
Economics 205 Final Examination

Professors Toda and Watson

Fall 2015

Name:

Instructions:

• You have three hours to complete this closed-book examination. You may use
scratch paper, but please write your final answers (including your complete argu-
ments) on these sheets. Calculators are allowed.

• All logarithms are base e = 2.718281828 . . . , so ln x and log x are the same.

Question: 1 2 3 4 5 6 7 8 9 10 Total

Points: 10 10 10 10 10 10 10 10 10 10 100

Score:

i



1. (10 points) Consider the sequence {xn}∞n=1 defined by xn = 2n−1
n+1

for every n ∈ N.
Find the limit of this sequence. Provide proof of this limit by describing, for a given
ε > 0, a positive integer N that satisfies the definition of the limit.

Solution: 1. The limit clearly equals 2. Note that
∣

∣

2n−1
n+1

− 2
∣

∣ = 3
n+1

. Therefore
∣

∣

2n−1
n+1

− 1
∣

∣ < ε is equivalent to 3
n+1

< ε, which simplifies to 3
ε
− 1 < n. Thus, for

any given ε > 0, let N be the smallest integer satisfying this inequality.

2. (10 points) Calculate the following:

(a) lim
x→0

x lnx2

Solution: 0

(b)

∫ e3

e

(4x ln x)dx

Solution: Integration by parts: 5e6 − e2.

3. (10 points) Consider the function f : [1,∞) → R defined by f(x) ≡ 1/x.

(a) Calculate the first four derivatives of f and write a general expression for f (k)

(the kth derivative of f).

Solution: f (k)(x) = (−1)kk!x−(k+1).

(b) Write the third degree Taylor polynomial of f , centered at the point c = 1, as a
function of x.

Solution: P3(x) = f(1) + f ′(1)(x − 1) + 1
2
f ′′(1)(x − 1)2 + 1

6
f ′′′(1)(x − 1)3,

which equals

P3(x) = 1− (x− 1) + (x− 1)2 − (x− 1)3.

(c) Suppose you want to use a Taylor polynomial to estimate f(x) for values of x
in the interval [1, 3]. Write the error term of the nth degree Taylor polynomial,
as a function of x, n, and t. Center the polynomial around c = 1. Can you find
a value of n such that the absolute value of the error term guaranteed to be less
than 1/10 for all x ∈ [1, 3], without knowing the value of t between c and x? If
so, provide such a number.

Solution: The error term of the Taylor polynomial centered at c = 1 is

En(x) =
(−1)n+1(n + 1)!(x− 1)n+1

(n+ 1)!tn+2
,



so we have

|En(x)| =
(x− 1)n+1

tn+2
,

which cannot be bounded by 1/10 for 1 ≤ t ≤ x for any n.

4. (10 points) Suppose X and Y are open intervals of R. Consider two functions, g :
X → Y and f : Y → R. Evaluate the following claim:

Claim: If lim
x→a

g(x) exists and equals b ∈ Y , and if lim
y→b

f(y) exists and equals

c ∈ R, then lim
x→a

(f ◦ g)(x) exists and equals c.

Is this claim correct? If you answer “yes,” explain how you would prove it. Be as
formal as you can. If you answer “no,” provide a counterexample.

Solution: No. A counterexample is given by g(x) = 0 for all x, and f(y) = 0 if
y 6= 0 and f(0) = 1. Let a = b = 0. Note that limx→0 g(x) = 0 and limy→0 f(x) =
0, but limx→0(f ◦ g)(x) = 1.

5. (10 points) Let f : R → R and g : R → R be arbitrary functions.

(a) What assumptions are needed to guarantee that inf{|f(x) − g(x)| | x ∈ R}
exists?

Solution: No assumptions are needed.

(b) What assumptions are needed to guarantee that min{|f(x) − g(x)| | x ∈ R}
exists?

Solution: Continuity of the two functions is sufficient.

6. (10 points) Let f(x) =
√
x2 + 1. Compute f ′(x), f ′′(x), and determine whether f is

convex, concave, or neither.

Solution: f ′(x) = x√
x2+1

, f ′′(x) = (x2 + 1)−
3

2 > 0, so f is convex.

7. Let f(x1, x2) = x3
1 + 3x2

1 + x1x2 + x2
2 − 5x2 + 6.

(a) (2 points) Compute the gradient and the Hessian of f .
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Solution:

∇f(x1, x2) =

[

3x2
1 + 6x1 + x2

x1 + 2x2 − 5

]

,

∇2f(x1, x2) =

[

6x1 + 6 1
1 2

]

.

(2 points for the gradient, 1 point for the Hessian.)

(b) (4 points) Find the stationary point(s) of f .

Solution: By the first-order condition, we get

∇f(x1, x2) = 0 ⇐⇒
[

3x2
1 + 6x1 + x2

x1 + 2x2 − 5

]

=

[

0
0

]

.

From the first equation, we get x2 = −3x2
1 − 6x1. Substituting into the

second equation, we get

x1 + 2(−3x2
1 − 6x1)− 5 = 0 ⇐⇒ 6x2

1 + 11x1 + 5 = 0

⇐⇒ (6x1 + 5)(x1 + 1) = 0

⇐⇒ x1 = −1,−5

6
.

If x1 = −1, then x2 = 3. If x1 = −5
6
, then x2 =

35
12
. Therefore the stationary

points are

(x1, x2) = (−1, 3),

(

−5

6
,
35

12

)

.

(c) (4 points) Determine whether each stationary point is a local maximum, local
minimum, or a saddle point.

Solution: At x1 = −1, the Hessian is

H = ∇2f(x1, x2) =

[

0 1
1 2

]

.

Since the determinant is 0× 2− 12 = −1 < 0, it is a saddle point.

At x1 = −5
6
, the Hessian is

H = ∇2f(x1, x2) =

[

1 1
1 2

]

.

Since 1 > 0 and 1 × 2 − 12 = 1 > 0, it is positive definite. Therefore it is a
local minimum.
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8. Consider the problem

minimize 3x1 + x2

subject to x2 ≤ −x2
1,

x2
1 + (x2 − 1)2 ≤ 1.

(a) (2 points) Draw a picture of the set that each constraint defines (in one picture).

Solution: The constraint x2 ≤ −x2
1 is a parabola with apex (0, 0) (1 point).

The constraint x2
1 + (x2 − 1)2 ≤ 1 is a disk with center (0, 1) and radius 1 (1

point).

(b) (2 points) Compute the solution.

Solution: Since the constraint consists of the single point (x1, x2) = (0, 0),
it is the unique solution.

(c) (3 points) Compute the tangent cone and the linearizing cone at the solution.

Solution: Let x̄ = (x1, x2) = (0, 0). Since the constraint set is C = {x̄}, we
have x̄+ ty ∈ C with t > 0 only if y = (0, 0). Therefore the tangent cone is
T (x̄) = {0} (1 point).

Let g1(x) = x2
1 + x2 and g2(x) = x2

1 + (x2 − 1)2 − 1. Then

∇g1(x̄) =

[

2x1

1

]

=

[

0
1

]

, ∇g2(x̄) =

[

2x1

2(x2 − 1)

]

=

[

0
−2

]

,

so the linearizing cone is L(x̄) = {(y1, y2) | y2 = 0} (2 points).

(d) (3 points) Do the Karush-Kuhn-Tucker conditions hold? If so, give the Lagrange
multipliers. If not, explain why.

Solution: Let

L(x1, x2, λ1, λ2) = 3x1 + x2 + λ1(x
2
1 + x2) + λ2(x

2
1 + (x2 − 1)2 − 1)

be the Lagrangian. If the KKT theorem holds, we must have

0 =
∂L

∂x1
= 3 + 2λ1x1 + 2λ2x1,

0 =
∂L

∂x2
= 1 + λ1 + 2λ2(x2 − 1)

at x̄ = (x1, x2) = (0, 0), but the first equation becomes 0 = 3, a contradiction.
Therefore the KKT conditions do not hold (1 point).
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The reason is because the Guignard constraint qualification L(x̄) ⊂ co T (x̄)
does not hold (2 points).

9. Consider the problem

maximize log x1 + u1 log x2

subject to x1 + x2 ≤ u2,

where x1, x2 > 0 are variables and u1, u2 > 0 are parameters.

(a) (2 points) Prove that the objective function is concave. (Hint: by definition f
is concave if −f is convex.)

Solution: Since (log x)′′ = (1/x)′ = −1/x2 < 0, f(x) = log x is concave.
Since the objective function is f(x1) + u1f(x2), it is concave.

(b) (1 point) Write down the Lagrangian.

Solution:

L(x1, x2, λ, u1, u2) = log x1 + u1 log x2 + λ(u2 − x1 − x2).

(c) (3 points) Compute the solution.

Solution: Since the objective function is concave, the constraint is convex,
and the Slater condition holds, the KKT conditions are necessary and suffi-
cient for a solution. The first-order condition is

0 =
∂L

∂x1

=
1

x1

− λ ⇐⇒ x1 =
1

λ
,

0 =
∂L

∂x2

=
u1

x2

− λ ⇐⇒ x2 =
u1

λ
.

Clearly λ > 0. By complementary slackness, we get x1+x2 = u2, so λ = 1+u1

u2

and the solution is

(x1, x2) =

(

u2

1 + u1
,
u1u2

1 + u1

)

.

(d) (4 points) Let φ(u1, u2) be the maximum value of the problem. Compute ∂φ

∂u1

and ∂φ

∂u2

.
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Solution: Let u = (u1, u2). By the envelope theorem,

[

∂φ

∂u1

∂φ

∂u2

]

= ∇uφ(u) = ∇uL(x(u), λ(u), u)

=

[

log x2

λ

]

=

[

log u1u2

1+u1

1+u1

u2

]

.

Alternatively, you can compute φ(u1, u2) and its partial derivatives.

10. (10 points) What is the separating hyperplane theorem? State the assumptions as
well as the conclusion of both for weak separation and strict separation.

Solution: Let C,D be nonempty and convex. If C ∩ D = ∅, then there exists
a 6= 0 such that

sup
x∈C

〈a, x〉 ≤ inf
x∈D

〈a, x〉 .

If in addition C is closed and D is compact, a can be taken such that

sup
x∈C

〈a, x〉 < inf
x∈D

〈a, x〉 .
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