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Chapter I

Arrow-Debreu Model

©Alexis Akira Toda Instruction slides for Econ 113/200 Mathematical Economics



©Alexis Akira Toda Instruction slides for Econ 113/200 Mathematical Economics



What is general equilibrium?

▶ General equilibrium (GE) is antonym of partial equilibrium
(PE)

▶ Partial equilibrium is what we learn in intermediate micro
▶ Focus on one market
▶ Demand and supply curve

▶ In reality, markets are interdependent
▶ How much you consume depends on income (labor market)
▶ Oil price ↑ =⇒ demand for SUV ↓, demand for EV ↑

▶ GE models economy as a whole, taking into account
interaction of all markets
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Commodities

▶ By definition, GE features multiple goods and services
(commodities)

▶ Need to broadly interpret goods; they are distinguished not
just by physical properties (e.g., apples and bananas) but
▶ time: coffee beans available now or in 6 months
▶ location: water available in California or Alaska
▶ state: healthcare service when sick or healthy

©Alexis Akira Toda Instruction slides for Econ 113/200 Mathematical Economics



GE is foundation of modern economics

▶ Depending on which feature we focus on, abstract GE model
becomes specific model in each field

Time Location Uncertainty

Time
Location

Uncertainty
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GE is foundation of modern economics

▶ Depending on which feature we focus on, abstract GE model
becomes specific model in each field

Time Location Uncertainty

Time Macro
Location Trade

Uncertainty Finance
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GE is foundation of modern economics

▶ Depending on which feature we focus on, abstract GE model
becomes specific model in each field

▶ This course mostly deals with abstract models, except
applications to international trade and finance

▶ Training of how to think logically through models

Time Location Uncertainty

Time Macro International Macro Macro-Finance
Location Trade International Finance

Uncertainty Finance
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Abstract Arrow-Debreu model

▶ From now on, consider abstract GE model in tradition of
Arrow and Debreu

▶ Agents indexed by i ∈ I = {1, 2, . . . , I}
▶ Convention: use upper case letter (here I ) to denote both

name of set and its cardinality; use lower case letter to denote
generic element

▶ This way we can simplify notation
▶ I use i for indexing agents because it reminds us of individual

▶ Goods indexed by l ∈ L = {1, 2, . . . , L}
▶ I use l for indexing goods because it reminds us of label
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Some notations

▶ R: set of real numbers; RL: set of L-dimensional vectors
▶ If x = (x1, . . . , xL) ∈ RL, we write

▶ x ≥ 0 (“x is nonnegative”) if xl ≥ 0 for all l ; the set of such
vectors is denoted by RL

+
▶ x ≫ 0 (“x is positive”) if xl > 0 for all l ; the set of such

vectors is denoted by RL
++

▶ If x , y ∈ RL, we write
▶ x ≥ y if xl ≥ yl for all l ( ⇐⇒ x − y ≥ 0)
▶ x ≫ y if xl > yl for all l ( ⇐⇒ x − y ≫ 0)
▶ x > y if x ≥ y and x ̸= y
▶ ≤, <,≪ defined analogously

▶ Examples: [
1
2

]
≪
[
3
4

]
<

[
3
5

]
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Consumption bundle

▶ Generic consumption bundle is denoted by

x = (x1, . . . , xL) ∈ RL
+

▶ Note: consumption bundle belongs to nonnegative orthant RL
+

because we can’t consume negative amounts
▶ however, there are some exceptions for modeling purpose

▶ Specific consumption bundle of agent i denoted by

xi = (xi1, . . . , xil , . . . , xiL) ∈ RL
+

▶ Note: when we use two subscripts, like xil , first subscript (i)
refers to agent and second (l) refers to good

▶ Example: x12 is consumption of good 2 by agent 1; x21 is
consumption of good 1 by agent 2

▶ If confused, think concretely through 2-agent, 2-good case
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Preferences, utility function

▶ We suppose agents’ preferences are represented by utility
functions

▶ If ui : RL
+ → R is utility function of agent i , then

i prefers bundle x to y ⇐⇒ ui (x) > ui (y)

▶ If f : R → R is strictly increasing, then

ui (x) > ui (y) ⇐⇒ f (ui (x)) > f (ui (y))

▶ Hence preference ordering is the same if we use ui or
vi := f ◦ ui

▶ Properties preserved by monotonic transformation (f ) are
called ordinal, otherwise cardinal; we are mostly interested in
ordinal properties
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Common utility functions (2-good case)

▶ Consider 2-good case for simplicity
▶ General case: just change 2 to L
▶ Below, Greek letters (α, σ, etc.) are positive parameters

▶ Cobb-Douglas: u(x1, x2) = α1 log x1 + α2 log x2
▶ Can also use v(x) = f (u(x)) = xα1

1 xα2
2 for f (t) = et

▶ Leontief: u(x1, x2) = min {x1/α1, x2/α2}
▶ Constant Elasticity of Substitution (CES): For 0 < σ ̸= 1,

u(x1, x2) = (α1x
1−σ
1 + α2x

1−σ
2 )

1
1−σ

▶ Can also use v(x) = f (u(x)) = 1
1−σ (α1x

1−σ
1 + α2x

1−σ
2 ) for

f (t) = t1−σ

1−σ (Note f ′(t) = t−σ > 0, so f strictly increasing)

▶ Actually Cobb-Douglas and Leontief can be considered as
special cases of CES (see exercise)
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Arrow-Debreu model defined

Definition
An Arrow-Debreu economy E = {I , (ei ), (ui )} consists of

▶ set of agents I = {1, 2, . . . , I},
▶ endowments (ei ) ⊂ RL

+, and

▶ utility functions ui : RL
+ → R

▶ For now, consider only pure exchange (or endowment)
economies
▶ Including production is more realistic and possible but does not

add much insight at abstract level

▶ Just to remind you, agent i ’s endowment is a vector

ei = (ei1, . . . , eiL) ∈ RL
+
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Markets, prices

▶ We suppose all goods are traded (complete market)
▶ Clearly unrealistic but useful for abstraction

▶ You can’t sell your future labor income because you may run
away without working

▶ Many specific goods not traded because trade volume too
small (umbrella when it rains in San Diego on specific day)

▶ Suppose good l quoted at price pl ∈ R in some unit of
account; price vector is p = (p1, . . . , pL) ∈ RL

▶ Normally, pl > 0 (need to pay something to get good)
▶ But it is possible that

▶ pl = 0 (free good): e.g., air, swimming at beach
▶ pl < 0 (“bad”): e.g., garbage, junk car, nuclear waste
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Budget constraint
▶ Recall agent i endowed with ei = (ei1, . . . , eiL) ∈ RL

+

▶ If sell off entire endowment, receives

wi :=
L∑

l=1

pleil = p · ei

of unit of account (money), where · denotes inner product
▶ If agent i wishes to consume bundle x = (x1, . . . , xL), required

expenditure is
L∑

l=1

plxl = p · x

▶ Hence budget constraint is

p · x ≤ p · ei ⇐⇒ p · (x − ei ) ≤ 0

(Inequality because not forced to spend everything)
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Budget set

▶ Budget set:

Bi (p) :=
{
x ∈ RL

+

∣∣∣ p · (x − ei ) ≤ 0
}

x1

x2

O

Bi (p)

p

ei = (ei1, ei2)
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Neutrality of money

▶ If t > 0, then

Bi (tp) =
{
x ∈ RL

+

∣∣∣ (tp) · (x − ei ) ≤ 0
}

=
{
x ∈ RL

+

∣∣∣ t(p · (x − ei )) ≤ 0
}

=
{
x ∈ RL

+

∣∣∣ p · (x − ei ) ≤ 0
}
= Bi (p),

so scaling up or down all prices by same factor doesn’t affect
budget set

▶ Neutrality of money: it doesn’t matter in which unit we quote
price

▶ Hence we can normalize prices, for example
∑L

l=1 pl = 1 or
p1 = 1
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Objective of agents

▶ Objective of each agent is to maximize utility

▶ Solve

maximize ui (x)

subject to x ∈ Bi (p)

▶ Suppose xi solves utility maximization problem

▶ Then it also solves

maximize f (ui (x))

subject to x ∈ Bi (p),

where f is any strictly increasing function

▶ Hence optimal behavior (xi ) is ordinal property, whereas
maximum utility ui (xi ) is cardinal property
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Walrasian equilibrium

Definition
A competitive equilibrium (also known as Walrasian equilibrium){
p, (xi )

I
i=1

}
consists of a price vector p ∈ RL and an allocation

(xi ) ⊂ RL
+ such that

1. (Agent optimization) for each i , xi solves the utility
maximization problem, that is, xi ∈ Bi (p) and

x ∈ Bi (p) =⇒ ui (xi ) ≥ ui (x),

2. (Market clearing) the allocation is feasible, that is,

I∑
i=1

xi︸ ︷︷ ︸
aggregate demand

≤
I∑

i=1

ei︸ ︷︷ ︸
aggregate supply
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Comments on equilibrium

▶ Price-taking behavior: no monopoly or monopsony

▶ When choosing demand, agents care only about prices and
their wealth/preference; it could be that at particular price, an
agent demands more goods than exist on earth

▶ Equilibrium is a situation in which collective behavior is
consistent with aggregate resources

▶ Condition “demand ≤ supply” (not demand = supply)
important: free disposal (unconsumed goods may be left
unconsumed, like air)
▶ Useful abstraction but clearly unrealistic—in reality you can’t

get rid of garbage, junk car, or nuclear waste for free
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Example: Edgeworth box economy

▶ Two agents (I = 2), two goods (L = 2)

▶ Suppose endowments are

e1 =

[
e11
e12

]
= e2 =

[
e21
e22

]
=

[
3
3

]
▶ Suppose utility functions are Cobb-Douglas:

u1(x1, x2) =
2

3
log x1 +

1

3
log x2,

u2(x1, x2) =
1

3
log x1 +

2

3
log x2,

▶ Let p = (p1, p2) be price vector; then initial wealth
w1 = w2 = 3p1 + 3p2

▶ What is equilibrium?
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First, compute demand

▶ Consider utility maximization problem

maximize α log x1 + (1− α) log x2

subject to p1x1 + p2x2 ≤ w

▶ Lagrangian (more on this next lecture) is

L(x1, x2, λ) = α log x1 + (1− α) log x2 + λ(w − p1x1 − p2x2)

▶ How to remember: if solve

maximize f (x)

subject to g(x) ≥ 0,

then Lagrangian is L(x , λ) = f (x) + λg(x)

▶ In above example, f (x) = α log x1 + (1− α) log x2,
g(x) = w − p1x1 − p2x2
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Karush-Kuhn-Tucker conditions
▶ First-order condition

0 =
∂L

∂x1
=

α

x1
− λp1 =⇒ x1 =

α

λp1
,

0 =
∂L

∂x2
=

1− α

x2
− λp2 =⇒ x2 =

1− α

λp2

▶ Complementary slackness condition

0 = λ(w − p1x1 − p2x2) ⇐⇒ λ =
1

w

▶ Hence solution is (Cobb-Douglas formula)

(x1, x2) =

(
αw

p1
,
(1− α)w

p2

)
▶ I will cover how to solve constrained optimization problems in

a few lectures; for rigorous theory see graduate course material
(https://alexisakira.github.io/teaching/mathcamp)
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Going back to original problem,

▶ Cobb-Douglas formula: demand =
(
αw
p1

, (1−α)w
p2

)
▶ Agent 1: α = 2/3, w1 = 3p1 + 3p2, so

x1 = (x11, x12) =

(
2p1 + 2p2

p1
,
p1 + p2

p2

)
▶ Agent 2: α = 1/3, w1 = 3p1 + 3p2, so

x2 = (x21, x22) =

(
p1 + p2

p1
,
2p1 + 2p2

p2

)
▶ Can normalize price, so set (p1, p2) = (1, p); then

x1 =

(
2 + 2p,

1 + p

p

)
, x2 =

(
1 + p,

2 + 2p

p

)
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Market clearing condition

▶ Recall market clearing condition is “demand ≤ supply”

▶ Under weak conditions, can change to “demand = supply”
(more details in a few lectures)

▶ Hence market clearing condition for good 1 is

x11 + x21 = e11 + e21 ⇐⇒ (2 + 2p) + (1 + p) = 3 + 3

⇐⇒ 3 + 3p = 6 ⇐⇒ p = 1

▶ Substituting into demand formula, equilibrium is

p = (p1, p2) = (1, 1),

x1 = (x11, x12) = (4, 2),

x2 = (x21, x22) = (2, 4)
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Example: interest rate

▶ One agent (or many identical agents), two periods (t = 1, 2),
one physical good (apple)

▶ Recall we distinguish goods by time of availability, so
mathematically it’s just a static two good model

▶ Suppose endowments are e = (e1, e2)

▶ Suppose utility function is Cobb-Douglas:

u(x1, x2) = log x1 + β log x2

▶ Let p = (p1, p2) be price vector

▶ Interpretation: p1 is spot price (price to get one apple today);
p2 is future price (price to buy right to get one apple delivered
tomorrow)
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First, compute demand

▶ Initial wealth is w = p1e1 + p2e2
▶ Use Cobb-Douglas formula: caveat is coefficients must sum to

1

▶ Hence divide utility function by (1 + β):

v(x1, x2) =
1

1 + β
log x1 +

β

1 + β
log x2

(Recall monotonic transformation doesn’t change behavior)

▶ Hence demand is

(x1, x2) =

(
1

1 + β

p1e1 + p2e2
p1

,
β

1 + β

p1e1 + p2e2
p2

)
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Market clearing condition

▶ Demand:

(x1, x2) =

(
1

1 + β

p1e1 + p2e2
p1

,
β

1 + β

p1e1 + p2e2
p2

)
▶ Hence market clearing condition for good 1 is

x1 = e1 ⇐⇒ 1

1 + β

p1e1 + p2e2
p1

= e1

⇐⇒ p2
p1

=
βe1
e2

▶ Get same conclusion if we use market clearing condition for
good 2

©Alexis Akira Toda Instruction slides for Econ 113/200 Mathematical Economics



Real interest rate

▶ Real interest rate is “how many apples I can get tomorrow by
giving up one apple today”

▶ Let’s do the calculation:
▶ I sell one apple today: I receive p1 × 1 = p1 of money
▶ Using this amount, I can buy

p2x = p1 ⇐⇒ x =
p1
p2

units of future contracts
▶ With these future contracts, I get delivered p1/p2 apples

tomorrow

▶ Hence real (gross) interest rate is

R =
p1
p2

=
e2
βe1

©Alexis Akira Toda Instruction slides for Econ 113/200 Mathematical Economics



Comparative statics of interest rate

▶ Real interest rate:
R =

p1
p2

=
e2
βe1

▶ Hence R ↑ if
▶ β ↓ (people impatient) or
▶ e2/e1 ↑ (high economic growth)

▶ In many countries, interest rate has been declining for many
decades

▶ Possible explanations:
▶ population aging (people more patient)
▶ lower economic growth
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Chapter II

Convex Analysis and Convex

Programming
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Convex set

▶ A set C ⊂ RN is convex if any line segment joining any two
points is entirely contained in C

▶ Mathematically, C ⊂ RN is convex if

(1− α)x1 + αx2 ∈ C whenever x1, x2 ∈ C and 0 ≤ α ≤ 1

x1

x2

(1− α)x1 + αx2
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Examples of convex and non-convex sets

Rectangle Circle Ellipse Convex

Convex

Non-convex
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My favorite mathematical joke

▶ Chinese character for “convex” is not convex

©Alexis Akira Toda Instruction slides for Econ 113/200 Mathematical Economics



Budget set is convex

▶ Let’s prove that the budget set is convex

▶ Given price vector p and wealth w , budget set is

B = B(p,w) :=
{
x ∈ RL

+

∣∣∣ p · x ≤ w
}

▶ Here is the proof: suppose x1, x2 ∈ B and 0 ≤ α ≤ 1

▶ Then x1, x2 ≥ 0, so (1− α)x1 + αx2 ≥ 0

▶ Also p · x1 ≤ w and p · x2 ≤ w , so

p · ((1− α)x1 + αx2) = (1− α)p · x1 + αp · x2
≤ (1− α)w + αw = w

▶ Hence by definition (1− α)x1 + αx2 ∈ B, so B is convex
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Hyperplane

▶ Recall that equation of straight line in R2 has form

a1x1 + a2x2 = c

▶ Similarly, equation of plane in R3 has form

a1x1 + a2x2 + a3x3 = c

▶ More generally, hyperplane in RN has form

a · x = a1x1 + · · ·+ aNxN = c

▶ If = replaced with inequalities, we call halfspaces:

H+ =
{
x ∈ RN

∣∣∣ a · x ≥ c
}
,

H− =
{
x ∈ RN

∣∣∣ a · x ≤ c
}
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Separation of convex sets

▶ We say two sets A,B can be separated if there is hyperplane
(separating hyperplane) that puts A,B in opposite halfspaces

▶ x ∈ A =⇒ a · x ≤ c , x ∈ B =⇒ a · x ≥ c

A

B

H−

H+

a · x = c

a
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Separating Hyperplane Theorem (weak version)

Theorem
If C ,D ⊂ RN are nonempty, convex, and disjoint (C ∩ D = ∅),
then C ,D can be separated: there exists 0 ̸= a ∈ RN such that

sup
x∈C

a · x ≤ inf
y∈D

a · y

C

D

H−

H+

a · x = c

a
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Separating Hyperplane Theorem (strong version)

Theorem
If C ,D ⊂ RN are nonempty, closed, convex, disjoint (C ∩ D = ∅),
and one of them is compact, then C ,D can be strictly separated:
there exists 0 ̸= a ∈ RN such that

sup
x∈C

a · x < inf
y∈D

a · y

C

D

H−

H+

a · x = c

a
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Proof of separating hyperplane theorem

▶ Rigorous proof is in lecture note
▶ Idea:

1. If C is convex and x is any point, then there exists unique
closest point (projection) y = PC (x)

δ

x

y = PC (x)

C

©Alexis Akira Toda Instruction slides for Econ 113/200 Mathematical Economics



Proof of separating hyperplane theorem
▶ Idea:

1. If C is convex and x is any point, then there exists unique
closest point (projection) y = PC (x)

2. If x in exterior of C , then tangent hyperplane separates x and
C

δ

x

y = PC (x)

C
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Proof of separating hyperplane theorem
▶ Idea:

1. If C is convex and x is any point, then there exists unique
closest point (projection) y = PC (x)

2. If x in exterior of C , then tangent hyperplane separates x and
C

3. If x on boundary of C , same holds by limiting argument

x = y = PC (x)

C
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Proof of separating hyperplane theorem

▶ Rigorous proof is in lecture note
▶ Idea:

1. If C is convex and x is any point, then there exists unique
closest point (projection) y = PC (x)

2. If x in exterior of C , then tangent hyperplane separates x and
C

3. If x on boundary of C , same holds by limiting argument
4. If C ,D are disjoint convex sets, define

E := {x − y | x ∈ C , y ∈ D}

Then E convex, 0 /∈ E , so can apply above argument to 0 and
E (instead of x and C ) to get conclusion
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Convex functions
▶ For function f : RN → R, set of points on or above graph is

called epigraph

epi f :=
{
(x , y) ∈ RN × R

∣∣∣ f (x) ≤ y
}

▶ f is called convex function if epi f is convex set

x

y = f (x)epi f

x1 x2

f (x1)

f (x2)
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Convex functions
▶ Alternative definition of convex function:

f ((1− α)x1 + αx2) ≤ (1− α)f (x1) + αf (x2)

for all x1, x2 ∈ RN and 0 ≤ α ≤ 1
▶ If N = 1 and f twice differentiable, can show f convex if and

only if f ′′ ≥ 0

x

y = f (x)epi f

x1 x2

f (x1)

f (x2)
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Concave functions

▶ We say f : RN → R is concave function if −f convex

▶ Equivalently, f concave if

f ((1− α)x1 + αx2) ≥ (1− α)f (x1) + αf (x2)

for all x1, x2 ∈ RN and 0 ≤ α ≤ 1
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Quasi-convex functions

▶ For function f : RN → R, set of points that give lower
function value than given level is called lower contour set

Lf (y) :=
{
x ∈ RN

∣∣∣ f (x) ≤ y
}

▶ f is called quasi-convex function if Lf (y) is convex set for all y

▶ Equivalently, f quasi-convex if

f ((1− α)x1 + αx2) ≤ max {f (x1), f (x2)}

for all x1, x2 ∈ RN and 0 ≤ α ≤ 1
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Relation between convexity and quasi-convexity

▶ If f convex, then also quasi-convex
▶ Proof:

▶ Take any y and suppose x1, x2 ∈ Lf (y)
▶ By definition, f (x1) ≤ y and f (x2) ≤ y
▶ By convexity,

f ((1− α)x1 + αx2) ≤ (1− α)f (x1) + αf (x2)

≤ (1− α)y + αy = y

▶ Hence (1− α)x1 + αx2 ∈ Lf (y), so f quasi-convex

▶ Not all quasi-convex functions are convex
▶ Example: define f : R → R by f (x) =

√
|x |, then f

quasi-convex but not convex (draw a picture)
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Quasi-concave functions

▶ We say f : RN → R is quasi-concave function if −f
quasi-convex

▶ Equivalently, f quasi-concave if upper contour set

Uf (y) :=
{
x ∈ RN

∣∣∣ f (x) ≥ y
}

is always convex
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Convexity/concavity in economics

▶ Reasonable to assume utility functions are quasi-concave

▶ Because quasi-concavity of utility function implies convexity of
upper contour set

▶ If an agent prefers x1, x2 to y , reasonable to assume he prefers
mixture (1− α)x1 + αx2 to y

▶ Quasi-concavity nice because preserved by monotonic
transformation (ordinal property)
▶ If u : RL

+ → R quasi-concave and f : R → R strictly increasing,
then clearly f ◦ u quasi-concave

▶ Concavity not preserved by monotonic transformation (cardinal
property); example: f (x) =

√
x (defined for x ≥ 0) concave,

but f (x)4 = x2 not concave
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Constrained optimization problems
▶ In economics, we often encounter constrained optimization

problems of the form

maximize f (x)

subject to gk(x) ≥ 0, (k = 1, . . . ,K )

▶ Here f : objective function, gk(x) ≥ 0: constraint

▶ Example: utility maximization problem

maximize ui (x)

subject to x ∈ Bi (p)

▶ Recalling x ∈ Bi (p) if xl ≥ 0 for all l and p · (x − ei ) ≤ 0,
constraint functions are

gk(x) =

{
xk (k = 1, . . . , L)

p · (ei − x) (k = K := L+ 1)
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Gradient, unconstrained optimization

▶ Recall that if f : R → R is differentiable and achieves
maximum (or minimum) at x̄ , then f ′(x̄) = 0

▶ Similar for multi-dimensional case: if f : RN → R is
differentiable and achieves maximum (or minimum) at x̄ , then

∂f

∂xn
(x̄) = 0 for all n

▶ More compactly, ∇f (x̄) = 0, where

∇f =


∂f
∂x1
...
∂f
∂xN


is gradient of f
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Karush-Kuhn-Tucker (KKT) theorem

Theorem (Karush-Kuhn-Tucker for quasi-concave functions)

Let f , gk ’s be quasi-concave and differentiable.

1. If x̄ is a solution to the optimization problem

maximize f (x)

subject to gk(x) ≥ 0, (k = 1, . . . ,K )

and there exists a point x0 such that gk(x0) > 0 for all k, then
there exists λ = (λ1, . . . , λK ) ∈ RK

+ such that

(FOC) ∇f (x̄) +
K∑

k=1

λk∇gk(x̄) = 0,

(CS) (∀k) λk ≥ 0, gk(x̄) ≥ 0, λkgk(x̄) = 0

2. Conversely, if x̄ and λ satisfy first-order and complementary
slackness conditions, and ∇f (x̄) ̸= 0, then x̄ is a solution
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How to use KKT
1. Rewrite problem as

maximize f (x)

subject to gk(x) ≥ 0, (k = 1, . . . ,K )

Constraints should be of form g(x) ≥ 0!

2. Define Lagrangian

L(x , λ) = f (x) +
K∑

k=1

λkgk(x)

3. Pretend you are maximizing L over x , and take first-order
condition

0 = ∇xL = ∇f +
K∑

k=1

λk∇gk

4. Complementary slackness is just λkgk = 0

5. Solve for x , λ that satisfy all conditions
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Cobb-Douglas demand
▶ Consider Cobb-Douglas utility function

u(x) =
L∑

l=1

αl log xl ,

where αl > 0 and
∑L

l=1 αl = 1

▶ Let’s maximize subject to budget constraint p · x ≤ w

▶ Problem is equivalent to

maximize f (x) :=
L∑

l=1

αl log xl

subject to g(x) := w −
L∑

l=1

plxl ≥ 0

(Can ignore nonnegativity constraints xl ≥ 0 because
log 0 = −∞)
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Cobb-Douglas demand
▶ Lagrangian is

L(x , λ) =
L∑

l=1

αl log xl + λ

(
w −

L∑
l=1

plxl

)
▶ First-order condition:

0 =
∂L

∂xl
=

αl

xl
− λpl ⇐⇒ xl =

αl

λpl

▶ It can’t be λ = 0, for otherwise xl = ∞
▶ Hence λ > 0, and complementary slackness implies

w = p · x =
L∑

l=1

αl

λ
=

1

λ
⇐⇒ λ =

1

w

▶ Hence demand is xl =
αlw
pl

▶ Can compute demand for CES in a similar way
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Chapter III

Walras law
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Strong monotonicity

▶ Suppose there are L goods, consumption bundle denoted by
x = (x1, . . . , xL)

▶ Let u : RL
+ → R be a utility function

▶ Usually we like more to less, so u(x) = u(x1, . . . , xL) strictly
increasing in each xl

▶ More compactly, we say u is strongly monotonic if x < y
implies u(x) < u(y) (recall vector inequality from Ch. 1)
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Weak monotonicity

▶ Strong monotonicity is a strong assumption because agents
like to consume more no matter how much they are consuming

▶ Unrealistic, because after eating 100 hamburgers, no one
wants to eat another hamburger

▶ We say u is weakly monotonic if x ≤ y implies u(x) ≤ u(y)
and x ≪ y implies u(x) < u(y)

▶ So consuming more doesn’t hurt, and consuming more of all
goods is better
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Local nonsatiation

▶ Weak monotonicity still a strong assumption because “bads”
are ruled out

▶ No one wants to accept garbage, junk car, and nuclear waste
for free

▶ We say u is locally nonsatiated if for any x ∈ RL
+ and ϵ > 0,

there exists y with ∥y − x∥ < ϵ and u(y) > u(x)

▶ Intuitively, local nonsatiation means that no matter what you
are consuming, there is an arbitrarily close consumption
bundle that you strictly prefer
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Relation between three concepts

▶ Easy to show

Strong monotonicity =⇒ Weak monotonicity

=⇒ Local nonsatiation

▶ For theoretical purpose, we will assume only local nonsatiation
▶ Examples:

▶ Cobb-Douglas and CES utilities are strongly monotonic
▶ Leontief utility is weakly monotonic but not strongly monotonic
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Locally nonsatiated agent spends all income

Proposition

Let u : RL
+ → R be a locally nonsatiated (LNS) utility function and

x(p,w) be a solution to the utility maximization problem (UMP)

maximize u(x)

subject to p · x ≤ w , x ∈ RL
+.

Then p · x(p,w) = w.
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If u: LNS, then solution to UMP satisfies p · x = w

Proof.
▶ Suppose u: LNS and x = x(p,w) be a solution to UMP

▶ Suppose to the contrary that p · x < w

▶ Take ϵ > 0 such that p · y < w whenever ∥y − x∥ < ϵ;
possible because x 7→ p · x continuous

▶ By LNS, can choose such y such that u(y) > u(x)

▶ So y is affordable and gives higher utility than x , contradiction
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Walras law

▶ Immediate corollary of above proposition is Walras law
▶ Let E = {I , (ei ), (ui )} be Arrow-Debreu economy

▶ ei ∈ RL
+: endowment of agent i

▶ ui : RL
+ → R utility of agent i

▶ Let p ∈ RL
+ be any price vector and p · ei be income of agent i

▶ Assume demand xi (p, p · ei ) exists
▶ Define aggregate excess demand by

z(p) :=
I∑

i=1

(xi (p, p · ei )− ei )
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Walras law

Corollary

If each ui locally nonsatiated, then

p · z(p) = 0

Proof.
▶ Let xi = xi (p, p · ei )
▶ By previous proposition, p · xi = p · ei , so p · (xi − ei ) = 0

▶ Hence

p · z(p) = p ·
I∑

i=1

(xi − ei )

=
I∑

i=1

p · (xi − ei ) = 0
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Walras law

Corollary

If each ui locally nonsatiated, then

p · z(p) = 0

Proof.
▶ Let xi = xi (p, p · ei )
▶ By previous proposition, p · xi = p · ei , so p · (xi − ei ) = 0

▶ Hence

p · z(p) = p ·
I∑

i=1

(xi − ei )

=
I∑

i=1

p · (xi − ei ) = 0
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Implication of Walras law

▶ Under local nonsatiation (which is quite weak), Walras law
implies

0 = p · z(p) =
L∑

l=1

plzl(p),

where zl(p) =
∑I

i=1(xil − eil) aggregate excess demand of
good l

▶ Hence if pl > 0 for all l and zl(p) = 0 (demand = supply) for
all but one l , then market clears for the remaining one market

▶ This justifies checking only L− 1 market clearing conditions
instead of L

▶ We now make this more precise
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In equilibrium, excess supply means free good

Proposition

Let E = {I , (ei ), (ui )} be an economy with LNS utilities and
{p, (xi )} be a Walrasian equilibrium, where p ≥ 0. Then

pl

I∑
i=1

(xil − eil) = 0

for all l . In particular, pl = 0 if
∑I

i=1(xil − eil) < 0.

▶ Goods in excess supply are free

▶ Example: air
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Proof

▶ By market clearing,
∑I

i=1(xil − eil) ≤ 0 for all l

▶ Multiplying both sides by pl ≥ 0, get pl
∑I

i=1(xil − eil) ≤ 0 for
all l

▶ Summing over l , get

L∑
l=1

pl

I∑
i=1

(xil − eil) ≤ 0

▶ But

0 = p · z(p) =
L∑

l=1

pl

I∑
i=1

(xil − eil)

by Walras law, so all inequalities must hold with equality

▶ Hence pl
∑I

i=1(xil − eil) = 0 for all l
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With strong monotonicity, can ignore one market

Theorem
Let E = {I , (ei ), (ui )} be an economy with LNS utilities. Assume
that at least one agent has a strongly monotonic preference. Let xi
be the demand of agent i given price p. Then {p, (xi )} is an
equilibrium if and only if p ≫ 0 and

I∑
i=1

(xil − eil) = 0

for l = 1, . . . , L− 1.

▶ With strong monotonicity (for at least one agent), equilibrium
implies demand = supply

▶ Furthermore, can ignore one market
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Proof

▶ If pl = 0, demand of strongly monotonic agent ∞, which is
impossible

▶ So pl > 0 for all l (p ≫ 0) necessary

▶ In equilibrium, by previous proposition we know
pl
∑I

i=1(xil − eil) = 0 for all l

▶ Since pl > 0, it must be
∑I

i=1(xil − eil) = 0 for all l

▶ Conversely, suppose p ≫ 0 and
∑I

i=1(xil − eil) = 0 for
l = 1, . . . , L− 1

▶ Then Walras law p · z(p) = 0 implies
∑I

i=1(xil − eil) = 0 for
l = L, so equilibrium
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Solving for equilibrium

▶ Above theorem can be used to compute equilibrium
▶ Here is algorithm:

1. Check that agents have LNS utilities and at least one agent
strongly monotonic

2. For each p ≫ 0, solve UMP

maximize ui (x)

subject to p · x ≤ w .

3. Normalize one price, say p1 = 1; solve system of equation

I∑
i=1

(xil(p, p · ei )− eil) = 0

for p, where l = 1, . . . , L− 1
4. Price vector is p, and demand is xi = xi (p, p · ei )
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Edgeworth box economy with Cobb-Douglas utility

▶ Two agents, I = {1, 2}
▶ Two goods, L = 2

▶ Agent 1 has endowment a = (a1, a2), utility

u1(x1, x2) = α log x1 + (1− α) log x2

▶ Agent 2 has endowment b = (b1, b2), utility

u2(x1, x2) = β log x1 + (1− β) log x2

▶ What is equilibrium?
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Edgeworth box economy with Cobb-Douglas utility

▶ Cobb-Douglas utility is strongly monotonic

▶ Normalize price vector to (p1, p2) = (1, p)

▶ Using Cobb-Douglas formula, demand of agent 1 is

(x11, x12) =

(
α(a1 + pa2),

(1− α)(a1 + pa2)

p

)
▶ Similarly, demand of agent 2 is

(x21, x22) =

(
β(b1 + pb2),

(1− β)(b1 + pb2)

p

)
▶ Market clearing condition for good 1 is

x11 + x21 = a1 + b1
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Edgeworth box economy with Cobb-Douglas utility

▶ Market clearing condition for good 1 is

a1 + b1 = x11 + x21 = α(a1 + pa2) + β(b1 + pb2)

▶ Solving for p, get

p =
(1− α)a1 + (1− β)b1

αa2 + βb2

▶ Substitute this price into demand formula to compute demand
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General Cobb-Douglas economy
▶ More generally, assume I agents, L goods, Cobb-Douglas

utility

▶ Agent i has endowment ei , utility

ui (x) =
L∑

l=1

αil log xl ,

where
∑L

l=1 αil = 1

▶ Using Cobb-Douglas formula, demand of agent i is

xil =
αilp · ei

pl

▶ Market clearing condition for good l is

el :=
I∑

i=1

eil =
I∑

i=1

xil =
I∑

i=1

αilp · ei
pl
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General Cobb-Douglas economy

▶ Market clearing condition equivalent to

p ·
I∑

i=1

αilei = plel

▶ Normalizing one price (say pL = 1), just a system of linear
equation

▶ Can show unique p ≫ 0 exists (after normalization), though
proof not so easy (try if you can)
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Chapter IV

Quasi-linear model
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Solving for equilibrium

▶ We have seen that solving for equilibrium is generally
complicated:

1. for each agent i , solve utility maximization problem to express
demand xi (p) as a function of price p

2. solve for market clearing condition

I∑
i=1

xi (p) =
I∑

i=1

ei

▶ In a “quasi-linear” model, it turns out that solving for
equilibrium is relatively straightforward

▶ Furthermore, equilibrium has certain welfare property
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Quasi-linear utility

▶ We say that a utility function u defined on R× RL
+ is

quasi-linear if u has the form

u(x0, x1, . . . , xL) = x0 + ϕ(x1, . . . , xL)

for some function ϕ : RL
+ → R

▶ Here there is a special good 0, called numéraire (“unit of
account” in French), that can be consumed in positive or
negative amounts

▶ Utility is additively separable between good 0 and the rest,
and the good 0 part is linear (hence the name quasi-linear)

▶ Can think of good 0 as money or gold
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Demand with quasi-linear utility

▶ Computing demand for quasi-linear utility is relatively
straightforward

▶ Consider

maximize x0 + ϕ(x)

subject to x0 + p · x ≤ w ,

where
▶ x = (x1, . . . , xL): bundle of non-numéraire goods,
▶ p = (p1, . . . , pL): price vector of non-numéraire goods,
▶ w : income,
▶ p0 = price of numéraire = 1
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Demand with quasi-linear utility

▶ Consider

maximize x0 + ϕ(x)

subject to x0 + p · x ≤ w

▶ Clearly utility locally nonsatiated (because strictly increasing
in x0), so may assume x0 + p · x = w

▶ Eliminating x0, suffices to solve

max
x

[ϕ(x) + w − p · x ]

▶ w just additive constant, so suffices to solve

max
x

[ϕ(x)− p · x ]
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Demand with quasi-linear utility

Proposition

Solution to

maximize x0 + ϕ(x)

subject to x0 + p · x ≤ w

is (x0, x) = (w − p · x(p), x(p)), where x(p) ∈ RL
+ solves

max
x

[ϕ(x)− p · x ]

▶ Demand of non-numéraire goods depend only on price vector
p, independent of income w
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Example: nonlinear part additively separable

▶ Suppose ϕ additively separable, so
ϕ(x) = ϕ1(x1) + · · ·+ ϕL(xL)

▶ Then

ϕ(x)− p · x =
L∑

l=1

(ϕl(xl)− plxl)

▶ Hence maximizing ϕ(x)− p · x equivalent to maximizing
ϕl(xl)− plxl for each l

▶ First-order condition: ϕ′
l(xl)− pl = 0

▶ Hence demand xl(p) = (ϕ′
l)
−1(pl) depends only on own price

▶ Formal justification of “demand curve” in intermediate micro
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Some caution

▶ Quasi-linear utility popular in microeconomics because it
allows focusing on one market (partial equilibrium analysis)

▶ However, quasi-linear utility unrealistic because demand
independent on income

▶ In reality, demand depends on income: as we get richer,
▶ dormitory → apartment → house,
▶ crappy used vehicle → ordinary new vehicle → Tesla, etc.
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Quasi-linear economy

▶ E = {I , (ei0, ei ), ui} is quasi-linear economy if
▶ I = {1, . . . , I} is set of agents,
▶ ei0 is i ’s endowment of numéraire good,
▶ ei = (ei1, . . . , eiL) is i ’s endowment vector of non-numéraire

goods,
▶ ui (x0, x) = x0 + ϕi (x) is i ’s quasi-linear utility function, where

x = (x1, . . . , xL)

▶ Definition of equilibrium standard

1. Agent optimization
2. Market clearing

▶ Let {(1, p), (xi0, xi )} be equilibrium, where
▶ p = (p1, . . . , pL) price vector of non-numéraire goods,
▶ xi0: i ’s demand of numéraire good,
▶ xi ∈ RL

+: i ’s demand of non-numéraire goods
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Equilibrium maximizes sum of utility

Theorem
E = {I , (ei0, ei ), ui} be quasi-linear economy with
ui (x0, x) = x0 + ϕi (x), where ϕi : continuous, differentiable,
concave, and ∂ϕi/∂xl → ∞ as xl → 0. If {(1, p), (xi0, xi )}
equilibrium, then (xi ) solves

maximize
I∑

i=1

ϕi (yi )

subject to
I∑

i=1

(yil − eil) ≤ 0 (l = 1, . . . , L),

where pl is Lagrange multiplier.

▶ Equilibrium allocation of non-numéraire goods maximizes sum
of utility subject to feasibility constraint
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Proof

▶ In equilibrium, agents maximize utility

▶ Hence by previous proposition, xi ∈ RL
+ solves

max
x

[ϕi (x)− p · x ]

▶ First-order condition is ∇ϕi (xi )− p = 0

▶ By market clearing, we know

pl

I∑
i=1

(xil − eil) = 0
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Proof

▶ Lagrangian of “maximize sum of utility” is

L(y1, . . . , yI , λ) =
I∑

i=1

ϕi (yi ) + λ ·
I∑

i=1

(ei − yi ),

where λ = (λ1, . . . , λL)

▶ FOC with respect to yi is ∇ϕi (yi )− λ = 0

▶ Hence recalling ∇ϕi (xi )− p = 0, FOC satisfied by setting
yi = xi and λ = p

▶ pl
∑I

i=1(xil − eil) = 0 is precisely complementary slackness for
“maximize sum of utility”

▶ By KKT theorem (Ch. 2), concavity implies sufficiency of
FOC and CS
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Maximizing sum of utility yields equilibrium

Theorem
E = {I , (ei0, ei ), ui} be quasi-linear economy with
ui (x0, x) = x0 + ϕi (x), where ϕi : continuous, differentiable,
concave, and ∂ϕi/∂xl → ∞ as xl → 0. Suppose (xi ) solves

maximize
I∑

i=1

ϕi (yi )

subject to
I∑

i=1

(yil − eil) ≤ 0 (l = 1, . . . , L),

where pl is Lagrange multiplier. Then {(1, p), (xi0, xi )} is
equilibrium, where p = (p1, . . . , pL) and xi0 = ei0 + p · (ei − xi ).

▶ Allocation of non-numéraire goods that maximizes sum of
utility subject to feasibility constraint is equilibrium

©Alexis Akira Toda Instruction slides for Econ 113/200 Mathematical Economics



Proof

▶ Lagrangian of “maximize sum of utility” is

L(y1, . . . , yI , p) =
I∑

i=1

ϕi (yi ) + p ·
I∑

i=1

(ei − yi ),

where p = (p1, . . . , pL) is Lagrange multiplier

▶ FOC with respect to yi (evaluated at xi ) is ∇ϕi (xi )− p = 0

▶ Since ϕi concave, xi solves

max
x

[ϕi (x)− p · x ]

▶ Hence by previous proposition, xi is demand for non-numéraire
goods for price p

▶ Budget constraint implies xi0 = ei0 + p · (ei − xi ) is demand
for numéraire good
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Proof
▶ Feasibility implies

I∑
i=1

(xil − eil) ≤ 0

for all l , hence markets for non-numéraire goods clear

▶ Complementary slackness implies

pl

I∑
i=1

(xil − eil) = 0

for all l

▶ Hence

I∑
i=1

xi0 =
I∑

i=1

(ei0 + p · (ei − xi )) =
I∑

i=1

ei0,

so market for numéraire good also clears
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Summary of theoretical results

▶ Equilibrium allocation maximizes sum of utility

▶ Conversely, allocation that maximizes sum of utility is
equilibrium

▶ Hence equilibrium is “desirable” in particular sense

▶ Mathematical formulation of Jeremy Bentham’s “greatest
happiness principle”:

Fundamental axiom . . . it is the greatest happiness of the
greatest number that is the measure of right and wrong

https://en.wikipedia.org/wiki/Jeremy_Bentham

▶ Note: result specific to quasi-linear economy
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Example

▶ Consider I -agent quasi-linear economy with one
non-numéraire good, where utility function is

ui (x0, x1) = x0 + βi log x1

▶ Nonlinear part is ϕi (x) = βi log x

▶ Computation of equilibrium reduces to solving

maximize
I∑

i=1

βi log xi

subject to
I∑

i=1

(xi − ei ) ≤ 0
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Example
▶ Let e =

∑I
i=1 ei be aggregate endowment

▶ Lagrangian is

L =
I∑

i=1

βi log xi + p

(
e −

I∑
i=1

xi

)

▶ First-order condition with respect to xi :

βi
xi

− p = 0 ⇐⇒ xi =
βi
p

▶ Complementary slackness:

I∑
i=1

xi = e ⇐⇒ p =
1

e

I∑
i=1

βi

▶ Hence demand is xi = e βi∑I
i=1 βi
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Chapter V

Welfare properties of equilibrium
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Is equilibrium “desirable”?

▶ In previous chapter, we learned that with quasi-linear utilities,
equilibrium allocation maximizes sum of utilities

▶ Hence equilibrium is “desirable” in some sense
▶ This chapter proves two important results:

1. First welfare theorem: equilibrium allocation is efficient
2. Second welfare theorem: any efficient allocation can be

achieved as equilibrium, after appropriate direct tax/subsidy

▶ First and second welfare theorems are strong defense of
capitalism
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How to define “desirability”: unanimous rule

▶ Consider and economy with I agents and L goods: agent i has
utility function ui : RL

+ → R
▶ Let x = (xi )

I
i=1 and y = (yi )

I
i=1 be two allocations

▶ How can we say allocation y is better than x?
▶ Problem: people have different opinions

▶ Some people (like me) may prefer little government
intervention

▶ Others may prefer a lot of government intervention

▶ Hence we give up ranking any two allocations x , y , and we
rank only those that we agree unanimously:

“y is (socially) better than x if all agents prefer y to x”
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Pareto dominance

Definition
Let ui : RL

+ → R be agent i ’s utility function and
x = (xi )

I
i=1, y = (yi )

I
i=1 be two allocations. Then

▶ y = (yi )
I
i=1 weakly Pareto dominates x = (xi )

I
i=1 if

ui (yi ) ≥ ui (xi ) for all i

▶ y = (yi )
I
i=1 strictly Pareto dominates x = (xi )

I
i=1 if

ui (yi ) > ui (xi ) for all i

▶ y = (yi )
I
i=1 Pareto dominates x = (xi )

I
i=1 if

ui (yi ) ≥ ui (xi ) for all i and

ui (yi ) > ui (xi ) for some i

(In some sense, similar to how vector inequalities ≥,≫, > are
defined, though for vector of utilities, not consumption)©Alexis Akira Toda Instruction slides for Econ 113/200 Mathematical Economics



Pareto efficiency

▶ Let E = {I , (ei ), (ui )} be Arrow-Debreu economy
▶ ei ∈ RL

+: endowment of agent i
▶ ui : RL

+ → R utility of agent i

▶ Let x = (xi )
I
i=1 be a feasible allocation, so

I∑
i=1

xi ≤
I∑

i=1

ei

▶ We want to ask whether x is desirable
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Pareto efficiency

Definition
A feasible allocation x = (xi )

I
i=1 is Pareto efficient (or just

efficient) if it is not Pareto dominated by any other feasible
allocation y = (yi )

I
i=1

▶ A feasible allocation is inefficient if it is Pareto dominated by
some other feasible allocation, otherwise efficient

▶ Another way to understand: a situation is inefficient if
rejected by unanimous voting, otherwise efficient

▶ Yet another way to understand: a situation is inefficient if we
can make somebody better off without hurting anybody,
otherwise efficient

▶ If x inefficient, we say y is Pareto improvement if y is feasible
and Pareto dominates x
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Example

▶ Suppose there is only one good (cake), and we all like cake
▶ Allocation A: I eat all the cake, you eat nothing
▶ Allocation B: we all share the cake equally
▶ Allocation C: I eat half the cake, we throw away the remaining

half

▶ Then A, B are both efficient, because to make somebody
better off (give more cake), we need to take cake from
somebody else (which hurts that person)

▶ C is inefficient, because we can make Pareto improvement if
we share remaining half

▶ Note: Pareto efficiency is a weak concept because it passes
only unanimous voting

▶ It disregards many aspects (e.g., equity)
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First welfare theorem

Theorem
Let E = {I , (ei ), (ui )} be economy with locally nonsatiated utilities.
If {p, (xi )} is an equilibrium, then (xi )

I
i=1 is Pareto efficient.

▶ Extremely important

▶ It essentially says “capitalism is great”—market achieves
efficient outcome without government intervention

▶ Mathematical formulation of Adam Smith’s “invisible hand”
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Quote from Adam Smith
As every individual, therefore, endeavours as much as he
can both to employ his capital in the support of domestic
industry, and so to direct that industry that its produce
may be of the greatest value; every individual necessarily
labours to render the annual revenue of the society as great
as he can. He generally, indeed, neither intends to promote
the public interest, nor knows how much he is promoting
it. By preferring the support of domestic to that of foreign
industry, he intends only his own security; and by directing
that industry in such a manner as its produce may be of
the greatest value, he intends only his own gain, and he is
in this, as in many other cases, led by an invisible hand to
promote an end which was no part of his intention. Nor is
it always the worse for the society that it was no part of it.
By pursuing his own interest he frequently promotes that
of the society more effectually than when he really intends
to promote it.

©Alexis Akira Toda Instruction slides for Econ 113/200 Mathematical Economics



Modern and plain translation of Adam Smith

▶ People are selfish

▶ When people pursue their self interest, they promote social
welfare as if led by an invisible hand

▶ But promoting social welfare was not intentional

▶ When government intends to promote social welfare, it messes
up
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Proof of first welfare theorem

▶ Though a super important theorem, proof not particularly
difficult (you should be able to replicate; proficiency in logical
argument necessary)

▶ As is often the case, we prove by contradiction

▶ So suppose {p, (xi )} is an equilibrium but (xi ) inefficient

▶ By definition, there exists feasible allocation (yi ) such that
(yi ) Pareto dominates (xi )

▶ By definition,
▶
∑I

i=1 yi ≤
∑I

i=1 ei ,
▶ ui (yi ) ≥ ui (xi ) for all i ,
▶ ui (yi ) > ui (xi ) for some i
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Proof of first welfare theorem

▶ Consider an agent with ui (yi ) ≥ ui (xi ) (every agent)

▶ Claim: p · yi ≥ p · ei
▶ Here is the proof (again by contradiction)

1. Suppose p · yi < p · ei
2. By local nonsatiation, there exists y ′ with

ui (y
′) > ui (yi ) ≥ ui (xi ) and p · y ′ < p · ei

3. So y ′ affordable but gives higher utility than xi
4. Contradiction because xi maximizes utility within budget
5. Hence supposition p · yi < p · ei is false, and hence p · yi ≥ p · ei
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Proof of first welfare theorem

▶ Consider an agent with ui (yi ) > ui (xi ) (at least one agent)

▶ Claim: p · yi > p · ei
▶ Here is the proof (again by contradiction)

1. Suppose p · yi ≤ p · ei
2. Then yi affordable but gives higher utility than xi
3. Contradiction because xi maximizes utility within budget
4. Hence supposition p · yi ≤ p · ei is false, and hence p · yi > p · ei
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Proof of first welfare theorem
▶ We know by feasibility that

∑I
i=1 yi ≤

∑I
i=1 ei

▶ We have shown that
▶ p · yi ≥ p · ei for all i ,
▶ p · yi > p · ei for some i

▶ By summing over i , get

p ·
I∑

i=1

yi =
I∑

i=1

p · yi (∵ exchange sum and inner product)

>

I∑
i=1

p · ei (∵ p · yi ≥ p · ei , with at least one >)

= p ·
I∑

i=1

ei (∵ exchange sum and inner product)

≥ p ·
I∑

i=1

yi (∵ feasibility and p ≥ 0),

contradiction
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Proof of first welfare theorem

▶ Above (simple) proof of first welfare theorem is due to two
independent papers by Arrow and Debreu in 1951

▶ But an earlier but more complicated proof (that assumes all
sorts of unnecessary assumptions such concavity,
differentiability, etc.) is due to Oskar Lange in 1942

▶ Ironic, because first welfare theorem says “capitalism is great”
but Lange was a communist
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Proof of first welfare theorem

▶ Above (simple) proof of first welfare theorem is due to two
independent papers by Arrow and Debreu in 1951

▶ But an earlier but more complicated proof (that assumes all
sorts of unnecessary assumptions such concavity,
differentiability, etc.) is due to Oskar Lange in 1942

▶ Ironic, because first welfare theorem says “capitalism is great”
but Lange was a communist
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Local nonsatiation is necessary

▶ First welfare theorem assumes only local nonsatiation (and
equilibrium)

▶ We cannot do away with local nonsatiation
▶ Counterexample:

▶ Two agents, two goods, with e1 = e2 = (5, 5) and

u1(x1, x2) = x1x2,

u2(x1, x2) = min {x1x2, 16}

▶ Then clearly {p, (xi )} = {(1, 1), (5, 5), (5, 5)} is equilibrium
(why?)

▶ But allocation y1 = (6, 6), y2 = (4, 4) Pareto dominates
x1 = (5, 5), x2 = (5, 5)
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Key to the proof of first welfare theorem

▶ As we see from above, local nonsatiation is key to proof of
first welfare theorem, but LNS is weak assumption

▶ One strong implicit assumption is that market is complete (all
goods are traded)

▶ Complete market allows agents to use a single budget
constraint of the form p · x ≤ w , which is key to proof

▶ Without complete market, proof breaks down

▶ Hence first welfare theorem need not hold in reality because
not all goods traded (e.g., future income)
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Equilibrium with transfer payments

▶ First welfare theorem states that market mechanism achieves
an efficient allocation of resources

▶ We now aim to prove second welfare theorem, which is a
partial converse—any efficient allocation can be achieved as
equilibrium after appropriate taxes and transfers

▶ For this we define an equilibrium with transfer payments
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Equilibrium with transfer payments

Definition
Let {I , (ei ), (ui )} be an Arrow-Debreu economy. A price p, an
allocation (xi ), and transfer payments (ti ) constitute a competitive
equilibrium with transfer payments if

1. (Agent optimization) for each i , xi solves

maximize ui (x)

subject to p · x ≤ p · ei − ti ,

2. (Market clearing)
∑I

i=1 xi ≤
∑I

i=1 ei ,

3. (Balanced budget)
∑I

i=1 ti = 0.

▶ Essentially same as competitive equilibrium, except agent i
pays tax ti (receives subsidy −ti if ti < 0)
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Second welfare theorem

Theorem
Let E = {I , (ei ), (ui )} be an economy with continuous,
quasi-concave, locally nonsatiated utilities. If (xi ) is a feasible
Pareto efficient allocation with xi ≫ 0 for all i , then there exist a
price vector p and transfer payments (ti ) such that {p, (xi ), (ti )} is
a competitive equilibrium with transfer payments.

▶ To achieve a specific Pareto efficient allocation, the
government should not regulate markets but simply impose
lump sum taxes, make lump sum transfers, and laissez faire

▶ Note differences in assumptions
▶ First welfare theorem: ui locally nonsatiated
▶ Second welfare theorem: ui continuous, quasi-concave, locally

nonsatiated
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Idea of proof of second welfare theorem

1. Unlike first welfare theorem (where equilibrium {p, (xi )}
given), here only given allocation (xi )

2. Hence need to construct price vector p: use separating
hyperplane theorem

3. Once p constructed, define transfer ti to satisfy budget
constraint: p · xi = p · ei − ti

4. Then show that {p, (xi ), (ti )} is equilibrium with transfer
payment
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Proof of second welfare theorem: construct p

▶ Define (strict) upper contour set of agent i by
Ui =

{
y ∈ RL

+

∣∣ ui (y) > ui (xi )
}

▶ Since ui continuous, Ui is open
▶ Since ui quasi-concave, Ui is convex
▶ Since ui locally nonsatiated, Ui is nonempty

▶ Define set of aggregate demand in upper contour set by

U =

{
y =

I∑
i=1

yi

∣∣∣∣∣ (∀i)yi ∈ Ui

}

▶ Since each Ui nonempty, open, and convex, so is U

©Alexis Akira Toda Instruction slides for Econ 113/200 Mathematical Economics



Proof of second welfare theorem: construct p

▶ Define E =
{
x ∈ RL

∣∣∣ x ≤
∑I

i=1 ei

}
, set of vectors bounded

above by aggregate supply (endowment)

▶ Clearly E nonempty, convex

▶ Claim: U ∩ E = ∅ (empty intersection)
▶ Here is the proof (again by contradiction)

▶ If y ∈ U ∩ E , by definition of U,E , we can take yi ∈ Ui such
that

∑I
i=1 yi ≤

∑I
i=1 ei

▶ Then ui (yi ) > ui (xi ), so agent i strictly prefers yi
▶ Hence allocation (yi ) (strictly) Pareto dominates (xi )
▶ But

∑I
i=1 yi ≤

∑I
i=1 ei , so (yi ) feasible

▶ Contradiction because (xi ) is Pareto efficient by assumption
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Proof of second welfare theorem: construct p

▶ Recall
▶ U =

{
y =

∑I
i=1 yi

∣∣∣ (∀i)ui (yi ) > ui (xi )
}

▶ E =
{
x ∈ RL

∣∣∣ x ≤
∑I

i=1 ei
}

▶ We know U,E are nonempty, convex, and U ∩ E = ∅
▶ Hence by separating hyperplane theorem, there exists nonzero

vector p ∈ RL such that

sup
x∈E

p · x ≤ inf
y∈U

p · y
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Proof of second welfare theorem: p > 0

▶ Claim: p > 0
▶ Here is the proof (again by contradiction)

▶ Suppose pl < 0 for some l
▶ Recall p · x ≤ p · y for all x ∈ E and y ∈ U
▶ Since

∑I
i=1 ei ≥ 0, can choose x ∈ E with xl = −k < 0 and

xl′ = 0 for all l ′ ̸= l
▶ Then p · x = −plk → ∞ as k → ∞
▶ Since p · x > p · y for large enough k , contradiction
▶ Therefore pl ≥ 0 for all l , and since p ̸= 0, it must be p > 0

▶ Now that p > 0, it serves as a price vector
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Proof of second welfare theorem: construct ti

▶ Define ti to satisfy individual budget constraint, so
p · xi = p · ei − ti ⇐⇒ ti = p · (ei − xi )

▶ Claim:
∑I

i=1 ti = 0 (budget balance)
▶ Here is the proof

▶ Since (xi ) feasible, we have
∑I

i=1(xi − ei ) ≤ 0
▶ Multiplying p > 0 as inner product, p ·

∑I
i=1(xi − ei ) ≤ 0

▶ Hence
∑I

i=1 ti ≥ 0
▶ Setting x =

∑I
i=1 ei ∈ E in p · x ≤ p · y , get

p ·
∑I

i=1 ei ≤ p ·
∑I

i=1 yi
▶ By local nonsatiation, can choose yi ∈ Ui arbitrarily close to xi
▶ Hence p ·

∑I
i=1 ei ≤ p ·

∑I
i=1 xi , implying

∑I
i=1 ti ≤ 0

▶ Hence
∑I

i=1 ti = 0
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Proof of second welfare theorem: what remains

▶ (xi ) feasible, so market clearing
∑I

i=1 xi ≤
∑I

i=1 ei trivial

▶ Hence to show {p, (xi ), (ti )} is equilibrium with transfer
payments, it remains to show xi maximizes utility subject to
budget constraint p · x ≤ p · ei − ti

▶ Hence suffices to show p · yi > p · ei − ti whenever
ui (yi ) > ui (xi ), for all i

▶ To prove this by contradiction, suppose p · yi ≤ p · ei − ti for
some i and yi ∈ Ui

▶ Without loss of generality, assume i = 1, so
p · y1 ≤ p · e1 − t1 = p · x1
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Proof of second welfare theorem: agent optimization
▶ p · y1 ≤ p · e1 − t1 = p · x1 > 0 because p > 0 and x1 ≫ 0

▶ Since u1 continuous and u1(y1) > u1(x1), can choose z1 with
u1(z1) > u1(x1) and ϵ = p · x1 − p · z1 > 0

▶ For all i ̸= 1, by local nonsatiation we can take zi with
ui (zi ) > ui (xi ) and p · zi < p · xi + ϵ/I

▶ Then zi ∈ Ui for all i , so using p · x ≤ p · y for x =
∑I

i=1 ei
and y =

∑I
i=1 zi , get

I∑
i=1

p · ei = p ·
I∑

i=1

ei ≤ p ·
I∑

i=1

zi =
I∑

i=1

p · zi

≤ (p · x1 − ϵ) +
I∑

i=2

(p · xi + ϵ/I ) =
I∑

i=1

p · xi −
ϵ

I

=⇒ ϵ

I
≤

I∑
i=1

p · (xi − ei ) = −
I∑

i=1

ti = 0, contradiction
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Limitation of second welfare theorem

▶ Second welfare theorem states that any Pareto efficient
allocation can be achieved as an equilibrium outcome after
appropriate direct taxes/transfers

▶ Hence a policy implication is that direct taxes (e.g., income
tax) are preferable to indirect taxes (e.g., consumption tax)

▶ However, limitation of second welfare theorem is that tax
amount ti is individual specific: in reality, it is unrealistic to
assume that government has information required to
determine ti

▶ Hence better to take second welfare theorem as theoretical,
not practical (on the other hand, first welfare theorem has
practical content)
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Summary so far

▶ An allocation is Pareto efficient if it is impossible to make
somebody better of without hurting somebody else

▶ First welfare theorem: competitive equilibrium allocation is
Pareto efficient
▶ Assumption: ui locally nonsatiated

▶ Second welfare theorem: any Pareto efficient allocation can be
achieved as competitive equilibrium after appropriate direct
tax/transfer
▶ Assumption: ui continuous, quasi-concave, locally nonsatiated,

and (xi ) interior
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Characterizing Pareto efficient allocations

▶ How can we know an allocation (xi ) is Pareto efficient?

▶ We can use second welfare theorem

▶ Suppose for simplicity that each ui differentiable and ∇ui ≫ 0

▶ xi solves

maximize ui (x)

subject to p · x ≤ wi ,

where income is wi = p · ei − ti
▶ Lagrangian is

Li (x , λ) = ui (x) + λi (wi − p · x)

▶ First order condition: ∇ui (xi ) = λip
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Characterizing Pareto efficient allocations

▶ Suppose (xi ) interior, Pareto efficient, and ∇ui ≫ 0

▶ We know ∇ui (xi ) = λip; since ∇ui ≫ 0, it must be λi > 0
and p ≫ 0

▶ Taking l-th entry, get ∂ui (xi )/∂xl = λipl
▶ Hence marginal rate of substitution (MRS)

MRSi ,lm(xi ) =
∂ui (xi )/∂xl
∂ui (xi )/∂xm

=
pl
pm

independent of individual i
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Characterizing Pareto efficient allocations

Proposition

Let E = {I , (ei ), (ui )} be an economy with quasi-concave utilities
such that ∇ui ≫ 0. Let (xi ) be an allocation such that xi ≫ 0 for
all i . Then (xi ) is Pareto efficient if and only if

∑I
i=1 xi =

∑I
i=1 ei

and the marginal rate of substitution is equalized across agents.

©Alexis Akira Toda Instruction slides for Econ 113/200 Mathematical Economics



Proof of (xi) efficient =⇒ MRS equalized

▶ Since ui differentiable, in particular continuous

▶ Since ∇ui ≫ 0, ui strongly monotonic, so
∑I

i=1 xi =
∑I

i=1 ei
necessary for efficiency

▶ Since ui continuous, quasi-concave, LNS, and xi ≫ 0, can
apply second welfare theorem

▶ By argument using Lagrangian outlined above, MRS is
equalized across agents
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Proof of MRS equalized =⇒ (xi) efficient

▶ Conversely, suppose xi ≫ 0,
∑I

i=1 xi =
∑I

i=1 ei , and MRS
equalized across agents

▶ Define p1 = 1

▶ Define pl > 0 by

pl =
pl
p1

=
∂ui (xi )/∂xl
∂ui (xi )/∂x1

= MRSi ,l1(xi ),

which is well-defined because MRS equalized across agents
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Proof of MRS equalized =⇒ (xi) efficient

▶ Consider UMP with initial endowment xi :

maximize ui (x)

subject to p · x ≤ p · xi

▶ Lagrangian Li (x , λi ) = ui (x) + λi (p · xi − p · x)
▶ Define λi to satisfy FOC with respect to good 1:

∂ui (xi )

∂x1
= λip1 = λi

▶ Using definition of MRS and pl , get

∂ui (xi )

∂xl
= pl

∂ui (xi )

∂x1
= λipl ,

which is FOC with respect to good l
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Proof of MRS equalized =⇒ (xi) efficient

▶ We know ∂ui (xi )/∂xl = λipl for all l , hence xi satisfies FOC
for all goods

▶ Complementary slackness condition trivial because
p · xi − p · xi = 0

▶ Since ui quasi-concave and ∇ui ≫ 0, by sufficiency result in
KKT theorem, xi solves UMP

▶ Claim: (xi ) Pareto efficient
▶ This is obvious from first welfare theorem, because

▶ We know xi solves utility maximization problem of agent i ,
given price vector p

▶
∑I

i=1 xi =
∑I

i=1 ei , so markets clear
▶ Hence {p, (xi )} is competitive equilibrium, so (xi ) Pareto

efficient by first welfare theorem
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Chapter VI

Computation of equilibrium
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Computation of equilibrium

▶ Computing equilibrium is usually difficult (by hand) because
▶ for each agent, need to solve utility maximization problem

given price vector p, and
▶ need to solve for price vector p that clears market, which is

system of nonlinear equations

▶ We have seen several examples where computation of
equilibrium is relatively straightforward
▶ With quasi-linear utilities, suffices to maximize sum of utilities
▶ With Cobb-Douglas utilities, market clearing condition is linear

equation in p
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Computation of equilibrium

▶ Although we can always solve for equilibrium numerically,
examples of closed-form solutions are useful for building
intuition and applications

▶ These examples include

1. identical homothetic preferences with arbitrary endowments
2. arbitrary homothetic preferences with collinear endowments
3. hyperbolic absolute risk aversion (HARA) utility

▶ Here we focus on last case
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Expected utility

▶ In anticipation of applications to finance, let us distinguish
goods by state of the world (e.g., umbrella when sunny or
rainy)

▶ One (physical) consumption good, but states labeled by
s = 1, 2, . . . ,S

▶ Probability of state s is πs > 0

▶ Consider an agent with expected utility, so utility from
consumption bundle x = (x1, . . . , xS) is

U(x) = E[u(x)] =
S∑

s=1

πsu(xs)

▶ Here u : R+ → R is called the von Neumann-Morgenstern
utility function
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Risk aversion

▶ Suppose agent has vNM utility function u and initial wealth
w > 0, where u′ > 0 (increasing) and u′′ < 0 (concave)

▶ Consider following two options

1. the agent must take a small gamble, so wealth becomes w + ϵ,
where ϵ is a random variable with mean zero

2. the agent can pay insurance premium a to avoid gamble

▶ When is agent indifferent between two options? Clearly

E u(w + ϵ) = u(w − a)

▶ Apply Taylor’s theorem to approximate a
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Risk aversion
▶ Recall Taylor’s theorem

f (x+∆x) ≈

{
f (x) + f ′(x)∆x (first-order)

f (x) + f ′(x)∆x + 1
2 f

′′(x)∆x2 (second-order)

▶ Letting x = w , ∆x = −a, and using first-order approximation,
get u(w − a) ≈ u(w)− u′(w)a

▶ Letting x = w , ∆x = ϵ, and using second-order
approximation, get

u(w + ϵ) ≈ u(w) + u′(w)ϵ+
1

2
u′′(w)ϵ2

▶ Taking expectations and using E[ϵ] = 0 and setting
E[ϵ2] = Var[ϵ], get

E[u(w + ϵ)] ≈ u(w) +
1

2
u′′(w) Var[ϵ]
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Risk aversion

▶ Hence insurance premium a is approximately

u(w)− u′(w)a ≈ u(w − a)

= E[u(w + ϵ)] ≈ u(w) +
1

2
u′′(w) Var[ϵ]

=⇒ a ≈ 1

2
Var[ϵ]

(
−u′′(w)

u′(w)

)
▶ Insurance premium is proportional to variance and quantity

−u′′(w)/u′(w), which is called (absolute) risk aversion of u at
w

▶ Reciprocal of (absolute) risk aversion, −u′(w)/u′′(w), is
called (absolute) risk tolerance

©Alexis Akira Toda Instruction slides for Econ 113/200 Mathematical Economics



Hyperbolic absolute risk aversion

▶ In many applications, it is often convenient to use utility
functions with linear risk tolerance (LRT)

− u′(x)

u′′(x)
= ax + b

▶ LRT utility functions has hyperbolic absolute risk aversion
(HARA)

−u′′(x)

u′(x)
=

1

ax + b
,

where x is in the range ax + b > 0
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Characterization of HARA utility

▶ Straightforward to characterize HARA utility by integration

▶ Assume a ̸= 0 and if we integrate

u′′(x)

u′(x)
= − 1

ax + b
,

we get

log u′(x) = −1

a
log(ax + b) + const.

▶ Taking exponential, get u′(x) = C (ax + b)−1/a for some
C > 0

▶ Assuming a ̸= 1 and integrating once again, get

u(x) = C
1

a− 1
(ax + b)1−1/a + D

for some constants C > 0 and D ∈ R
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Remaining cases: a = 0, 1

▶ If a = 0, integrating u′′(x)/u′(x) = −1/b, get
log u′(x) = −x/b + const.

▶ Taking exponential, get u′(x) = Ce−x/b for some C > 0

▶ Integrating once again, get

u(x) = −Cbe−x/b + D

for some constants C > 0 and D ∈ R
▶ If a = 1, integrating u′(x) = C (x + b)−1, get

u(x) = C log(x + b) + D
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Characterization of HARA utility

▶ Constants C > 0 and D ∈ R do not affect ordering of utility,
so without loss of generality we may set C = 1 and D = 0

▶ In summary, all HARA utilities are

u(x) =


1

a−1(ax + b)1−1/a, (a ̸= 0, 1)

−be−x/b, (a = 0)

log(x + b), (a = 1)

where x is in the range ax + b > 0
▶ Some special cases:

▶ CES utility corresponds to a ̸= 0, 1 and b = 0
▶ Cobb-Douglas utility corresponds to a = 1 and b = 0
▶ Quadratic utility corresponds to a = −1
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Aggregation with HARA utilities

▶ Let us show that when agents have HARA utilities with
identical coefficient a, then computation of equilibrium is
straightforward

▶ I agents, indexed by i = 1, . . . , I

▶ One consumption good, S states of the world indexed by
s = 1, . . . ,S

▶ Probability of state s is πs > 0

▶ Agent i ’s endowment ei = (ei1, . . . , eiS)

▶ Aggregate endowment e =
∑I

i=1 ei ; with slight abuse of
notation, write e = (e1, . . . , eS)

▶ Agent i has HARA utility

ui (x) =
1

a− 1
(ax + bi )

1−1/a,

so a is common across agents but bi arbitrary
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Aggregation with HARA utilities

Proposition

Let b =
∑I

i=1 bi . Then equilibrium price is determined as if the
economy consists of one (representative) agent with HARA utility
with parameter (a, b) and initial endowment e = (e1, . . . , eS). The
equilibrium price is

ps =

{
πs(aes + b)−1/a, (a ̸= 0)

πse
−es/b. (a = 0)

The equilibrium allocation (xi ) satisfies{
axis + bi = λ−a

i (aes + b), (a ̸= 0)
xis
bi

= − log λi +
es
b , (a = 0)

where λi > 0 is agent i ’s Lagrange multiplier that is determined
from the budget constraint.
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Proof

▶ Assume a ̸= 0 (the case a = 0 is similar)

▶ Lagrangian of agent i is

Li =
S∑

s=1

πsui (xs) + λi (p · ei − p · x)

▶ First-order condition with respect to xs is

λips = πsu
′
i (xis) = πs(axis + bi )

−1/a

▶ Hence

πs
ps

(axis + bi )
−1/a =

π1
p1

(axi1 + bi )
−1/a

⇐⇒
(
πs
ps

)−a

(axis + bi ) =

(
π1
p1

)−a

(axi1 + bi ).
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Proof

▶ Adding across i and using b =
∑I

i=1 bi and market clearing∑I
i=1 xis =

∑I
i=1 eis = es , get(
πs
ps

)−a

(aes + b) =

(
π1
p1

)−a

(ae1 + b)

⇐⇒ πs
ps

(aes + b)−1/a =
π1
p1

(ae1 + b)−1/a

▶ Hence quantity πs
ps
(aes + b)−1/a independent of s; since price

level arbitrary, set

πs
ps

(aes + b)−1/a = 1 ⇐⇒ ps = πs(aes + b)−1/a

▶ Above equation is exactly FOC of representative agent with
HARA (a, b) utility consuming aggregate endowment (and
Lagrange multiplier λ = 1)
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Proof

▶ To pin down equilibrium allocation, recall FOC

λips = πsu
′
i (xis) = πs(axis + bi )

−1/a

▶ Since ps = πs(aes + b)−1/a, get

λiπs(aes + b)−1/a = πs(axis + bi )
−1/a

⇐⇒ axis + bi = λ−a
i (aes + b)

▶ Can pin down λi by using budget constraint

S∑
s=1

psxis =
S∑

s=1

pseis ,

because ps already determined and xis expressed using λi only
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Some observations

Looking at proof technique,

▶ Get same conclusion if utility is state-dependent such that

ui (xs) =
1

a− 1
(axis + bis)

1−1/a

in state s

▶ Important that a is common across agents

▶ Important that πs is common across agents (objective
probability or identical beliefs)
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Chapter VII

International trade
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Ricardo’s model

▶ Ricardo’s model is GE model of international trade

▶ Production economy

▶ Only input is labor, which is immobile across countries (no
immigration)

▶ Production technology is linear in labor

▶ Outputs freely traded across countries
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Numerical example of Ricardo’s model

▶ Two countries (i = A,B), two consumption goods (l = 1, 2)

▶ One (representative) agent in each country

▶ Labor endowments: (eA, eB) = (1, 2) (B is large country)

▶ Linear technology: if employ labor e, output is y = ae

▶ Example: (aA1, aA2, aB1, aB2) = (10, 5, 4, 1), where ail :
productivity of country i to produce good l (think of good 1
as rice and good 2 as electric vehicle)

▶ For simplicity, assume all agents have utility u(x1, x2) = x1x2,
which is monotonic transformation of Cobb-Douglas utility

1

2
log x1 +

1

2
log x2
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Equilibrium

▶ This is an example of production economy
▶ Therefore competitive equilibrium defined by

1. Utility maximization
2. Profit maximization
3. Market clearing

▶ Need to be clear about how goods are traded, autarky (no
trade) or international trade?
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Autarky equilibrium in country A: utility maximization

▶ Consider country A in isolation (autarky)

▶ Number of goods is 3, because there are rice (l = 1), electric
vehicles (l = 2), and labor

▶ Let p1 = 1 (price of rice), p2 = p (price of electric vehicle),
and wage (price of labor) w

▶ Budget constraint of agents (workers):

x1 + px2 ≤ weA

▶ Since eA = 1, using Cobb-Douglas formula, demand is

(x1, x2) =

(
w

2
,
w

2p

)
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Autarky equilibrium in country A: profit maximization

▶ A firm producing good l seeks to maximize profit ply − we,
where y : output and e: labor input

▶ Since technology linear (y = ale), profit is

ply − we = plale − we = (plal − w)e

▶ Hence profit linear in labor input e; optimal choice is

e =


∞, (plal > w)

arbitrary, (plal = w)

0, (plal < w)

▶ Note: if plal = w , then profit is zero
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Autarky equilibrium in country A: market clearing

▶ In equilibrium, all goods must be produced
▶ Hence profit maximization implies plal = w

▶ Good 1: w = p1aA1 = 1 · 10 = 10
▶ Good 2: w = p2aA2 = p · 5 ⇐⇒ p = 2

▶ With these prices and wage, demand is

(x1, x2) =

(
w

2
,
w

2p

)
=

(
5,

5

2

)
▶ Market clearing:

▶ Good 1: x1 = y1 = a1e1 ⇐⇒ e1 = x1/a1 = 5/10 = 1/2
▶ Good 2: x2 = y2 = a2e2 ⇐⇒ e2 = x2/a2 = (5/2)/5 = 1/2
▶ Labor market clears because e1 + e2 = 1 = eA
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Autarky equilibrium in country A

▶ We have now verified all equilibrium conditions

▶ Price and wage are (p1, p2) = (1, 2) and w = 10

▶ Consumption is (x1, x2) = (5, 5/2)

▶ Labor input is (e1, e2) = (1/2, 1/2)

▶ Utility of agent is Ua
A = x1x2 = 25/2
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Autarky equilibrium in country B

▶ Let price be (p1, p2) = (1, p) and wage w
▶ Zero profit conditions are

▶ Good 1: w = p1a1 = 1 · 4 = 4
▶ Good 2: w = p2a2 = p · 1 ⇐⇒ p = 4

▶ With these prices and wage, demand is

(x1, x2) =

(
weB
2

,
weB
2p

)
= (4, 1)

▶ Market clearing:
▶ Good 1: x1 = y1 = a1e1 ⇐⇒ e1 = x1/a1 = 4/4 = 1
▶ Good 2: x2 = y2 = a2e2 ⇐⇒ e2 = x2/a2 = 1/1 = 1
▶ Labor market clears because e1 + e2 = 2 = eB

▶ Utility of agent is Ua
B = x1x2 = 4
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Free trade equilibrium

▶ Now let’s solve for the free trade equilibrium and compare to
autarky

▶ Free trade means that labor stays within the border (no
immigration allowed, otherwise it’s same as one country) but
goods are freely traded across border

▶ What will happen under free trade?
▶ Since A’s wage (wA = 10) much higher than B (wB = 4),

would A’s domestic jobs be lost to B?
▶ Since A’s industries much more productive, would B’s

industries be wiped out?

▶ Both predictions incorrect: need formal analysis
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Free trade equilibrium: country A

▶ Since A much more productive overall, assume A produces
both goods in equilibrium

▶ Hence profit maximization implies plal = w
▶ Good 1: wA = p1aA1 = 1 · 10 = 10
▶ Good 2: wA = p2aA2 = p · 5 ⇐⇒ p = 2

▶ With these prices and wage, demand is

(xA1, xA2) =

(
wAeA
2

,
wAeA
2p

)
=

(
5,

5

2

)
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Free trade equilibrium: country B

▶ Good price is (p1, p2) = (1, 2)

▶ Letting wB be wage, profit maximization requires plaBl ≤ wB ,
with equality if positive amount of good produced

▶ Since p1aB1 = 4 > 2 = p2aB2, it must be 4 = p1aB1 = wB

▶ With these prices and wage, demand is

(xB1, xB2) =

(
wBeB
2

,
wBeB
2p

)
= (4, 2)

▶ Firm 2 not profitable, so labor input is eB1 = eB = 2 and
eB2 = 0 (all workers employed by firm 1)
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Free trade equilibrium: market clearing

▶ Since firm 2 in country B does not operate, firm 2 in country
A must produce all global supply of good 2

▶ Hence market clearing is

xA2 + xB2 = aA2eA2 ⇐⇒ 5

2
+ 2 = 5eA2 ⇐⇒ eA2 =

9

10

▶ Remaining worker eA1 = eA − eA2 = 1/10 work in firm 1

▶ Market clearing for good 1?

xA1 + xB1 = aA1eA1 + aB1eB1

⇐⇒ 5 + 4 = 10 · 1

10
+ 4 · 2

⇐⇒ 9 = 9,

so OK
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Comparing autarky to free trade

Regime Autarky Free trade

Consumption A : (5, 5/2), B : (4, 1) A : (5, 5/2), B : (4, 2)
Labor A : (1/2, 1/2), B : (1, 1) A : (1/10, 9/10), B : (2, 0)
Utility Ua

A = 25/2, Ua
B = 4 U f

A = 25/2, U f
B = 8

▶ So B specializes in good 1 (rice) and utility goes up

▶ Workers in A shift to producing good 2 (electric vehicles) but
utility unchanged

▶ In general, small or inefficient country tends to gain from
trade because price change allows to reoptimize
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Ricardo’s model: general formulation

▶ Two countries (A,B), L goods (l = 1, . . . , L)

▶ Productivity of country i in sector l is ail
▶ Labor endowment eA, eB
▶ Utility function can be general: uA, uB
▶ Equilibrium defined by

1. Utility maximization
2. Profit maximization
3. Market clearing
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Comparative advantage

▶ In previous example, we solved for equilibrium by guessing,
but there is general way

▶ Define comparative advantage of country A over B for
producing good l to be aAl/aBl

▶ By relabeling goods if necessary, may assume

aA1
aB1

> · · · > aAL
aBL

,

so comparative advantage is decreasing in label of good
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In equilibrium, countries specialize

Proposition

In equilibrium, there exists a good l∗ such that all goods l < l∗ are
produced by A only, and all goods l > l∗ are produced by B only

▶ To prove this, define

l∗ = max
l

{good l is produced by country A}

▶ By definition, all goods l > l∗ are produced by B only
▶ Consider a good l ≤ l∗; profit maximization (hence zero

profit) implies
▶ plaAl ≤ wA, = if good l produced
▶ plaBl ≤ wB , = if good l produced
▶ By assumption A produces l∗, so pl∗aAl∗ = wA
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In equilibrium, countries specialize

▶ Suppose to the contrary that B produces a good l < l∗

▶ Then by above argument plaBl = wB ≥ pl∗aBl∗

▶ Hence aBl/aBl∗ ≥ pl∗/pl
▶ Similarly, plaAl ≤ wA = pl∗aAl∗ implies aAl/aAl∗ ≤ pl∗/pl
▶ Hence

aAl
aAl∗

≤ pl∗

pl
≤ aBl

aBl∗
=⇒ aAl

aBl
≤ aAl∗

aBl∗
,

contradicting definition of comparative advantage
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Solving for equilibrium in Ricardo’s model

▶ We can solve for equilibrium in general model as follows

1. Relabel goods so that comparative advantage is decreasing in l
2. Guess l∗, the largest l country A produces
3. Set pl∗ = 1 (normalization); then zero profit pl∗aAl∗ = wA

implies wA = aAl∗
4. All goods l < l∗ must be produced by A, so zero profit

condition plaAl = wA implies pl = aAl∗/aAl
5. Assume l∗ also produced by B; then zero profit implies

pl∗aBl∗ = wB and hence wB = aBl∗
6. All goods l > l∗ must be produced by B, so zero profit

condition plaBl = wB implies pl = aBl∗/aBl
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Solving for equilibrium in Ricardo’s model
▶ Now all prices p1, . . . , pL determined

▶ Compute demand xAl and xBl by solving UMP
▶ Now we use market clearing:

1. Good l < l∗ produced only by A, hence

xAl + xBl = aAleAl ⇐⇒ eAl =
xAl + xBl

aAl

2. Good l > l∗ produced only by B, hence

xAl + xBl = aBleBl ⇐⇒ eBl =
xAl + xBl

aBl

3. Compute remaining labor (employed in l∗ sector) as

eAl∗ = eA −
∑
l<l∗

eAl and eBl∗ = eB −
∑
l>l∗

eBl

4. If both nonnegative, that’s equilibrium; if not, guess of l∗ is
incorrect, so move it down if eAl∗ < 0 and up if eBl∗ < 0
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Free trade in small open economies

▶ Ricardo’s model (numerical example) suggest that free trade
is Pareto improving

▶ But that is not necessarily the case, as following example
shows

▶ Consider a small country with two agents and two goods,
where all agents have utility u(x1, x2) = x1x2

▶ Initial endowment e1 = (9, 1) and e2 = (1, 9)

▶ Autarky equilibrium clearly p = (p1, p2) = (1, 1),
x1 = (x11, x12) = (5, 5), and x2 = (x21, x22) = (5, 5), with
utility 5 · 5 = 25 for both agents
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Free trade in small open economies

▶ Suppose country moves to free trade, and suppose
international price is p = (p1, p2) = (1, 2)

▶ Under new price, agent 1’s demand is

(x11, x12) =

(
1 · 9 + 2 · 1

2 · 1
,
1 · 9 + 2 · 1

2 · 2

)
= (11/2, 11/4),

with utility (11/2)(11/4) = 121/8 < 25

▶ Under new price, agent 2’s demand is

(x21, x22) =

(
1 · 1 + 2 · 9

2 · 1
,
1 · 1 + 2 · 9

2 · 2

)
= (19/2, 19/4),

with utility (19/2)(19/4) = 361/8 > 25

▶ So agent 1 worse off in free trade, agent 2 better off
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Free trade not necessarily Pareto improving

▶ The reason why free trade is not necessarily Pareto improving
is because people have different endowments

▶ Example: price of rice in California about half in Japan (for
same variety)

▶ Hence if there is trade liberalization in rice, Japanese rice
farmers worse off (due to more competition and cheaper price)
and Californian rice farmers better off (due to more demand)

▶ Hence many governments concerned with trade, and may
come up with all sorts of policies (e.g., tariff, import quota,
etc.)
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How to make free trade Pareto improving

▶ But there is simple way to make free trade Pareto improving

▶ Idea: introduce direct tax/subsidies to make previous
consumption just affordable

▶ In previous example, autarky equilibrium was xa1 = xa2 = (5, 5)
▶ So define ti to make autarky allocation just affordable

▶ Agent 1:
p ·xa1 = p ·e1−t1 ⇐⇒ t1 = p ·(e1−xa1 ) = (1, 2)·(4,−4) = −4,

▶ Agent 2:
p · xa2 = p · e2− t2 ⇐⇒ t2 = p · (e2− xa2 ) = (1, 2) · (−4, 4) = 4,

▶ After transfer, both agents have wealth wi = p · xai = 15, so
demand is

x fi =

(
15

2 · 1
,
15

2 · 2

)
= (15/2, 15/4)

▶ Utility (15/2)(15/4) = 225/8 > 25, so both agents better off
under free trade
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General formulation

Theorem
Consider a country with economy E = {I , (ei ), (ui )}. Suppose the
country is small and takes world price p as given. Then there exist
transfer payments (ti ) such that the free trade allocation weakly
Pareto dominates the autarky equilibrium allocation. More
precisely, if x fi solves

maximize ui (x)

subject to p · x ≤ p · ei − ti ,

then the free trade allocation (x fi ) weakly Pareto dominates the
autarky equilibrium allocation (xai ).
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Proof

▶ By market clearing, autarky equilibrium allocation (xai )

satisfies
∑I

i=1 x
a
i ≤

∑I
i=1 ei

▶ For each i , choose yi such that yi ≥ xai and∑I
i=1 yi =

∑I
i=1 ei

▶ Define transfer ti so that yi is just affordable at world price, so
p · yi = p · ei − ti ⇐⇒ ti = p · (ei − yi )

▶ By definition of yi , we have

I∑
i=1

ti =
I∑

i=1

p · (ei − yi ) = p ·
I∑

i=1

(ei − yi ) = 0,

so government budget balanced

▶ Since xai ≤ yi , we have p · xai ≤ p · yi = p · ei − ti , so xai
affordable under new budget constraint, hence ui (x

f
i ) ≥ ui (x

a
i )
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Policy implication

▶ For small countries, free trade always better than autarky if
appropriate tax/transfer implemented

▶ Actually can show that free trade always better than any
trade policy if appropriate tax/transfer implemented

▶ See end-of-chapter exercise
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Free trade in general equilibrium

▶ We showed free trade is great for small countries, and proof is
easy because price exogenous (partial equilibrium)

▶ Not obvious if conclusion holds in general equilibrium

▶ Suppose global economy is E = {I , (ei ), (ui )}
▶ Countries indexed by c = 1, . . . ,C

▶ Set of residents of country c denoted by Ic ⊂ I

▶ Suppose countries initially in autarky; can we show free trade
is Pareto improving after appropriate tax/transfer within each
country?
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Free trade in general equilibrium

Theorem (Efficiency of free trade with transfers)

Let E = {I , (ei ), (ui )} be the global economy, where ui is
continuous, quasi-concave, and locally nonsatiated. Then there
exist a price vector p, an allocation (x fi ), and transfer payments
(ti ) such that

1. (p, (x fi ), (ti )) is a free trade equilibrium with transfer
payments,

2. for each country c, transfer payments are budget-feasible, so∑
i∈Ic ti = 0,

3. the free trade allocation (x fi ) weakly Pareto dominates the
autarky allocation (xai ), that is, ui (x

f
i ) ≥ ui (x

a
i ) for all i , and

4. the free trade allocation (x fi ) is Pareto efficient.
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Proof

▶ Unlike partial equilibrium, difficulty is that we are not given
global price

▶ Need to construct price, allocation, and transfers cleverly

▶ Let {pc , (xai )i∈Ic} be autarky equilibrium in country c

▶ By market clearing,
∑

i∈Ic x
a
i ≤

∑
i∈Ic ei

▶ Choose yi such that yi ≥ xai and
∑

i∈Ic yi =
∑

i∈Ic ei
▶ Consider hypothetical global economy E ′ = {I , (yi ), (ui )}, so

agent i has initial endowment yi (actual economy is ei )
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Proof

▶ Let
{
p, (x fi )

}
be equilibrium of E ′

▶ By first welfare theorem, (x fi ) is Pareto efficient

▶ To support it as equilibrium with transfer payments, define ti
to make yi just affordable in actual economy, so
p · yi = p · ei − ti ⇐⇒ ti = p · (ei − yi )

▶ As in partial equilibrium case, we have
∑

i∈Ic ti = 0, so
government budget balances within each country

▶ x fi is demand with initial endowment yi , so
p · x fi ≤ p · yi = p · ei − ti ; hence x fi is demand with initial
endowment ei and transfer ti

▶ Since xai ≤ yi , we have p · xai ≤ p · yi = p · ei − ti , so xai
affordable, hence ui (x

f
i ) ≥ ui (x

a
i )
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Example

▶ Three agents (i = 1, 2, 3), two goods (l = 1, 2), two countries
c = A,B)

▶ Agents 1 and 2 residents of A, agent 3 resident of B

▶ Utility functions

u1(x1, x2) = x21x2,

u2(x1, x2) = x1x
2
2 ,

u3(x1, x2) = x1x2.

▶ Endowments e1 = e2 = (3, 3) and e3 = (22, 8)

▶ Compute autarky equilibrium and free trade equilibrium (with
or without transfers)
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Autarky equilibrium in country A

▶ Let prices be p1 = 1 and p2 = p

▶ Using Cobb-Douglas formula, demand is

(x11, x12) =

(
2

3
(3 + 3p),

1

3p
(3 + 3p)

)
=

(
2 + 2p,

1 + p

p

)
,

(x21, x22) =

(
1

3
(3 + 3p),

2

3p
(3 + 3p)

)
=

(
1 + p,

2 + 2p

p

)
▶ Market clearing for good 1:

(2 + 2p) + (1 + p) = 3 + 3 ⇐⇒ p = 1

▶ Equilibrium allocation x1 = (4, 2), x2 = (2, 4), utility
U1 = U2 = 42 × 2 = 32
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Free trade equilibrium without transfer

▶ In free trade, agent 3’s demand is

(x31, x32) =

(
1

2
(22 + 8p),

1

2p
(22 + 8p)

)
=

(
11 + 4p,

11 + 4p

p

)
▶ Market clearing for good 1:

(2 + 2p) + (1 + p) + (11 + 4p) = 3 + 3 + 22 ⇐⇒ p = 2

▶ Equilibrium allocation x1 = (6, 3/2), x2 = (3, 3),
x3 = (19, 19/2), utility U1 = 54, U2 = 27, U3 = 361/2

▶ So agent 1 better off and agent 2 worse of in free trade
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Free trade with transfer

▶ Let’s make a Pareto improvement by introducing tax/subsidy
in country A

▶ Start with autarky equilibrium allocation xa1 = (4, 2),
x32 = (2, 4), xa3 = (22, 8)

▶ New demand is

(x11, x12) =

(
2

3
(4 + 2p),

1

3p
(4 + 2p)

)
,

(x21, x22) =

(
1

3
(2 + 4p),

2

3p
(2 + 4p)

)
,

(x31, x32) =

(
1

2
(22 + 8p),

1

2p
(22 + 8p)

)
=

(
11 + 4p,

11 + 4p

p

)
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Free trade with transfer

▶ Market clearing for good 1:

2(4 + 2p)

3
+

2 + 4p

3
+ (11 + 4p) = 4 + 2 + 22 ⇐⇒ p =

41

20

▶ To support this price as free trade equilibrium, transfer ti
must satisfy p · xai = p · ei − ti ⇐⇒ ti = p · (ei − xai )

▶ Hence

t1 = (1, 41/20) · [(3, 3)− (4, 2)] =
21

20
,

t2 = (1, 41/20) · [(3, 3)− (2, 4)] = −21

20

▶ Can compute x fi and U f
i for all i and check U f

i > Ua
i , though

algebra is quite tedious
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Transportation cost

▶ So far we assumed goods can be transported without cost

▶ But in reality it is costly to transport goods

▶ Actually trade model with transportation cost can be thought
of as general equilibrium model with production by
distinguishing goods by location

▶ Example: we can produce a banana in U.S. (one output) from
a banana in Ecuador and shipping service (two inputs)

©Alexis Akira Toda Instruction slides for Econ 113/200 Mathematical Economics



Illustration of transportation cost

▶ Two countries (i = A,B), two physical goods (apple and
banana)

▶ Utility u(x1, x2) =
1
2 log x1 +

1
2 log x2

▶ Endowment eA = (3, 1) and eB = (1, 3)

▶ Suppose 20% of goods perish when shipped to other country,
so production technology y = 4

5x , where x : export and y :
import

▶ To compute equilibrium, note there are 4 goods (apple and
banana in A,B); guess which country export and import
which good, and use utility maximization, profit maximization,
market clearing (can be tedious but nothing complicated)
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Free trade equilibrium

▶ Since A has lots of good 1 (apple), can guess A will export
apples and import bananas

▶ Let pA = (pA1 , p
A
2 ) = (1, p) be price vector in country A

▶ By symmetry, guess pB = (p, 1)

▶ If apple exporter in A exports x , profit is

p · 4
5
x − 1 · x =

(
4

5
p − 1

)
x

▶ Since profit linear in x , it must be zero; hence p = 5/4
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Free trade equilibrium

▶ With endowment eA = (3, 1), demand in A is

xA =

(
1

2
(3 + p),

1

2p
(3 + p)

)
= (17/8, 17/10)

▶ Symmetric argument shows demand in B is
xB = (17/10, 17/8)

▶ A exports 3− 17/8 = 7/8 apples, which become 7/10 apples
in B by the time it reaches destination

▶ B exports 3− 17/8 = 7/8 bananas, which become 7/10
bananas in A by the time it reaches destination

▶ If countries not symmetric, argument more complicated but
idea is same
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Chapter VIII

Finance
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Finance

▶ A general equilibrium model becomes a model of finance when
goods are distinguished by states of the world

▶ We first study no-arbitrage asset pricing, which is useful for
computing prices of some assets given prices of other assets
(e.g., option pricing)

▶ By studying a general equilibrium model with HARA or
quadratic utility, we can derive the capital asset pricing model
(CAPM)
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No-arbitrage asset pricing

▶ Consider a two period model with time denoted by t = 0, 1
(today and tomorrow)

▶ At t = 1, the economy will be in one of the states denoted by
s = 1, . . . ,S

▶ Only one physical good
▶ Assets are indexed by j = 1, . . . , J

▶ Asset j trades at price qj at t = 0
▶ Asset j pays Asj (if Asj < 0, then asset holder must deliver

−Asj > 0)

▶ Convenient to treat t = 0 (today) as a new state denoted by
s = 0
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Payoff matrix

▶ Define
▶ asset price vector q = (q1, . . . , qJ)
▶ payoff matrix A = (Asj) (which is S × J matrix)

▶ Since investor must pay qj to acquire one share of asset j ,
matrix of net payoffs (including s = 0) is

W :=

[
−q′

A

]
=


−q1 · · · −qJ
A11 · · · A1J
...

. . .
...

AS1 · · · ASJ


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Asset span
▶ If investor holds θj shares of asset j and θ = (θ1, . . . , θJ) is

portfolio, then portfolio payoff is W θ
▶ To see this,

▶ for s = 0, holding portfolio θ costs

J∑
j=1

qjθj = q′θ,

so payoff is −q′θ = (W θ)0
▶ for s = 1, . . . ,S , portfolio pays

J∑
j=1

Asjθj = (W θ)s

▶ If portfolio choice unrestricted (including short sales), set of
possible payoffs (asset span) is the vector space

⟨W ⟩ :=
{
W θ : θ ∈ RJ

}
⊂ R1+S
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Arbitrage

▶ Suppose investors like the physical good (strongly monotonic
preferences)

▶ If there exists portfolio θ ∈ RJ such that W θ > 0 (meaning
W θ ∈ R1+S

+ \ {0}), then investors can consume arbitrarily
large amount of one good without paying anything (free
lunch; arbitrage), violating equilibrium

▶ We say that asset span ⟨W ⟩ exhibits no arbitrage if
⟨W ⟩ ∩ R1+S

+ = {0}
▶ What can we say about asset prices if there is no arbitrage?
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Fundamental Theorem of Asset Pricing

Theorem
The asset span ⟨W ⟩ exhibits no-arbitrage if and only if there exists
p ∈ RS

++ such that [1, p′]W = 0.
In this case, the asset prices are given by

qj =
S∑

s=1

psAsj .

ps > 0 is called the state price in state s.

▶ Absence of arbitrage implies that we can put a price on the
good delivered in state s only

▶ Asset price can be computed as
∑

(state price)× (delivery)
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Proof of “if” part

▶ Suppose there exists p ∈ RS
++ such that [1, p′]W = 0

▶ By definition of W , get

0 = [1, p′]W = [1, p′]

[
−q′

A

]
= −q′ + p′A ⇐⇒ q′ = p′A

▶ Comparing j-th entry, get qj =
∑S

s=1 psAsj

▶ Suppose to the contrary that there exists an arbitrage, so
there exists w ∈ ⟨W ⟩ such that w > 0

▶ Then

0 < w0 +
S∑

s=1

psws = [1, p′]w = [1, p′]W θ = 0

for some portfolio θ, which is contradiction
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Proof of “only if” part

▶ Suppose ⟨W ⟩ exhibits no arbitrage, so ⟨W ⟩ ∩ R1+S
+ = {0}

▶ Idea: use strong version of separating hyperplane theorem

▶ Define the unit simplex

∆ :=

{
w ∈ R1+S

+ :
S∑

s=0

ws = 1

}

▶ Clearly ∆ ⊂ R1+S
+ \ {0}

▶ Since ⟨W ⟩ ∩ R1+S
+ = {0}, get ⟨W ⟩ ∩∆ = ∅
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Proof of “only if” part

▶ ⟨W ⟩ is a finite-dimensional vector space, which is nonempty,
closed (intuitive but hard to prove), and convex

▶ ∆ is clearly nonempty, compact, and convex

▶ Since ⟨W ⟩ ∩∆ = ∅, we can apply strong version of separating
hyperplane theorem

▶ Hence there exists nonzero vector λ ∈ R1+S such that

sup
w∈⟨W ⟩

λ · w < inf
d∈∆

λ · d

▶ Using definition of asset span ⟨W ⟩, we get

sup
θ∈RJ

λ′W θ < inf
d∈∆

λ · d
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Proof of “only if” part

▶ Using definition of asset span ⟨W ⟩, we get

sup
θ∈RJ

λ′W θ < inf
d∈∆

λ · d

▶ Then it must be λ′W = 0
▶ To see this, suppose v := λ′W ̸= 0; let v = (v1, . . . , vJ) and

suppose vj ̸= 0
▶ Since θ arbitrary, choose θ = (0, . . . , αvj , . . . , 0)
▶ Then λ′W θ = αv2

j → ∞ as α → ∞, which would exceed
infd∈∆ λ · d eventually

▶ Hence vj = 0 for all j , and λ′W = 0

▶ λ′W = 0 implies 0 < infd∈∆ λ′d ; in particular, setting ds = 1
for one s and ds′ = 0 for all others, get λs > 0

▶ Letting ps = λs/λ0 and dividing λ′W = 0 by λ0 > 0, get
[1, p′]W = 0
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Pricing of options by no-arbitrage

▶ Let us apply no-arbitrage asset pricing to price options
▶ Broadly speaking, there are two types of options

▶ Call option: right (but no obligation) to buy stock at specified
price

▶ Put option: right (but no obligation) to sell stock at specified
price

▶ “Specified price” is called strike price

▶ If holder of call option (with strike price K ) exercise option
when stock price is S , then payoff is S − K (because pays K
to buy stock that has value S in market)

▶ Similarly, payoff of exercising put option is K − S
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Binomial option pricing: example

▶ Consider simple model with two dates t = 0, 1

▶ At t = 0, stock price is S0 = 100; at t = 1, stock price is
either S1 = 120 or S1 = 90

▶ Suppose interest rate is 10% between two dates

▶ What is call price with strike K = 100?

S0 = 100

S1 = 90
Down

S1 = 120Up
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Binomial option pricing: example

▶ Consider an asset U that pays 1 in “Up” state and 0
otherwise; let pu be its price at t = 0

▶ Consider an asset D that pays 1 in “Down” state and 0
otherwise; let pd be its price at t = 0

▶ A stock is the same as 120 shares of U and 90 shares of D

▶ Hence by no arbitrage, it must be

100 = S0 = 120pu + 90pd

©Alexis Akira Toda Instruction slides for Econ 113/200 Mathematical Economics



Binomial option pricing: example

▶ Consider an asset U that pays 1 in “Up” state and 0
otherwise; let pu be its price at t = 0

▶ Consider an asset D that pays 1 in “Down” state and 0
otherwise; let pd be its price at t = 0

▶ A stock is the same as 120 shares of U and 90 shares of D

▶ Hence by no arbitrage, it must be

100 = S0 = 120pu + 90pd

©Alexis Akira Toda Instruction slides for Econ 113/200 Mathematical Economics



Binomial option pricing: example

▶ Similarly, a risk-free asset (that pays 1 no matter what) is the
same as 1 share of U and 1 share of D

▶ Hence by no arbitrage, it must be

1

1.1
= pu + pd

▶ We have two linear equations in two unknowns (pu, pd)

▶ After some algebra, solution is

(pu, pd) =

(
20

33
,
10

33

)
▶ Call option pays 120− 100 = 20 in “Up” state, so it is the

same as 20 shares of U; hence its price is C = 20pu = 400
33
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Binomial option pricing: general two periods

▶ More generally, suppose stock price is S0 at t = 0, and it is
either S1 = US0 or S1 = DS0 at t = 1, where U > D

▶ Suppose gross risk-free rate R satisfies U > R > D

S0

S1 = DS0
Down

S1 = US0Up
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Binomial option pricing: general two periods

▶ By same argument as before,
▶ Stock: S0 = puUS0 + pdDS0 =⇒ 1 = puU + pdD
▶ Bond: 1/R = pu + pd =⇒ 1 = puR + pdR

▶ Taking difference, 0 = pu(U − R)− pd(R − D)

▶ After some algebra, get

(pu, pd) =
1

R
(p, 1− p),

where p = R−D
U−D ∈ (0, 1)

▶ Can think of p as “risk-neutral” probability of “Up” state

▶ Call option price is then

C = pu max {0,US0 − K}+ pd max {0,DS0 − K}
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Binomial option pricing: general three periods

▶ More generally, suppose time is t = 0, 1, 2 and stock can grow
either by factor U or D each period, where U > D

▶ Suppose gross risk-free rate R satisfies U > R > D

S0

S2 = D2S0
Down

Up

Down

S2 = UDS0
Down

S2 = U2S0Up

Up
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Risk-neutral pricing in three periods

▶ By same argument as before, state “2 Up” occurs with
risk-neutral probability p2

▶ State “1 Up 1 Down” occurs with risk-neutral probability
p(1− p) + (1− p)p = 2p(1− p)

▶ State “2 Down” occurs with risk-neutral probability (1− p)2

▶ Hence (European) call option price is

C =
1

R2
(p2Cuu + 2p(1− p)Cud + (1− p)2Cdd),

where Cuu = max
{
0,U2S0 − K

}
, Cud = max {0,UDS0 − K},

Cdd = max
{
0,D2S0 − K

}
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Binomial option pricing: general case

▶ Consider European call option with strike price K and
expiration T

▶ Expected growth rate of stock price is µ and volatility is σ

▶ (Continuously compounded) risk-free rate is r

▶ What is price of European call option?
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Binomial option pricing: general case
▶ To compute option price, we can divide time 0 ≤ t ≤ T into

N subperiods, each with length ∆t = T/N

▶ In each period, assume stock goes up or down, with factor

U = eµ∆t+σ
√
∆t , D = eµ∆t−σ

√
∆t

▶ One period gross risk-free rate is R = er∆t

▶ Define p = R−D
U−D ∈ (0, 1) be risk-neutral probability of “Up”

state

▶ Then risk-neutral probability of “n Up, N − n Down” is(N
n

)
pn(1− p)N−n, where

(N
n

)
= N!

n!(N−n)!

▶ Therefore European call option price is

C =
1

RN︸︷︷︸
discount

N∑
n=0

(
N

n

)
pn(1− p)N−n︸ ︷︷ ︸

risk-neutral probability

max
{
0,UnDN−nS0 − K

}
︸ ︷︷ ︸

terminal payoff
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Binomial pricing of American options

▶ We know early exercise of American call option is suboptimal

▶ Hence American call option price is same as European call
option

▶ Not true for put options

▶ We can still apply binomial option pricing for American put
options, but need a computer
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Binomial pricing of American put options
▶ For simplicity, assume two periods t = 0, 1

▶ If exercise put option now, payoff is K − S

▶ Otherwise, at t = 1, put payoff is max {0,K − S1}
▶ Hence put price is

P = max

 K − S0︸ ︷︷ ︸
Value if exercise

,
1

R
(pPu + (1− p)Pd)︸ ︷︷ ︸

Value if wait

 ,

where Pu = max {0,K − US0} and Pd = max {0,K − DS0}

S0

S1 = DS0
Down

S1 = US0Up
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Binomial pricing of American put options

▶ More generally, suppose you divide time 0 ≤ t ≤ T into N
subperiods

▶ Let Ps,n be value of put in s-th subperiod when stock went up
n times

▶ If s = N (terminal date), PN,n = max
{
K − UnDN−nS0, 0

}
▶ At subperiod s after n ups, put value is

Ps,n

= max

K − UnDs−nS0︸ ︷︷ ︸
Value if exercise

,
1

R
(pPs+1,n+1 + (1− p)Ps+1,n)︸ ︷︷ ︸

Value if wait


▶ Starting from {PN,n}Nn=0, can compute any Ps,n by iterating

from backwards (s = N,N − 1, . . . , 2, 1, 0)
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Example

▶ Consider American call and put options with expiration T = 1
year and strike price K = 100

▶ Suppose risk-free rate is 3%, expected stock return is 8%, and
volatility is 25%

▶ Compute option prices using previous approach setting
r = 0.03, µ = 0.08, σ = 0.25, and using large N (say
N = 1000)
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American put option price
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Limitation of no-arbitrage asset pricing

▶ No-arbitrage asset pricing is useful for computing prices of
derivatives (options) given fundamental assets (stocks)

▶ Its success is due to the weak assumptions: only optimizing
behavior (absence of arbitrage) is required, and it is
detail-independent (e.g., utility functions)

▶ However, weak assumptions imply weak conclusions: it does
not say how prices of fundamental assets are determined in
the first place
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Capital Asset Pricing Model (CAPM)

▶ We embed no-arbitrage asset pricing into general equilibrium
to derive CAPM

▶ I agents, indexed by i = 1, . . . , I

▶ Two period, with time denoted by t = 0, 1

▶ One consumption good, S states of the world at t = 1
indexed by s = 0, 1, . . . ,S

▶ Probability of state s is πs > 0
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Capital Asset Pricing Model (CAPM)

▶ Agent i ’s endowment ei = (ei0, ei1, . . . , eiS)

▶ Aggregate endowment e =
∑I

i=1 ei ; with slight abuse of
notation, write e = (e0, e1, . . . , eS)

▶ Agent i has HARA von Neumann-Morgenstern utility

ui (x) =
1

a− 1
(ax + bi )

1−1/a,

so a is common across agents but bi arbitrary

▶ Agent i ’ utility function is

Ui (x) = ui (x0) + β

S∑
s=1

πsui (xs),

where discount factor β > 0 is common
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State prices with HARA utility

Theorem
Let E = {I , (ei ), (Ui )} be an Arrow-Debreu economy with two
periods, denoted by t = 0, 1, and S states at t = 1 (state s occurs
with probability πs > 0). Suppose that agent i has utility function

Ui (x0, . . . , xS) = ui (x0) + β E[ui (xs)] = ui (x0) + β

S∑
s=1

πsui (xs),

where β > 0 is the (common) discount factor and ui (x) is a HARA
Bernoulli utility function with parameters (a, bi ) (so a is common
across agents). Normalizing the price of t = 0 good as p0 = 1, the
state price is then

ps = βπs

(
aes + b

ae0 + b

)−1/a

,

where b =
∑I

i=1 bi .
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Proof

▶ By same argument as previous aggregation result, economy
equivalent to one with a HARA representative agent with
parameters (a, b), where b =

∑I
i=1 bi

▶ Representative agent consumes aggregate endowment in
equilibrium

▶ Let

L = u(x0) + β

S∑
s=1

πsu(xs) + λ (p · e − p · x)

be Lagrangian

▶ Since u′(x) = (ax + b)−1/a, first-order conditions are

λp0 = u′(x0) = u′(e0) = (ae0 + b)−1/a,

λps = βπsu
′(xs) = βπsu

′(es) = βπs(aes + b)−1/a

▶ Dividing two equations and using p0 = 1 yield desired result
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Mutual Fund Theorem

Corollary (Mutual Fund Theorem)

Let everything be as above. Then any agent’s consumption at
t = 1 can be replicated just by the aggregate endowment (“stock
market”) and the vector of ones 1 = (1, . . . , 1)′ (“risk-free asset”).

▶ Mutual Fund Theorem has an enormous practical implication

▶ No matter what your risk attitude or traded assets are, the
optimal portfolio is a combination of the aggregate stock
market and the risk-free asset

▶ Thus all you need to decide is how much to invest in each
asset

▶ Influenced by this theorem, John Bogle founded the Vanguard
Group in 1974 and started offering the first index fund in 1975
(https://en.wikipedia.org/wiki/Index_fund)
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Proof of Mutual Fund Theorem

▶ Let λi > 0 be Lagrange multiplier of agent i

▶ By first-order condition we obtain

βπs(axs + bi )
−1/a = λips = λiβπs

(
aes + b

ae0 + b

)−1/a

⇐⇒ axs + bi = λ−a
i

aes + b

ae0 + b

⇐⇒ xs = λ−a
i

1

ae0 + b
es +

1

a

(
λ−a
i

b

ae0 + b
− bi

)
▶ Therefore there exist constants θi > 0, ϕi ∈ R such that

xi = θie + ϕi1, where xi = (xi1, . . . , xiS)
′ and e = (e1, . . . , eS)

′

▶ Hence agent i ’s consumption at t = 1 can be spanned by
stock and risk-free asset
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Stochastic discount factor

▶ Let us go back to general no-arbitrage pricing formula
q =

∑S
s=1 psAs , where

▶ q: asset price,
▶ ps : state price,
▶ As : asset payoff

▶ Can rewrite

q =
S∑

s=1

psAs =
S∑

s=1

πs
ps
πs

As = E[mA],

▶ πs : probability of state s,
▶ m = (m1, . . . ,mS) with ms = ps/πs : stochastic discount

factor (SDF)

▶ Modeling SDF is popular topic in theoretical and empirical

finance (with HARA, ms = ps/πs = β
(
aes+b
ae0+b

)−1/a
)
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Covariance pricing

▶ Using SDF, asset pricing formula is

Price = E[SDF× Payoff]

▶ Dividing both sides by price, get

1 = E

[
SDF× Payoff

Price

]
= E[SDF× Return] = E[mR]

▶ Letting Rf be gross risk-free rate, get

1 = E[mRf ] = E[m]Rf ⇐⇒ Rf = 1/E[m]
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Covariance pricing

▶ Recall definition of covariance

Cov[X ,Y ] = E[(X − E[X ])(Y − E[Y ])] = E[XY ]− E[X ] E[Y ]

▶ Setting X = m and Y = R, get

Cov[m,R] = E[mR]− E[m] E[R] = 1− E[R]

Rf

⇐⇒ E[R]− Rf︸ ︷︷ ︸
risk premium

= −Rf Cov[m,R]︸ ︷︷ ︸
covariance

▶ Risk premium of asset is (negatively) proportional to
covariance between SDF and asset return (covariance pricing
formula)

©Alexis Akira Toda Instruction slides for Econ 113/200 Mathematical Economics



Capital Asset Pricing Model (CAPM)

▶ We now specialize covariance pricing formula to SDF for
HARA utility, in particular quadratic utility

▶ Set a = −1; then HARA utility is

u(x) =
1

a− 1
(ax + b)1−1/a = −1

2
(b − x)2,

which is quadratic

▶ Recall that for HARA utility (with a = −1), SDF is

ms =
ps
πs

= β

(
aes + b

ae0 + b

)−1/a

= β
b − es
b − e0

▶ Clearly m is affine in endowment e, and hence also affine in
market return Rm = e/P (think of market return as claim to
aggregate endowment, which is similar to index fund)

▶ Hence can write m = A− BRm for some constants A,B
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Capital Asset Pricing Model (CAPM)

▶ Plug in SDF m = A− BRm into covariance pricing formula

E[Rj ]− Rf = −Rf Cov[m,Rj ],

where Rj is gross return on asset (or portfolio) j

▶ Then

E[Rj ]− Rf = −Rf Cov[m,Rj ]

= −Rf Cov[A− BRm,Rj ] = BRf Cov[Rm,Rj ]

▶ Specializing to Rj = Rm (market return), get

E[Rm]− Rf = BRf Cov[Rm,Rm] = BRf Var[Rm]
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Capital Asset Pricing Model (CAPM)

▶ We know

E[Rj ]− Rf = BRf Cov[Rm,Rj ] for any asset j ,

E[Rm]− Rf = BRf Var[Rm]

▶ Dividing first equation by second to eliminate unknown
constant B, get

E[Rj ]− Rf︸ ︷︷ ︸
asset j ’s risk premium

=
Cov[Rm,Rj ]

Var[Rm]
(E[Rm]− Rf )

= βj (E[Rm]− Rf )︸ ︷︷ ︸
market risk premium

,

where βj := Cov[Rm,Rj ]/Var[Rm] is called asset j ’s beta
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Implication of CAPM

▶ CAPM predicts that an asset’s risk premium is proportional to
market risk premium

▶ Constant of proportionality is beta, which is covariance of
asset and market return (scaled by variance of market return)

▶ Can estimate βj by running time series regression

Rjt − Rft = αj + βj(Rmt − Rft) + ϵjt

▶ Theory predicts αj = 0; assets with αj > 0 (< 0) have
abnormally high (low) returns, and hence are undervalued
(overvalued)

▶ Can be used for portfolio management
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Security market line (SML)
▶ Linear relationship between beta and risk premium is called

security market line

β

E[R]

Rf

Market portfolio

SML

βj

E[Rj ]

1

E[Rm]

O

Undervalued

Overvalued

©Alexis Akira Toda Instruction slides for Econ 113/200 Mathematical Economics


	Arrow-Debreu Model
	Convex Analysis and Convex Programming
	Walras law
	Quasi-linear model
	Welfare properties of equilibrium
	Computation of equilibrium
	International trade
	Finance

