Fconomics 205 Final Exam

Alexis Akira Toda
Fall 2018

Name:

Instructions:

e You have three hours to complete this closed-book examination. You may use
scratch paper, but please write your final answers (including your complete argu-
ments) on these sheets. Calculators are not allowed.

e All logarithms are base e = 2.718281828 ..., so Inz and log z are the same.

e Questions are not necessarily ordered in the order of difficulty, and some parts are
(far) easier than others. Make sure to look at all questions and parts.

Question: 1 2 3 4 5) 6 Total
Points: 20 20 20 20 20 20 120

Score:




1. Let Abe an N x N positive matrix, o A = (@) With a,,, > 0 forall1 <m,n < N.
Let p(A) be the spectral radius (largest absolute value of all eigenvalues) of A. We
know from the Perron-Frobenius theorem that @ = p(A) > 0 is an eigenvalue of
A and there exist (unique up to normalization) positive right and left eigenvectors
corresponding to «, so Ar = ax and y’A = ay’. Normalize the eigenvectors such
that they have (Euclidean) norm 1, so

] =

N

2
E xz = 1.
n=1

This question asks you to prove that the Perron root o and Perron vector x are
smooth functions of the elements of A. Define F : Rfi x RY, x Ry = RY xR by

(A — a[)x}
lf* =1 |

(a) (5 points) Compute the Jacobian J = D, o) F of F' with respect to (z,a).

F(A,z,0) = [

Solution: By simple calculation, we obtain

A—al —=x
J_[ 27/ 01'

(b) (10 points) Prove that J is regular at (A, z,«). (Hint: Assume J Lﬂ = {8} for

some u € RY, v € R, and show that v = 0 and v = 0.)

Solution: To show that .J is regular, suppose that there exist u € RY and

v € R such that
7 u| ([A—al —z||u| |0
vl 27/ 01l |v] 0]

Comparing each block, we obtain
0=(A—al)u—oz,
0= 2'u.

Let y > 0 be the left Perron vector of A. Multiplying ¢’ from left to the
first equation, we obtain

0=y'0=9y'(A—alz—vyz=—vyx

because y A = ay’. Since x,y > 0, we have y'x > 0, so it must be v = 0.
Then by the first equation we obtain (A — al)u =0 <= Au = au. Since
the Perron vector is unique up to normalization, it must be u = Ax for some
A € R. Then from the second equation we get

0=a'u=M'z = \z||” = \,

so u = Az = 0. Therefore J is regular.




(c) (5 points) Prove that the Perron root o and Perron vector x are continuously
differentiable in the elements of A.

Solution: Immediate from the implicit function theorem.

2. Let

A:[l—P p }
qg 1—g¢q

where 0 < p,q < 1.

(a) (10 points) Compute all eigenvalues of A.

Solution: The characteristic polynomial of A is

—q t—(1-q
' —Q2-p-—qt+1-p—q=(t—-1)({t—-1+p+q).

D(t) = 't— 1-p)  —» ’

Therefore the eigenvalues aret = 1,1 —p — q.

(b) (10 points) Compute the right and left eigenvectors of A corresponding to the
eigenvalue with largest absolute value. Normalize the eigenvalues such that the
sum of absolute values of elements (L' norm) is 1.

Solution: Since 0 < p,q < 1, we have |l —p—¢q| < 1. Therefore the
eigenvalue with largest absolute value is 1. The right eigenvector x = (x1, z3)’

satisfies
! [1 ] {xl] [ml]
q I —q| |72 T2

Solving the equations, we get x1 = =z, so the normalized eigenvector is
x = (1/2,1/2)". Similarly, the left eigenvector y = (y1,y2)’ satisfies

yA=ln ul F;p ﬂq]:[yl el -

Solving equations, we get py; = qys, so the normalized eigenvector is y =

/
4 _P_
pt+q’ ptq ) °

3. Consider the optimization problem

minimize f(x)
subject to gi(z) <0, (i=1,...,1)

where f,g; : RV — R are differentiable.

(a) (4 points) What is the definition of a convex function?
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Solution: f is convex if for all x1, 25 and « € [0, 1], we have

f((1 =)z + axs) < (1 —a)f(z1) + af(zs).

(b) (4 points) What is the definition of a quasi-convex function?

Solution: f is quasi-convex if for all z1, 25 and « € [0, 1], we have

f((1 =)z + azy) < max{f(x1), f(22)}.

(c) (4 points) Suppose that g;’s are convex. What is the Slater condition (constraint
qualification)?

Solution: We say that the Slater condition holds if there exists some z
such that g;(xo) < 0 for all i.

(d) (8 points) The Karush-Kuhn-Tucker theorem (for convex functions) says that if
g;'s are convex and satisfy the Slater condition, then a solution to the optimiza-
tion problem satisfies the first-order and complementary slackness conditions.
Is this also true if g;’s are only quasi-convex? If so, prove it. If not, provide a
counterexample.

Solution: The statement is false. A counterexample is f(z) = =, I = 1,
and g(z) = —23. Since g is monotone, it is quasi-convex. Furthermore, the
Slater condition holds because g(1) = —1 < 0. Since —2° < 0 <= x >0,
the solution is clearly x = 0. However, the conclusion of the KKT theorem
does not hold because the first-order condition

0= f'(z)+ g (z) = 1 —3\z?

does not hold at the solution x = 0 for any A > 0.

4. Consider the utility maximization problem

maximize u(zy,xe) = alogxy + (1 — a) log g

subject to P11 + p2xe < w,
where o € (0, 1) is a preference parameter, x1, 5 > 0 are consumption of goods 1, 2,
p1, pe are prices, and w > 0 is wealth.

(a) (10 points) Solve the utility maximization problem. Make sure that all of your
arguments are rigorous.

Solution: The solution is

(21, 22) = (% M) _

b1 7 D2
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You need to

e show that the objective function is concave (by taking the Hessian),

e write down the Lagrangian, derive KKT conditions, and solve for the
candidate, and

e mention that for concave maximization problems, KKT conditions are
sufficient for optimality.

(b) (10 points) Let V(p1,p2, w, ) be the maximized utility as a function of all pa-
rameters. Derive a condition on these parameters such that liking good 1 more
makes you happier, i.e., %V > 0.

Solution: Let
L(CC, Aaplap% w, Oé) - O(lOg X1 + (]' - Oé) 1ng2 + )\(w — P1X1 — p2$2>

be the Lagrangian. By the envelope theorem, we obtain

iv — QL = 10gx1 —lOg,Ig = logﬂ
T2

Oa Jda

Therefore the condition is

x1 apo 1
1<—:L(:>a> P

vy (I—a)py PP

5. Consider an infinite-horizon optimal consumption-saving problem with stochastic re-
turns. Suppose the agent has utility function

E i Btlog ey,

t=0

where E denotes the expectation, § € (0,1) is the discount factor, and ¢, > 0 is
consumption at time ¢t. Suppose that there are S states indexed by s = 1,...,5. The
state at time ¢, denoted by s;, evolves according to a Markov chain with transition
probability matrix P = (pss ), where

Pss’ = Pr<5t+1 = 3/|5t = 8) > 0.

Suppose that the gross return on wealth is R,y > 0 between states s and s’. The
agent is endowed with wealth wy > 0 at ¢ = 0 and nothing thereafter.

(a) (4 points) Derive the budget constraint.

Solution:
w' = Reg(w — ).
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(b) (4 points) Let Vi(w) be the value function given state s and wealth w. Derive
the Bellman equation. For the expectation conditional on s, use the symbol
E[-|s].

Solution:

Vs(w) = max {logc+ BE [Vy(Rsy(w —¢)) | s]}.

(c) (4 points) Guess that the value function takes the form Vi(w) = as + bslogw
for some a;, € R and by > 0. Assuming that the guess is correct, compute the
optimal consumption rule.

Solution: Substituting Vi(w) = a5+ bs logw into the Bellman equation, we
obtain

as + bslogw = max {log c + S E [ay + by log(Rss (w — ¢)) | 5]} .

The objective function is clearly concave. The first-order condition is

1 0 w
= S C= —M—MMMmm.
w—c 1+ BE[by | ]

S~ BEb

(d) (4 points) Derive an equation for by and {bs/}f,:l. Letting b = (by,...,bs) and
e=(1,...,1), express this equation in matrix form.

Solution: Substituting the optimal consumption rule into the Bellman equa-
tion, the coefficients of log w becomes

S
be=1+BE[by|s]=1+8) puwby.
s’'=1

Putting this into a matrix, we obtain

b= e+ BPb.

(e) (4 points) Prove that the above equation has a unique solution, and that the
solution indeed satisfies by > 0 for all s.

Solution: One way is to note that (I — SP)b = e implies

b=(I—pP) le= (Z 6"P”> e > 0.

n=0
(Since p(P) =1 and 8 < 1, we have p(A) = < 1 for A= P, so A" — O
as n — 0o. Use the fact that

[— A" = (T —-A) [ +A+ -+ A"
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to show the above result.)

Another way is to define X = Ri and T : X — X by Tz = e+ fPx and
show that T is a contraction mapping. You can check this using Blackwell’s
sufficient condition.

6. This problem asks you to compute V3. Let g(x) = 22—3. Then x* = /3 is a solution
to g(z) = 0.

()

(b)

(c)

(e)

(3 points) Suppose you use the Newton algorithm for computing z*. Letting z,
be the approximate solution at the n-th iteration, express x,,, using z,.

Solution: By the definition of the Newton algorithm, we have

g(xy) 2 —3 1

3
sy e ()

(3 points) Let zy = 2. Compute z1, x2 (express them as fractions, not decimal
expansions).

Tpnt1 = Tp —

Solution: Using the above formula, we get

1 3

b L(T, 12 9T
27 o\a "7 ) 56

(3 points) Show that 2 < /3 < T and |z; — 2| <274

7
1

Y

Solution: Since (27/16)% = 729/256 < 3 and (7/4)* = 49/16 > 3, we obtain
%g <3< ;Z. Since 1 = 7/4 by the above calculation, it follows that

7 727 1
. LR
1 = 7] ‘4 ‘/§‘<:‘4 16|~ 16

(4 points) Show that z,1 — 2% = 5~ (2, — x*)? for all n, and also z,, > z*.

Solution: By the definition of the Newton algorithm,

1, 1
Tpy1 — T an(wn—i- V3z,) 2xn<x ")
Clearly$0:2>\/§:x*. Fornzlwehavexn—x*:ﬁ
0, so x, > x*.

(4 points) Show that |z, — z*| < 2'72"" for all n > 1.
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Solution: Since
_ _r.9ol-1
|x1_x*|§2 4:21 5-2 ,

the claim is true for n = 1. Assume that the claim is true for some n. Since
z, > r* = /3> 1, we obtain

1
(a1 — 2| = 5o — 2" <

5 (2175-2"—1>2 _ 12275-2" — 9l-52"
Tn

2 )

N | —

so the claim holds for n + 1 as well. Therefore by mathematical induction,
the claim holds for all n > 1.

(f) (3 points) Show that |z5 — z*| <2 x 10724 (Hint: 2'° = 1024 > 1000 = 103.)

Solution: By the above question,

25 — 2] < 21792 =2 % 2790 < 2 % (107%)% = 2 x 1072
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You can detach this sheet and use it as scratch paper.
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