Economics 205 Final Exam

Alexis Akira Toda Fall 2018

3. T		
Name:		
Dame.		

Instructions:

- You have three hours to complete this closed-book examination. You may use scratch paper, but please write your final answers (including your complete arguments) on these sheets. Calculators are not allowed.
- All logarithms are base e = 2.718281828..., so $\ln x$ and $\log x$ are the same.
- Questions are not necessarily ordered in the order of difficulty, and some parts are (far) easier than others. Make sure to look at all questions and parts.

Question:	1	2	3	4	5	6	Total
Points:	20	20	20	20	20	20	120
Score:							

1. Let A be an $N \times N$ positive matrix, so $A = (a_{mn})$ with $a_{mn} > 0$ for all $1 \le m, n \le N$. Let $\rho(A)$ be the spectral radius (largest absolute value of all eigenvalues) of A. We know from the Perron-Frobenius theorem that $\alpha = \rho(A) > 0$ is an eigenvalue of A and there exist (unique up to normalization) positive right and left eigenvectors corresponding to α , so $Ax = \alpha x$ and $y'A = \alpha y'$. Normalize the eigenvectors such that they have (Euclidean) norm 1, so

$$||x|| = \sqrt{\sum_{n=1}^{N} x_n^2} = 1.$$

This question asks you to prove that the Perron root α and Perron vector x are smooth functions of the elements of A. Define $F: \mathbb{R}^{N^2}_{++} \times \mathbb{R}^N_{++} \times \mathbb{R}_{++} \to \mathbb{R}^N \times \mathbb{R}$ by

$$F(A, x, \alpha) = \begin{bmatrix} (A - \alpha I)x \\ \|x\|^2 - 1 \end{bmatrix}.$$

(a) (5 points) Compute the Jacobian $J = D_{(x,\alpha)}F$ of F with respect to (x,α) .

Solution: By simple calculation, we obtain

$$J = \begin{bmatrix} A - \alpha I & -x \\ 2x' & 0 \end{bmatrix}.$$

(b) (10 points) Prove that J is regular at (A, x, α) . (Hint: Assume $J \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ for some $u \in \mathbb{R}^N$, $v \in \mathbb{R}$, and show that u = 0 and v = 0.)

Solution: To show that J is regular, suppose that there exist $u \in \mathbb{R}^N$ and $v \in \mathbb{R}$ such that

$$J\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} A - \alpha I & -x \\ 2x' & 0 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Comparing each block, we obtain

$$0 = (A - \alpha I)u - vx,$$

$$0 = x'u.$$

Let $y \gg 0$ be the left Perron vector of A. Multiplying y' from left to the first equation, we obtain

$$0 = y'0 = y'(A - \alpha I)x - vy'x = -vy'x$$

because $y'A = \alpha y'$. Since $x, y \gg 0$, we have y'x > 0, so it must be v = 0. Then by the first equation we obtain $(A - \alpha I)u = 0 \iff Au = \alpha u$. Since the Perron vector is unique up to normalization, it must be $u = \lambda x$ for some $\lambda \in \mathbb{R}$. Then from the second equation we get

$$0 = x'u = \lambda x'x = \lambda \|x\|^2 = \lambda,$$

so $u = \lambda x = 0$. Therefore J is regular.

(c) (5 points) Prove that the Perron root α and Perron vector x are continuously differentiable in the elements of A.

Solution: Immediate from the implicit function theorem.

2. Let

$$A = \begin{bmatrix} 1-p & p \\ q & 1-q \end{bmatrix},$$

where 0 < p, q < 1.

(a) (10 points) Compute all eigenvalues of A.

Solution: The characteristic polynomial of A is

$$\Phi_A(t) = \begin{vmatrix} t - (1-p) & -p \\ -q & t - (1-q) \end{vmatrix}
= t^2 - (2-p-q)t + 1 - p - q = (t-1)(t-1+p+q).$$

Therefore the eigenvalues are t = 1, 1 - p - q.

(b) (10 points) Compute the right and left eigenvectors of A corresponding to the eigenvalue with largest absolute value. Normalize the eigenvalues such that the sum of absolute values of elements (L^1 norm) is 1.

Solution: Since 0 < p, q < 1, we have |1 - p - q| < 1. Therefore the eigenvalue with largest absolute value is 1. The right eigenvector $x = (x_1, x_2)'$ satisfies

$$Ax = \begin{bmatrix} 1-p & p \\ q & 1-q \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Solving the equations, we get $x_1 = x_2$, so the normalized eigenvector is x = (1/2, 1/2)'. Similarly, the left eigenvector $y = (y_1, y_2)'$ satisfies

$$y'A = \begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} 1-p & p \\ q & 1-q \end{bmatrix} = \begin{bmatrix} y_1 & y_2 \end{bmatrix}.$$

Solving equations, we get $py_1 = qy_2$, so the normalized eigenvector is $y = \left(\frac{q}{p+q}, \frac{p}{p+q}\right)'$.

3. Consider the optimization problem

minimize
$$f(x)$$

subject to $g_i(x) \le 0, \quad (i = 1, ..., I)$

where $f, g_i : \mathbb{R}^N \to \mathbb{R}$ are differentiable.

(a) (4 points) What is the definition of a convex function?

Solution: f is convex if for all x_1, x_2 and $\alpha \in [0, 1]$, we have

$$f((1-\alpha)x_1 + \alpha x_2) \le (1-\alpha)f(x_1) + \alpha f(x_2).$$

(b) (4 points) What is the definition of a quasi-convex function?

Solution: f is quasi-convex if for all x_1, x_2 and $\alpha \in [0, 1]$, we have

$$f((1-\alpha)x_1 + \alpha x_2) \le \max\{f(x_1), f(x_2)\}.$$

(c) (4 points) Suppose that g_i 's are convex. What is the Slater condition (constraint qualification)?

Solution: We say that the Slater condition holds if there exists some x_0 such that $g_i(x_0) < 0$ for all i.

(d) (8 points) The Karush-Kuhn-Tucker theorem (for convex functions) says that if g_i 's are convex and satisfy the Slater condition, then a solution to the optimization problem satisfies the first-order and complementary slackness conditions. Is this also true if g_i 's are only quasi-convex? If so, prove it. If not, provide a counterexample.

Solution: The statement is false. A counterexample is f(x) = x, I = 1, and $g(x) = -x^3$. Since g is monotone, it is quasi-convex. Furthermore, the Slater condition holds because g(1) = -1 < 0. Since $-x^3 \le 0 \iff x \ge 0$, the solution is clearly x = 0. However, the conclusion of the KKT theorem does not hold because the first-order condition

$$0 = f'(x) + \lambda g'(x) = 1 - 3\lambda x^2$$

does not hold at the solution x = 0 for any $\lambda \geq 0$.

4. Consider the utility maximization problem

maximize
$$u(x_1, x_2) = \alpha \log x_1 + (1 - \alpha) \log x_2$$

subject to
$$p_1 x_1 + p_2 x_2 \le w,$$

where $\alpha \in (0,1)$ is a preference parameter, $x_1, x_2 > 0$ are consumption of goods 1, 2, p_1, p_2 are prices, and w > 0 is wealth.

(a) (10 points) Solve the utility maximization problem. Make sure that all of your arguments are rigorous.

Solution: The solution is

$$(x_1, x_2) = \left(\frac{\alpha w}{p_1}, \frac{(1-\alpha)w}{p_2}\right).$$

You need to

- show that the objective function is concave (by taking the Hessian),
- write down the Lagrangian, derive KKT conditions, and solve for the candidate, and
- mention that for concave maximization problems, KKT conditions are sufficient for optimality.
- (b) (10 points) Let $V(p_1, p_2, w, \alpha)$ be the maximized utility as a function of all parameters. Derive a condition on these parameters such that liking good 1 more makes you happier, i.e., $\frac{\partial}{\partial \alpha}V > 0$.

Solution: Let

$$L(x, \lambda, p_1, p_2, w, \alpha) = \alpha \log x_1 + (1 - \alpha) \log x_2 + \lambda (w - p_1 x_1 - p_2 x_2)$$

be the Lagrangian. By the envelope theorem, we obtain

$$\frac{\partial}{\partial \alpha} V = \frac{\partial}{\partial \alpha} L = \log x_1 - \log x_2 = \log \frac{x_1}{x_2}.$$

Therefore the condition is

$$1 < \frac{x_1}{x_2} = \frac{\alpha p_2}{(1 - \alpha)p_1} \iff \alpha > \frac{p_1}{p_1 + p_2}.$$

5. Consider an infinite-horizon optimal consumption-saving problem with stochastic returns. Suppose the agent has utility function

$$E\sum_{t=0}^{\infty} \beta^t \log c_t,$$

where E denotes the expectation, $\beta \in (0,1)$ is the discount factor, and $c_t > 0$ is consumption at time t. Suppose that there are S states indexed by $s = 1, \ldots, S$. The state at time t, denoted by s_t , evolves according to a Markov chain with transition probability matrix $P = (p_{ss'})$, where

$$p_{ss'} = \Pr(s_{t+1} = s' | s_t = s) > 0.$$

Suppose that the gross return on wealth is $R_{ss'} > 0$ between states s and s'. The agent is endowed with wealth $w_0 > 0$ at t = 0 and nothing thereafter.

(a) (4 points) Derive the budget constraint.

Solution:

$$w' = R_{ss'}(w - c).$$

(b) (4 points) Let $V_s(w)$ be the value function given state s and wealth w. Derive the Bellman equation. For the expectation conditional on s, use the symbol $E[\cdot | s]$.

Solution:

$$V_s(w) = \max_{c} \{ \log c + \beta E [V_{s'}(R_{ss'}(w-c)) | s] \}.$$

(c) (4 points) Guess that the value function takes the form $V_s(w) = a_s + b_s \log w$ for some $a_s \in \mathbb{R}$ and $b_s > 0$. Assuming that the guess is correct, compute the optimal consumption rule.

Solution: Substituting $V_s(w) = a_s + b_s \log w$ into the Bellman equation, we obtain

$$a_s + b_s \log w = \max_c \{ \log c + \beta E [a_{s'} + b_{s'} \log(R_{ss'}(w - c)) | s] \}.$$

The objective function is clearly concave. The first-order condition is

$$\frac{1}{c} - \beta E[b_{s'} | s] \frac{1}{w - c} = 0 \iff c = \frac{w}{1 + \beta E[b_{s'} | s]}.$$

(d) (4 points) Derive an equation for b_s and $\{b_{s'}\}_{s'=1}^{S}$. Letting $b=(b_1,\ldots,b_S)'$ and $e=(1,\ldots,1)'$, express this equation in matrix form.

Solution: Substituting the optimal consumption rule into the Bellman equation, the coefficients of $\log w$ becomes

$$b_s = 1 + \beta \operatorname{E} [b_{s'} | s] = 1 + \beta \sum_{s'=1}^{S} p_{ss'} b_{s'}.$$

Putting this into a matrix, we obtain

$$b = e + \beta P b$$
.

(e) (4 points) Prove that the above equation has a unique solution, and that the solution indeed satisfies $b_s > 0$ for all s.

Solution: One way is to note that $(I - \beta P)b = e$ implies

$$b = (I - \beta P)^{-1}e = \left(\sum_{n=0}^{\infty} \beta^n P^n\right)e \gg 0.$$

(Since $\rho(P) = 1$ and $\beta < 1$, we have $\rho(A) = \beta < 1$ for $A = \beta P$, so $A^n \to O$ as $n \to \infty$. Use the fact that

$$I - A^{n+1} = (I - A)(I + A + \dots + A^n)$$

to show the above result.)

Another way is to define $X = \mathbb{R}^S_+$ and $T: X \to X$ by $Tx = e + \beta Px$ and show that T is a contraction mapping. You can check this using Blackwell's sufficient condition.

- 6. This problem asks you to compute $\sqrt{3}$. Let $g(x) = x^2 3$. Then $x^* = \sqrt{3}$ is a solution to g(x) = 0.
 - (a) (3 points) Suppose you use the Newton algorithm for computing x^* . Letting x_n be the approximate solution at the *n*-th iteration, express x_{n+1} using x_n .

Solution: By the definition of the Newton algorithm, we have

$$x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)} = x_n - \frac{x_n^2 - 3}{2x_n} = \frac{1}{2} \left(x_n + \frac{3}{x_n} \right).$$

(b) (3 points) Let $x_0 = 2$. Compute x_1, x_2 (express them as **fractions**, not **decimal** expansions).

Solution: Using the above formula, we get

$$x_1 = \frac{1}{2} \left(2 + \frac{3}{2} \right) = \frac{7}{4},$$

 $x_2 = \frac{1}{2} \left(\frac{7}{4} + \frac{12}{7} \right) = \frac{97}{56}.$

(c) (3 points) Show that $\frac{27}{16} < \sqrt{3} < \frac{7}{4}$ and $|x_1 - x^*| < 2^{-4}$.

Solution: Since $(27/16)^2 = 729/256 < 3$ and $(7/4)^2 = 49/16 > 3$, we obtain $\frac{27}{16} < \sqrt{3} < \frac{7}{4}$. Since $x_1 = 7/4$ by the above calculation, it follows that

$$|x_1 - x^*| = \left|\frac{7}{4} - \sqrt{3}\right| < \left|\frac{7}{4} - \frac{27}{16}\right| = \frac{1}{16} = 2^{-4}.$$

(d) (4 points) Show that $x_{n+1} - x^* = \frac{1}{2x_n}(x_n - x^*)^2$ for all n, and also $x_n \ge x^*$.

Solution: By the definition of the Newton algorithm,

$$x_{n+1} - x^* = \frac{1}{2x_n}(x_n^2 + 3 - 2\sqrt{3}x_n) = \frac{1}{2x_n}(x_n - x^*)^2.$$

Clearly $x_0 = 2 > \sqrt{3} = x^*$. For $n \ge 1$ we have $x_n - x^* = \frac{1}{2x_{n-1}}(x_{n-1} - x^*)^2 \ge 0$, so $x_n \ge x^*$.

(e) (4 points) Show that $|x_n - x^*| \le 2^{1-5 \cdot 2^{n-1}}$ for all $n \ge 1$.

Solution: Since

$$|x_1 - x^*| \le 2^{-4} = 2^{1 - 5 \cdot 2^{1 - 1}},$$

the claim is true for n=1. Assume that the claim is true for some n. Since $x_n \ge x^* = \sqrt{3} > 1$, we obtain

$$|x_{n+1} - x^*| = \frac{1}{2x_n} |x_n - x^*|^2 \le \frac{1}{2} (2^{1 - 5 \cdot 2^{n-1}})^2 = \frac{1}{2} 2^{2 - 5 \cdot 2^n} = 2^{1 - 5 \cdot 2^n},$$

so the claim holds for n+1 as well. Therefore by mathematical induction, the claim holds for all $n \geq 1$.

(f) (3 points) Show that $|x_5 - x^*| \le 2 \times 10^{-24}$. (Hint: $2^{10} = 1024 > 1000 = 10^3$.)

Solution: By the above question,

$$|x_5 - x^*| \le 2^{1 - 5 \cdot 2^4} = 2 \times 2^{-80} < 2 \times (10^{-3})^8 = 2 \times 10^{-24}$$

You can detach this sheet and use it as scratch paper.