
Economics 205 Final Examination

Professors Komunjer and Toda

Fall 2016

Name:

Instructions:

• You have three hours to complete this closed-book examination. You may use
scratch paper, but please write your final answers (including your complete argu-
ments) on these sheets. Calculators are allowed.

• All logarithms are base e = 2.718281828 . . . , so lnx and log x are the same.

Question: 1 2 3 4 5 6 Total

Points: 0 0 0 0 0 0 0

Score:

i



1. Let K and K ′ be two compact sets in R. We will define their sum K + K ′ ⊆ R as
follows:

K +K ′ = {z ∈ R | z = x+ y, (x, y) ∈ K ×K ′}.
(a) Give the characterization of compactness in terms of sequences.

Solution:

(b) Use (a) to show that K +K ′ is compact.

Solution:

2. This question consists of two parts which are largely independent. If you cannot
establish the results required in (a), you can proceed with (b) by assuming (a) has
been shown.

Let (a, b) be a couple of strictly positive real numbers (i.e. a > 0, b > 0), and let r
be real (i.e. r ∈ R). Define

Mr(a, b) =

[
ar + br

2

]1/r
, if r 6= 0,

and
M0(a, b) =

√
ab.

(a) Show that for any a > 0 and b > 0, Mr(a, b) is continuous (as a function of r)
at zero, i.e. that for any a > 0 and b > 0,

lim
r→0

Mr(a, b) = M0(a, b).

(Hint: use the fact that for any x > 0 and y ∈ R, we can write xy = exp(y lnx).)

Solution:

(b) We focus on M−1(a, b), M0(a, b), and M1(a, b), which are called, respectively,
the harmonic mean, geometric mean, and ordinary arithmetic mean of a and b.
Show that we have

M0(a, b) ≤M1(a, b).

(Hint: combine the square of a sum with the square of a difference.) Show that
in addition

M−1(a, b) ≤M0(a, b).

(Hint: write M−1(a, b) as a function of M1(1/a, 1/b).)

Solution:

3. Let x be a vector in Rn and let A = xx>. What is the rank of A? (hint: consider
the following two cases: (1) x = 0 and (2) x 6= 0, and compute the rank of A in each
case.)



Solution:

4. Consider an agent with utility function

U(x1, x2) = (1− α) log x1 + α log x2,

where 0 < α < 1. Suppose that the prices of goods 1, 2 are p1, p2. Consider the
expenditure minimization problem

minimize p1x1 + p2x2

subject to U(x1, x2) ≥ u,

x1, x2 ≥ 0,

where u ∈ R is the target utility level.

(a) Are the Karush-Kuhn-Tucker conditions necessary for a solution? Answer yes
or no, then explain why.

Solution: Yes. The problem is equivalent to

minimize p1x1 + p2x2

subject to − (1− α) log x1 − α log x2 + u ≤ 0,

− x1 ≤ 0,

− x2 ≤ 0.

Clearly the objective function is linear (hence convex). The constraint func-
tions are all convex since log x is concave. Therefore the problem is a convex
minimization problem. Furthermore, the Slater constraint qualification holds
by taking x1, x2 large enough. Hence the assumptions of the KKT theorem
are satisfied.

(b) Are the Karush-Kuhn-Tucker conditions sufficient for a solution? Answer yes or
no, then explain why.

Solution: Since the problem is a convex minimization problem, the KKT
conditions are sufficient for optimality.

(c) Let e(p1, p2, u) be the minimum expenditure and xl(p1, p2, u) be the optimal
demand, where l = 1, 2. Compute x1, x2.

Solution: Clearly the constraints xl ≥ 0 do not bind, since utility is −∞
when xl = 0. Hence we can ignore these constraints. The Lagrangian is

L(x, λ) = p1x1 + p2x2 + λ(−(1− α) log x1 − α log x2 + u).
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The first-order conditions are p1 − λ(1− α)/x1 = 0 and p2 − λα/x2 = 0, so

x1 = λ(1−α)
p1

and x2 = λα
p2

. Clearly λ > 0, so by complementary slackness, we
have

u = (1− α) log x1 + α log x2 = log λ− (1− α) log p1 − α log p2 +H(α),

where H(α) := α logα + (1− α) log(1− α). Taking the exponential, we get

λ = eup1−α1 pα2α
−α(1− α)−(1−α).

Therefore

x1 = eu
(
p2
p1

1− α
α

)α
,

x2 = eu
(
p1
p2

α

1− α

)1−α

.

(d) Compute ∂e(p1, p2, u)/∂p1.

Solution: By the envelope theorem,

∂e(p1, p2, u)

∂p1
=
∂L

∂p1
= x1.

5. Consider an agent who can invest in two assets, a stock and a risk-free bond. Let
Rf > 0 be the gross risk-free rate and R be the gross return of the stock, which can
take S different values R1, . . . , RS > 0 with probability π1, . . . , πS. Suppose that the
agent wants to maximize the log portfolio return

v(θ) := E[log(Rθ +Rf (1− θ))] =
S∑
s=1

πs log(Rsθ +Rf (1− θ)),

where θ is the fraction of wealth invested in the stock. (It is allowed to shortsell the
stock (θ < 0) as well as buy the stock on margin (θ > 1).) Let θ∗ be the optimal
portfolio.

(a) Show that the objective function v is strictly concave.

Solution:

v′′(θ) = −
S∑
s=1

πs
(Rs −Rf )

2

(Rsθ +Rf (1− θ))2
< 0,

so v is strictly concave.
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(b) Show that θ∗ is unique.

Solution: Suppose that θ1 < θ2 are two solutions. Then v(θ1) = v(θ2).
Take any α ∈ (0, 1). By strict concavity, we have

v((1− α)θ1 + αθ2) > (1− α)v(θ1) + αv(θ2) = v(θ1),

so the portfolio θ3 = (1− α)θ1 + αθ2 gives higher utility than θ1, which is a
contradiction.

(c) Derive the first-order condition.

Solution:

v′(θ) = E

[
R−Rf

Rθ +Rf (1− θ)

]
= 0.

(d) Show that ∂θ∗/∂Rf < 0, so if the risk-free rate goes up, the agent invests less in
stock.

Solution: Let

F (Rf , θ) = E

[
R−Rf

Rθ +Rf (1− θ)

]
.

Then F (Rf , θ
∗) = 0. By the implicit function theorem, we have

∂θ∗

∂Rf

= −
DRf

F

DθF
.

By simple algebra,

DθF =
∂F

∂θ
= −E

[
(R−Rf )

2

(Rθ +Rf (1− θ))2

]
< 0,

DRf
F =

∂F

∂Rf

= E

[
−(Rθ +Rf (1− θ))− (R−Rf )(1− θ)

(Rθ +Rf (1− θ))2

]
= −E

[
R

(Rθ +Rf (1− θ))2

]
< 0,

so ∂θ∗/∂Rf < 0.

6. (a) What is the definition of a convex function?

Solution: Let Ω be a convex set. f : Ω → R is convex if for all x1, x2 ∈ Ω
and α ∈ [0, 1], we have f((1− α)x1 + αx2) ≤ (1− α)f(x1) + αf(x2).

(b) What is the definition of a quasi-convex function?
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Solution: Let Ω be a convex set. f : Ω → R is quasi-convex if for all
x1, x2 ∈ Ω and α ∈ [0, 1], we have f((1− α)x1 + αx2) ≤ max {f(x1), f(x2)}.

(c) Let g1, g2 : RN → R be convex, and h : R2 → R be increasing and quasi-convex.
(h is increasing if h(x1, x2) ≤ h(y1, y2) whenever x1 ≤ y1 and x2 ≤ y2.) Define
f : RN → R by f(x) = h(g1(x), g2(x)). Prove that h is quasi-convex.

Solution: Take any x1, x2 ∈ RN and α ∈ [0, 1]. Since gi is convex, we have
gi((1 − α)x1 + αx2) ≤ (1 − α)gi(x1) + αgi(x2). Define G : RN → R2 by
G(x) =

[
g1(x)
g2(x)

]
. Then

G((1− α)x1 + αx2) ≤ (1− α)G(x1) + αG(x2),

where the inequality is component-wise. Applying h to both sides, and using
the fact that h is increasing and quasi-convex, it follows that

f((1− α)x1 + αx2) = h(G((1− α)x1 + αx2))

≤ h((1− α)G(x1) + αG(x2))

≤ max {h(G(x1)), h(G(x2))} = max {f(x1), f(x2)} ,

so f is quasi-convex.
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