
t=0

βtr(xt , zt , at)

∣∣∣∣∣ ≤
∞∑
t=0

βt ∥r∥ = ∥r∥
1− β

<∞

▶ Therefore objective function is well defined and supremum
value exists and finite, denoted by v̄

▶ To prove v = v̄ , we show v ≤ v̄ and v ≥ v̄
▶ Take any (x0, z0) and feasible {(xt , at)}
▶ Then by Bellman,

v(xt , zt) ≥ r(xt , zt , at) + β Ezt [v(xt+1, zt+1)]

▶ Iterating over t = 0, . . . ,T , get

v(x0, z0) ≥ Ez0

T−1∑
t=0

βtr(xt , zt , at) + Ez0 β
T v(xT , zT )
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Proof
▶ Noting ∥v∥ <∞ and β ∈ [0, 1), we have∣∣∣Ez0 β

T v(xT , zT )
∣∣∣ ≤ βT ∥v∥ → 0

▶ Hence letting T →∞, get

v(x0, z0) ≥ Ez0

∞∑
t=0

βtr(xt , zt , at)

▶ Taking supremum over all feasible {(xt , at)}, get
v(x0, x0) ≥ v̄(x0, z0)

▶ To show reverse inequality, take any ϵ > 0

▶ Then Bellman implies

v(xt , zt) ≤ r(xt , zt , at) + β Ezt [v(xt+1, zt+1)] + (1− β)ϵ

for some at ∈ Γ(xt , zt)
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Proof

▶ Iterating over t = 0, . . . ,T , get

v(x0, z0) ≤ Ez0

T−1∑
t=0

βtr(xt , zt , at)+Ez0 β
T v(xT , zT )+(1−βT )ϵ

▶ Letting T →∞, we obtain

v(x0, z0) ≤ Ez0

∞∑
t=0

βtr(xt , zt , at) + ϵ ≤ v̄(x0, z0) + ϵ

▶ Letting ϵ ↓ 0, we obtain v(x0, z0) ≤ v̄
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Properties of value function

▶ In many applications, we are not only interested in proving
existence (and uniqueness) of value function but also
establishing properties such as
▶ continuity,
▶ monotonicity,
▶ convexity/concavity

▶ Following simple lemma very useful
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Very simple lemma

Lemma
Let (V, d) be a complete metric space and T : V→ V a
contraction with a unique fixed point v ∈ V. If ∅ ≠ V1 ⊂ V is
closed and TV1 ⊂ V1, then v ∈ V1.

Proof.
▶ Since V1 is closed, (V1, d) is complete metric space

▶ Since T : V1 → V1 is contraction, it has unique fixed point
v1 ∈ V1

▶ v1 is also fixed point of T : V→ V

▶ Since v is unique, we must have v = v1 ∈ V1
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Application: continuity of value function

Proposition

Let X,A be topological spaces, r , g continuous, and Γ nonempty,
compact, and continuous. Then the value function v is continuous
and the policy correspondence σ is nonempty and uhc.

Proof.
▶ Let V1 ⊂ V be space of bounded continuous functions

equipped with sup norm ∥·∥
▶ Then V1 is closed subset of V and hence Banach

▶ Under maintained assumptions, for v ∈ V1, maximum
theorem implies Tv ∈ V1, so TV1 ⊂ V1

▶ By simple lemma, v ∈ V1 and hence v is continuous

▶ Since Γ is nonempty and compact, by extreme value theorem,
policy correspondence σ is nonempty, and it is uhc by
maximum theorem
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Partial order

▶ For set X , we say binary relation ≤ is partial order if

1. (Reflexivity) x ≤ x for all x ∈ X ,
2. (Antisymmetry) if x ≤ y and y ≤ x , then x = y ,
3. (Transitivity) if x ≤ y and y ≤ z , then x ≤ z

▶ A set with partial order is called a partially ordered set
▶ Examples:

▶ Euclidean space X = RN is partially ordered Banach space by
declaring x ≤ y whenever xn ≤ yn for all n

▶ Function space is partially ordered by declaring v1 ≤ v2
whenever v1(x) ≤ v2(x) for all x

▶ “Set of sets” declare A ≤ B if A ⊂ B
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Application: monotonicity of value function

Proposition

Let D be a bounded additive Markov dynamic program. Suppose
that X is partially ordered and Γ, r , g are monotone in the sense
that, for all x1 ≤ x2, z , z

′ ∈ Z, and a ∈ Γ(x1, z), we have

Γ(x1, z) ⊂ Γ(x2, z),

r(x1, z , a) ≤ r(x2, z , a),

g(x1, z , z
′, a) ≤ g(x2, z , z

′, a).

Then the value function is monotone:
x1 ≤ x2 =⇒ v(x1, z) ≤ v(x2, z).
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Proof

▶ Let V1 ⊂ V be set of bounded monotone functions, which is
closed

▶ If v ∈ V1, then for any x1 ≤ x2, we have

(Tv)(x1, z) = sup
a∈Γ(x1,z)

{
r(x1, z , a) + β Ez [v(g(x1, z , z

′, a), z ′)]
}

≤ sup
a∈Γ(x1,z)

{
r(x2, z , a) + β Ez [v(g(x2, z , z

′, a), z ′)]
}

≤ sup
a∈Γ(x2,z)

{
r(x2, z , a) + β Ez [v(g(x2, z , z

′, a), z ′)]
}

= (Tv)(x2, z),

where first inequality uses monotonicity of r , g , v and second
inequality uses the monotonicity of Γ

▶ Therefore Tv is monotone and TV1 ⊂ V1, so claim follows
from simple lemma
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Application: concavity of value function

Proposition

Let everything be as in Proposition and suppose that the state
space X and the action space A are vector spaces. If r , g are
concave in (x , a), then the value function is monotone and concave
in x .

Proof.
▶ Let V2 be space of bounded monotone concave function,

which is closed

▶ Recall that if f convex map and ϕ monotone convex function,
then ϕ ◦ f convex

▶ Hence if f concave map and ϕ monotone concave function,
then ϕ ◦ f concave (by carefully looking at proof)
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Proof

▶ Hence
r(x , z , a) + β Ez [v(g(x , z , z

′, a), z ′)]

concave in (x , a)

▶ By discussion of convexity-preserving operations,

(Tv)(x , z) = sup
a∈Γ(x ,z)

{
r(x , z , a) + β Ez [v(g(x , z , z

′, a), z ′)]
}

is concave in x

▶ Therefore Tv is monotone and concave and TV2 ⊂ V2, so
claim follows from simple lemma
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Unbounded rewards

▶ Although solving additive Markov dynamic programs based on
contraction principle is elegant, reward function needs to be
bounded

▶ However, some reward functions commonly used in
applications are unbounded

▶ For instance, consider optimal savings problem with utility

u(c) =

{
c1−γ

1−γ if 0 < γ ̸= 1,

log c if γ = 1,

where parameter γ > 0 governs risk aversion

▶ This u is unbounded above if 0 < γ < 1, unbounded below if
γ > 1, and unbounded both from above and below if γ = 1
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Restricting spaces
▶ Sometimes we may get around unboundedness by restricting

spaces
▶ In optimal savings, suppose u is strictly increasing, bounded

above, and income is always positive, so
y
¯
:= minz∈Z y(z) > 0; then

u
¯
:= u(y

¯
) > −∞ and ū := u(∞) <∞

▶ Due to budget constraint, agent is guaranteed to have wealth
wt ≥ y

¯
> 0, so we may restrict state space to X = [y

¯
,∞)

▶ For any feasible state-action process {(wt , ct)}, value agent
gets is restricted to range

u
¯

1− β
≤ E0

∞∑
t=0

βtu(ct) ≤
ū

1− β

▶ Therefore, without loss of generality we may restrict value
space to v with u

¯1−β ≤ v(x , z) ≤ ū
1−β , and can apply previous

results
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Stochastic growth model
▶ Another example is stochastic growth model:

maximize E0

∞∑
t=0

βtu(ct)

subject to (∀t)wt+1 = g(wt , zt , zt+1, ct),

(∀t)0 ≤ ct ≤ wt ,

w0 > 0, z0 given

▶ Common example is

g(w , z , z ′, c) = A(z , z ′)kα + (1− δ)k,

where k := w − c is capital, A(z , z ′) > 0 is productivity,
α ∈ (0, 1) governs decreasing returns to scale, and δ ∈ (0, 1)
is capital depreciation rate

▶ Easy to show {wt} bounded, so can allow utility functions
that are unbounded above
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State-dependent discounting
▶ Discount factor β ∈ [0, 1) in Markov dynamic program

governs patience of decision maker
▶ When β is large (small), decision maker puts relatively more

(less) weight on future rewards and thus can be considered
more (less) patient

▶ For some applications, we may want to consider situations
where patience changes over time

▶ For instance, if decision maker is head of dynasty, even if
parent is patient and lives frugally, child may be impatient and
spend extravagantly

▶ We thus consider more general setting where discount factor
β(z , z ′) could be state dependent: just change aggregator to

H(x , z , a, v)

= r(x , z , a) +
Z∑

z ′=1

P(z , z ′)β(z , z ′)v(g(x , z , z ′, a), z ′)
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Dynamic programming with state-dependent discounting

Theorem
Let D be a bounded additive Markov dynamic program with
state-dependent discounting. If the matrix B := (P(z , z ′)β(z , z ′))
has spectral radius ρ(B) < 1, the following statements are true.

1. The Bellman operator T is a Perov contraction with
coefficient matrix B.

2. D has a unique value function v , which is the unique fixed
point of T .

3. For any v0 ∈ V, we have v = limk→∞ T kv0.

4. For any γ ∈ (ρ(B), 1), the approximation error
∥∥T kv0 − v

∥∥
has order of magnitude γk .

5. If the policy correspondence σ is nonempty, the state-action
process generated by σ achieves the maximum of the
sequential problem.
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Weighted supremum norm

▶ As we have seen, common problems have unbounded utility

▶ Sometimes we may get around by restricting state space or
value space, but such approaches ad hoc and lack generality

▶ Slightly more general approach is to use weighted supremum
norm

▶ Let ψ(x , z) > 0 and set ṽ = v/ψ in Bellman:

ψ(x , z)ṽ(x , z)

= sup
a∈Γ(x ,z)

{
r(x , z , a) + Ez [β(z , z

′)ψ(x ′, z ′)ṽ(x ′, z ′)]
}
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Modified Bellman equation

▶ Dividing by ψ(x , z) > 0, get

(T̃ ṽ)(x , z)

:= sup
a∈Γ(x ,z)

{
r̃(x , z , a) + Ez

[
β(z , z ′)

ψ(x ′, z ′)

ψ(x , z)
ṽ(x ′, z ′)

]}
,

where r̃ := r/ψ

▶ To make T̃ (Perov) contraction, all we need is to control ratio
ψ(x ′, z ′)/ψ(x , z)

▶ Hence define

β̃(z , z ′) := β(z , z ′) sup
x∈X

sup
a∈Γ(x ,z)

ψ(g(x , z , z ′, a), z ′)

ψ(x , z)

and let B := (P(z , z ′)β̃(z , z ′))
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Unique fixed point with weighted supremum norm

Theorem
Let D be additive Markov dynamic program associated with
function ψ : X× Z→ (0,∞), where V is space of all function v
satisfying

sup
x∈X

|v(x , z)|
ψ(x , z)

<∞.

For v1, v2 ∈ V, define the vector-valued metric d : V→ RZ
+ by

dz(v1, v2) = sup
x∈X

|v1(x , z)− v2(x , z)|
ψ(x , z)

.

Let B be as above. If ρ(B) < 1, then following statements are
true.

1. The (modified) Bellman operator T (T̃ ) is a Perov
contraction on V (b(X× Z)) with coefficient matrix B.

2. D has a unique value function v = ψṽ , where ṽ is the unique
fixed point of T̃ in b(X× Z).
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Example: optimal savings with unbounded utility

▶ Consider optimal savings problem, where u could be
unbounded from both above and below

▶ Consider weight function ψ(w , z) = w + b, where b > 0; then

ψ(g(w , z , z ′, c), z ′)

ψ(w , z)
=

R(z , z ′)(w − c) + y(z ′) + b

w + b

≤ R(z , z ′)w + y(z ′) + b

w + b
≤ max

{
1,R(z , z ′)

}
+

y(z ′)

b

▶ Letting b →∞, RHS arbitrarily close to max {1,R(z , z ′)}
▶ Hence sufficient condition for existence of a solution is

u(w)/(w + b) is bounded above (concavity of u suffices) and
that β̃(z , z ′) := βmax {1,R(z , z ′)} satisfies assumption of
theorem
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Optimal savings with CRRA utility

▶ Consider optimal savings problem with u(c) = c1−γ

1−γ with
0 < γ < 1

▶ If we consider weight function ψ(w , z) = (w + b)1−γ for
b > 0, by similar argument we may set

β̃(z , z ′) := βmax
{
1,R(z , z ′)1−γ

}
▶ Satisfying assumptions of Theorem becomes even easier

(because R1−γ < R whenever R > 1)
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Numerical dynamic programming

▶ Almost all dynamic programming problems do not admit
closed-form solutions and must be solved numerically

▶ Consider Markov dynamic program described above, and for
simplicity assume x , a ∈ R

▶ Because computer can accept only finitely many objects, first
step to solve problem is to discretize state space X

▶ Take some N, and let XN = {x1, . . . , xN} be finite grid, where
x1 < · · · < xN
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Parameterizing value function

▶ We parameterize value function by finitely many numbers
{v(xn, z)}Nn=1

Z
z=1 ∈ RNZ

▶ Then value space is VN := RNZ , which is Banach

▶ Suppose we use some interpolation/extrapolation method to
evaluate v on entire state space X, for instance linear
interpolation on interval [x1, xN ] and extrapolation by
constants outside

▶ With slight abuse of notation, we use same symbol VN to
denote space of functions defined on entire X by
interpolation/extrapolation
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Bellman operator

▶ Bellman operator T is

(Tv)(x , z) := max
a∈Γ(x ,z)

{
r(x , z , a) + β Ez [v(x

′, z ′)]
}

= max
a∈Γ(x ,z)

{
r(x , z , a) + β

Z∑
z ′=1

P(z , z ′)v(g(x , z , z ,′ a), z ′)

}

▶ If v ∈ VN and we use particular interpolation/extrapolation
method to evaluate v(g(x , z , z ,′ a), z ′), then computing RHS
for each (wn, z) pair, we obtain new numbers
{(Tv)(xn, z)}Nn=1

Z
z=1

▶ Thus we may view T as self map from VN to VN

▶ By Blackwell, T is contraction with modulus β

▶ Hence T has unique fixed point in VN , which could be
thought of as approximation to true value function v ∈ V
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Example: stochastic growth model
▶ For stochastic growth model, Bellman operator is

(Tv)(w , z) =

max
0≤k≤w

{
u(w − k) + β

Z∑
z ′=1

P(z , z ′)v(A(z , z ′)kα + (1− δ)k , z ′)

}
▶ Two-state Markov chain with Z = {1, 2} with transition

probability P(z , z ′) = 0.8 if z = z ′ and P(z , z ′) = 0.2 if z ̸= z ′

▶ Productivity is

A(z , z ′) =

{
1.1 if z ′ = 1,

0.9 if z = 1,

so state 1 is high-productivity state

▶ Set α = 0.36 and δ = 0.08, β = 0.95, and γ = 0.5

▶ Use 100-point exponential grid on [0, 120] to numerically solve
stochastic growth model by value function iteration
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Value function iteration
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Optimistic policy iteration

▶ Value function iteration (VFI) is slow because it maximizes at
each iteration

▶ One way to get around is to perform optimization step only
occasionally

▶ For instance, take m ∈ N and suppose we update k-th value
function vk using the Bellman operator

vk+1 := (Tvk)(x , z) = sup
a∈Γ(x ,z)

{
r(x , z , a) + β Ez [vk(x

′, z ′)]
}

only when k = ml for l = 0, 1, . . .

▶ Otherwise, skip optimization step as

vk+1 := r(x , z , a) + β Ez [vk(x
′, z ′)],

where we use optimal action a from last optimization step

▶ Optimistic policy iteration (OPI)
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Convergence of optimistic policy iteration

Theorem
Let everything be as before. If v0 ∈ V satisfies v0 ≤ Tv0, then the
sequence {vk}∞k=0 obtained by optimistic policy iteration converges
to the value function v .

▶ In general, cannot show optimistic policy operator is
contraction, but convergence guaranteed if Tv0 ≥ v0

▶ If r bounded, by adding positive constant if necessary, without
loss of generality we may assume that r ≥ 0

▶ If we start from v0 ≡ 0, then clearly

(Tv0)(x , z) = (T0)(x , z) = max
a∈Γ(x ,z)

r(x , z , a) ≥ 0 = v0(x , z),

so Tv0 ≥ v0 holds
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Optimistic policy iteration with m = 10
▶ Takes more iterations (205 instead of 196) but much faster (3

sec instead of 18 sec)
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