
Economics 205 Final Exam

Alexis Akira Toda

Fall 2018

Name:

Instructions:

• You have three hours to complete this closed-book examination. You may use
scratch paper, but please write your final answers (including your complete argu-
ments) on these sheets. Calculators are not allowed.

• All logarithms are base e = 2.718281828 . . . , so lnx and log x are the same.

• Questions are not necessarily ordered in the order of difficulty, and some parts are
(far) easier than others. Make sure to look at all questions and parts.

Question: 1 2 3 4 5 6 Total

Points: 20 20 20 20 20 20 120

Score:

i



1. Let A be an N×N positive matrix, so A = (amn) with amn > 0 for all 1 ≤ m,n ≤ N .
Let ρ(A) be the spectral radius (largest absolute value of all eigenvalues) of A. We
know from the Perron-Frobenius theorem that α = ρ(A) > 0 is an eigenvalue of
A and there exist (unique up to normalization) positive right and left eigenvectors
corresponding to α, so Ax = αx and y′A = αy′. Normalize the eigenvectors such
that they have (Euclidean) norm 1, so

‖x‖ =

√√√√ N∑
n=1

x2n = 1.

This question asks you to prove that the Perron root α and Perron vector x are
smooth functions of the elements of A. Define F : RN2

++ × RN
++ × R++ → RN × R by

F (A, x, α) =

[
(A− αI)x

‖x‖2 − 1

]
.

(a) (5 points) Compute the Jacobian J = D(x,α)F of F with respect to (x, α).

Solution: By simple calculation, we obtain

J =

[
A− αI −x

2x′ 0

]
.

(b) (10 points) Prove that J is regular at (A, x, α). (Hint: Assume J

[
u
v

]
=

[
0
0

]
for

some u ∈ RN , v ∈ R, and show that u = 0 and v = 0.)

Solution: To show that J is regular, suppose that there exist u ∈ RN and
v ∈ R such that

J

[
u
v

]
=

[
A− αI −x

2x′ 0

] [
u
v

]
=

[
0
0

]
.

Comparing each block, we obtain

0 = (A− αI)u− vx,
0 = x′u.

Let y � 0 be the left Perron vector of A. Multiplying y′ from left to the
first equation, we obtain

0 = y′0 = y′(A− αI)x− vy′x = −vy′x

because y′A = αy′. Since x, y � 0, we have y′x > 0, so it must be v = 0.
Then by the first equation we obtain (A− αI)u = 0 ⇐⇒ Au = αu. Since
the Perron vector is unique up to normalization, it must be u = λx for some
λ ∈ R. Then from the second equation we get

0 = x′u = λx′x = λ ‖x‖2 = λ,

so u = λx = 0. Therefore J is regular.



(c) (5 points) Prove that the Perron root α and Perron vector x are continuously
differentiable in the elements of A.

Solution: Immediate from the implicit function theorem.

2. Let

A =

[
1− p p
q 1− q

]
,

where 0 < p, q < 1.

(a) (10 points) Compute all eigenvalues of A.

Solution: The characteristic polynomial of A is

ΦA(t) =

∣∣∣∣t− (1− p) −p
−q t− (1− q)

∣∣∣∣
= t2 − (2− p− q)t+ 1− p− q = (t− 1)(t− 1 + p+ q).

Therefore the eigenvalues are t = 1, 1− p− q.

(b) (10 points) Compute the right and left eigenvectors of A corresponding to the
eigenvalue with largest absolute value. Normalize the eigenvalues such that the
sum of absolute values of elements (L1 norm) is 1.

Solution: Since 0 < p, q < 1, we have |1− p− q| < 1. Therefore the
eigenvalue with largest absolute value is 1. The right eigenvector x = (x1, x2)

′

satisfies

Ax =

[
1− p p
q 1− q

] [
x1
x2

]
=

[
x1
x2

]
.

Solving the equations, we get x1 = x2, so the normalized eigenvector is
x = (1/2, 1/2)′. Similarly, the left eigenvector y = (y1, y2)

′ satisfies

y′A =
[
y1 y2

] [1− p p
q 1− q

]
=
[
y1 y2

]
.

Solving equations, we get py1 = qy2, so the normalized eigenvector is y =(
q
p+q

, p
p+q

)′
.

3. Consider the optimization problem

minimize f(x)

subject to gi(x) ≤ 0, (i = 1, . . . , I)

where f, gi : RN → R are differentiable.

(a) (4 points) What is the definition of a convex function?
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Solution: f is convex if for all x1, x2 and α ∈ [0, 1], we have

f((1− α)x1 + αx2) ≤ (1− α)f(x1) + αf(x2).

(b) (4 points) What is the definition of a quasi-convex function?

Solution: f is quasi-convex if for all x1, x2 and α ∈ [0, 1], we have

f((1− α)x1 + αx2) ≤ max {f(x1), f(x2)} .

(c) (4 points) Suppose that gi’s are convex. What is the Slater condition (constraint
qualification)?

Solution: We say that the Slater condition holds if there exists some x0
such that gi(x0) < 0 for all i.

(d) (8 points) The Karush-Kuhn-Tucker theorem (for convex functions) says that if
gi’s are convex and satisfy the Slater condition, then a solution to the optimiza-
tion problem satisfies the first-order and complementary slackness conditions.
Is this also true if gi’s are only quasi-convex? If so, prove it. If not, provide a
counterexample.

Solution: The statement is false. A counterexample is f(x) = x, I = 1,
and g(x) = −x3. Since g is monotone, it is quasi-convex. Furthermore, the
Slater condition holds because g(1) = −1 < 0. Since −x3 ≤ 0 ⇐⇒ x ≥ 0,
the solution is clearly x = 0. However, the conclusion of the KKT theorem
does not hold because the first-order condition

0 = f ′(x) + λg′(x) = 1− 3λx2

does not hold at the solution x = 0 for any λ ≥ 0.

4. Consider the utility maximization problem

maximize u(x1, x2) = α log x1 + (1− α) log x2

subject to p1x1 + p2x2 ≤ w,

where α ∈ (0, 1) is a preference parameter, x1, x2 > 0 are consumption of goods 1, 2,
p1, p2 are prices, and w > 0 is wealth.

(a) (10 points) Solve the utility maximization problem. Make sure that all of your
arguments are rigorous.

Solution: The solution is

(x1, x2) =

(
αw

p1
,
(1− α)w

p2

)
.
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You need to

• show that the objective function is concave (by taking the Hessian),

• write down the Lagrangian, derive KKT conditions, and solve for the
candidate, and

• mention that for concave maximization problems, KKT conditions are
sufficient for optimality.

(b) (10 points) Let V (p1, p2, w, α) be the maximized utility as a function of all pa-
rameters. Derive a condition on these parameters such that liking good 1 more
makes you happier, i.e., ∂

∂α
V > 0.

Solution: Let

L(x, λ, p1, p2, w, α) = α log x1 + (1− α) log x2 + λ(w − p1x1 − p2x2)

be the Lagrangian. By the envelope theorem, we obtain

∂

∂α
V =

∂

∂α
L = log x1 − log x2 = log

x1
x2
.

Therefore the condition is

1 <
x1
x2

=
αp2

(1− α)p1
⇐⇒ α >

p1
p1 + p2

.

5. Consider an infinite-horizon optimal consumption-saving problem with stochastic re-
turns. Suppose the agent has utility function

E
∞∑
t=0

βt log ct,

where E denotes the expectation, β ∈ (0, 1) is the discount factor, and ct > 0 is
consumption at time t. Suppose that there are S states indexed by s = 1, . . . , S. The
state at time t, denoted by st, evolves according to a Markov chain with transition
probability matrix P = (pss′), where

pss′ = Pr(st+1 = s′|st = s) > 0.

Suppose that the gross return on wealth is Rss′ > 0 between states s and s′. The
agent is endowed with wealth w0 > 0 at t = 0 and nothing thereafter.

(a) (4 points) Derive the budget constraint.

Solution:
w′ = Rss′(w − c).
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(b) (4 points) Let Vs(w) be the value function given state s and wealth w. Derive
the Bellman equation. For the expectation conditional on s, use the symbol
E [· | s].

Solution:

Vs(w) = max
c
{log c+ β E [Vs′(Rss′(w − c)) | s]} .

(c) (4 points) Guess that the value function takes the form Vs(w) = as + bs logw
for some as ∈ R and bs > 0. Assuming that the guess is correct, compute the
optimal consumption rule.

Solution: Substituting Vs(w) = as + bs logw into the Bellman equation, we
obtain

as + bs logw = max
c
{log c+ β E [as′ + bs′ log(Rss′(w − c)) | s]} .

The objective function is clearly concave. The first-order condition is

1

c
− β E [bs′ | s]

1

w − c
= 0 ⇐⇒ c =

w

1 + β E [bs′ | s]
.

(d) (4 points) Derive an equation for bs and {bs′}Ss′=1. Letting b = (b1, . . . , bS)′ and
e = (1, . . . , 1)′, express this equation in matrix form.

Solution: Substituting the optimal consumption rule into the Bellman equa-
tion, the coefficients of logw becomes

bs = 1 + β E [bs′ | s] = 1 + β

S∑
s′=1

pss′bs′ .

Putting this into a matrix, we obtain

b = e+ βPb.

(e) (4 points) Prove that the above equation has a unique solution, and that the
solution indeed satisfies bs > 0 for all s.

Solution: One way is to note that (I − βP )b = e implies

b = (I − βP )−1e =

(
∞∑
n=0

βnP n

)
e� 0.

(Since ρ(P ) = 1 and β < 1, we have ρ(A) = β < 1 for A = βP , so An → O
as n→∞. Use the fact that

I − An+1 = (I − A)(I + A+ · · ·+ An)
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to show the above result.)

Another way is to define X = RS
+ and T : X → X by Tx = e + βPx and

show that T is a contraction mapping. You can check this using Blackwell’s
sufficient condition.

6. This problem asks you to compute
√

3. Let g(x) = x2−3. Then x∗ =
√

3 is a solution
to g(x) = 0.

(a) (3 points) Suppose you use the Newton algorithm for computing x∗. Letting xn
be the approximate solution at the n-th iteration, express xn+1 using xn.

Solution: By the definition of the Newton algorithm, we have

xn+1 = xn −
g(xn)

g′(xn)
= xn −

x2n − 3

2xn
=

1

2

(
xn +

3

xn

)
.

(b) (3 points) Let x0 = 2. Compute x1, x2 (express them as fractions, not decimal
expansions).

Solution: Using the above formula, we get

x1 =
1

2

(
2 +

3

2

)
=

7

4
,

x2 =
1

2

(
7

4
+

12

7

)
=

97

56
.

(c) (3 points) Show that 27
16
<
√

3 < 7
4

and |x1 − x∗| < 2−4.

Solution: Since (27/16)2 = 729/256 < 3 and (7/4)2 = 49/16 > 3, we obtain
27
16
<
√

3 < 7
4
. Since x1 = 7/4 by the above calculation, it follows that

|x1 − x∗| =
∣∣∣∣74 −√3

∣∣∣∣ < ∣∣∣∣74 − 27

16

∣∣∣∣ =
1

16
= 2−4.

(d) (4 points) Show that xn+1 − x∗ = 1
2xn

(xn − x∗)2 for all n, and also xn ≥ x∗.

Solution: By the definition of the Newton algorithm,

xn+1 − x∗ =
1

2xn
(x2n + 3− 2

√
3xn) =

1

2xn
(xn − x∗)2.

Clearly x0 = 2 >
√

3 = x∗. For n ≥ 1 we have xn−x∗ = 1
2xn−1

(xn−1−x∗)2 ≥
0, so xn ≥ x∗.

(e) (4 points) Show that |xn − x∗| ≤ 21−5·2n−1
for all n ≥ 1.
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Solution: Since
|x1 − x∗| ≤ 2−4 = 21−5·21−1

,

the claim is true for n = 1. Assume that the claim is true for some n. Since
xn ≥ x∗ =

√
3 > 1, we obtain

|xn+1 − x∗| =
1

2xn
|xn − x∗|2 ≤

1

2
(21−5·2n−1

)2 =
1

2
22−5·2n = 21−5·2n ,

so the claim holds for n + 1 as well. Therefore by mathematical induction,
the claim holds for all n ≥ 1.

(f) (3 points) Show that |x5 − x∗| ≤ 2× 10−24. (Hint: 210 = 1024 > 1000 = 103.)

Solution: By the above question,

|x5 − x∗| ≤ 21−5·24 = 2× 2−80 < 2× (10−3)8 = 2× 10−24.
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You can detach this sheet and use it as scratch paper.
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