Economics 205 Final Examination

Professors Toda and Watson

Fall 2015

Name:

Instructions:

e You have three hours to complete this closed-book examination. You may use
scratch paper, but please write your final answers (including your complete argu-
ments) on these sheets. Calculators are allowed.

e All logarithms are base e = 2.718281828 ..., so Inz and log z are the same.

Question: 1 2 3 4 5 6 7 8 9 10 | Total

Points: 10 10 10 10 10 10 10 10 10 10 100

Score:




1. (10 points) Consider the sequence {x,}>, defined by z,, = 2! for every n € N.

n+1
Find the limit of this sequence. Provide proof of this limit by describing, for a given

e > 0, a positive integer N that satisfies the definition of the limit.

. . S 2n—1 _ 3
82011it10n. 1. The limit clearly equals 2. Note that |5 — 2| = ;5. Therefore

i 1} < € is equivalent to ni“ < ¢, which simplifies to g — 1 < n. Thus, for
any given € > 0, let N be the smallest integer satisfying this inequality.

2. (10 points) Calculate the following:

- 2
(a) glclir(ljxlnx

Solution: 0

3

(b) ]C€(4x1nzgdx

Solution: Integration by parts: 5e® — e2.

3. (10 points) Consider the function f: [1,00) — R defined by f(z) =1/x.

(a) Calculate the first four derivatives of f and write a general expression for f*)
(the kth derivative of f).

Solution: f®)(x) = (—1)*klz=¢+D,

(b) Write the third degree Taylor polynomial of f, centered at the point ¢ = 1, as a
function of x.

Solution: Ps(z) = f(1)+ f/(1)(z — 1) + 3 f"(1)(z — 1) + + f"(1)(z — 1)3,
which equals

Py(z)=1—(z—1)+ (z —1)> = (x — 1)*.

(c) Suppose you want to use a Taylor polynomial to estimate f(x) for values of
in the interval [1,3]. Write the error term of the nth degree Taylor polynomial,
as a function of z, n, and t. Center the polynomial around ¢ = 1. Can you find
a value of n such that the absolute value of the error term guaranteed to be less
than 1/10 for all = € [1, 3], without knowing the value of ¢t between ¢ and x? If
so, provide such a number.

Solution: The error term of the Taylor polynomial centered at ¢ =1 is

(=)™ (n + Dz — 1)"+!

En(m) = (n n 1)!tn+2 )




so we have
(I - 1)n+1
tn+2 )

which cannot be bounded by 1/10 for 1 < ¢ < x for any n.

| En ()] =

4. (10 points) Suppose X and Y are open intervals of R. Consider two functions, ¢ :
X — Y and f: Y — R. Evaluate the following claim:

Claim: If limg(x) exists and equals b € Y, and if lir% f(y) exists and equals
T—a y—

¢ € R, then lim(f o g)(z) exists and equals c.
r—a

Is this claim correct? If you answer “yes,” explain how you would prove it. Be as
formal as you can. If you answer “no,” provide a counterexample.

Solution: No. A counterexample is given by g(z) = 0 for all z, and f(y) = 0 if
y # 0and f(0) =1. Let a = b = 0. Note that lim,_,o g(z) = 0 and lim,_,, f(z) =
0, but lim, ,o(f o g)(z) = 1.

5. (10 points) Let f: R — R and g: R — R be arbitrary functions.

(a) What assumptions are needed to guarantee that inf{|f(x) — g(x)| | =z € R}
exists?

Solution: No assumptions are needed.

(b) What assumptions are needed to guarantee that min{|f(z) — g(z)| | € R}
exists?

Solution: Continuity of the two functions is sufficient.

6. (10 points) Let f(z) = va? + 1. Compute f'(x), f”(z), and determine whether f is
convex, concave, or neither.

Solution: f'(x) = T F(z) = (a2 +1)72 >0, so f is convex.

7. Let f(z1,79) = a3 + 323 + 1129 + 25 — By + 6.
(a) (2 points) Compute the gradient and the Hessian of f.

Page 2



Solution:

2
V f (1, ) = [31’1 + 6x1 + xg] ’

ZL’1+2ZL’2—5

V2 f (1, 5) = [6:)&11—1— 6 ;] '

(2 points for the gradient, 1 point for the Hessian.)

(b) (4 points) Find the stationary point(s) of f.

Solution: By the first-order condition, we get

- 3.%%4‘61‘14‘.%2 . 0
Vf(ZL’l,ZL’Q)—O <~ |:I1+2I2—5 = ol

From the first equation, we get xo = —3z% — 6. Substituting into the
second equation, we get

Ty +2(=322 —6x) —5=0 < 622 +1lz; +5=0

5
= 1 =-1——.
6
If x4 = —1, then 2o =3. If 1 = —%, then x5 = % Therefore the stationary

points are

(21,79) = (—1,3), (-% %) |

(c) (4 points) Determine whether each stationary point is a local maximum, local
minimum, or a saddle point.

Solution: At z; = —1, the Hessian is

H = V2f(ZL’1,ZL’2) = |:§_) ;:| .

Since the determinant is 0 x 2 — 12 = —1 < 0, it is a saddle point.
Atz = —%, the Hessian is

H= VZf(.fEl,.CEQ) = |:1 ;:| .

Since 1 > 0 and 1 x 2 — 12 =1 > 0, it is positive definite. Therefore it is a
local minimum.
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8. Consider the problem

minimize 311 + a9

subject to Lo < —a:f,

o]+ (29— 1)* < 1.

(a) (2 points) Draw a picture of the set that each constraint defines (in one picture)

Solution: The constraint x5 < —? is a parabola with apex (0,0) (1 point).

The constraint z3 4+ (22 — 1)? < 1 is a disk with center (0,1) and radius 1 (1
point).

(2 points) Compute the solution.

Solution: Since the constraint consists of the single point (x1,z5) = (0,0),
it is the unique solution.

(3 points) Compute the tangent cone and the linearizing cone at the solution

Solution: Let Z = (21, x2) = (0,0). Since the constraint set is C' = {z}, we
have z + ty € C with t > 0 only if y = (0,0). Therefore the tangent cone is
T(z) = {0} (1 point).

Let gi(z) = x} 4 x5 and g2(z) = 22 + (29 — 1)2 — 1. Then

suor= 1] [] s ][]

so the linearizing cone is L(Z) = {(y1, y2) | y2 = 0} (2 points).

(d) (3 points) Do the Karush-Kuhn-Tucker conditions hold? If so, give the Lagrange

multipliers. If not, explain why.

be the Lagrangian. If the KKT theorem holds, we must have

at T = (x1,z2) = (0,0), but the first equation becomes 0 = 3, a contradiction
Therefore the KKT conditions do not hold (1 point).

Solution: Let

L(l‘l,.IQ, )\1, )\2) = 31’1 + i) + )\1(1‘% + $2) + )\2(1'% -+ (.IQ — 1)2 — 1)

oL
0=—=3+ 2)\1£L’1 + 2)\2[E1,
al'l

oL
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The reason is because the Guignard constraint qualification L(z) C coT ()
does not hold (2 points).

9. Consider the problem

maximize log x1 + uq log xs

subject to x1 + T3 < ug,

where x1, x5 > 0 are variables and u,us > 0 are parameters.

(a) (2 points) Prove that the objective function is concave. (Hint: by definition f
is concave if —f is convex.)

Solution: Since (logz)” = (1/x) = —1/2* < 0, f(x) = logx is concave.
Since the objective function is f(z1) 4+ uy f(z2), it is concave.

(b) (1 point) Write down the Lagrangian.

Solution:

L(zy, x9, N\, uq, ug) = logxy 4+ uy log xg + AM(ug — x1 — 23).

(¢) (3 points) Compute the solution.

Solution: Since the objective function is concave, the constraint is convex,
and the Slater condition holds, the KKT conditions are necessary and suffi-
cient for a solution. The first-order condition is

oL 1 1
=0 =— -\ &= 121 =—
al'l T o )\7
0L U1 Uy
0=—=——- )\ <= = —.
81’2 i) 2 A
Clearly A > 0. By complementary slackness, we get x1+x9 = us, SO A = 12:—;“
and the solution is
( ) U2 U1Us
T1,T9) = | ———
b 1+ (751 ’ 1+ (A1

(d) (4 points) Let ¢(u1,us2) be the maximum value of the problem. Compute 88_12

and 86_¢>.
u2
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Solution: Let u = (uy, us). By the envelope theorem,

09

dusy

~ logza| log%
- A - Itug :

u2

Alternatively, you can compute ¢(u,us) and its partial derivatives.

10. (10 points) What is the separating hyperplane theorem? State the assumptions as
well as the conclusion of both for weak separation and strict separation.

Solution: Let C, D be nonempty and convex. If C' N D = (), then there exists
a # 0 such that

< inf .
igg<a,x>__;gD<a,x>

If in addition C' is closed and D is compact, a can be taken such that

< inf .
§2g<a,x> inf {a, )
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