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Alexis Akira Toda
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Name:

Instructions:

• You have three hours to complete this closed-book examination. You may use
scratch paper, but please write your final answers (including your complete argu-
ments) on these sheets. Calculators are not allowed.

• All logarithms are base e = 2.718281828 . . . , so lnx and log x are the same.

• Questions are not necessarily ordered according to difficulty, and some parts are
(far) easier than others. Make sure to look at all questions and parts before deciding
the order to solve.

Question: 1 2 3 4 5 6 Total

Points: 20 20 20 20 20 20 120

Score:

i



1. (a) (5 points) Let A be a square matrix. Show that

(I − A)(I + A+ · · ·+ Ak−1) = I − Ak.

Solution:

(I−A)(I+A+· · ·+Ak−1) = (I+A+· · ·+Ak−1)−A(I+A+· · ·+Ak−1) = I−Ak.

(b) (15 points) Let A be a square nonnegative matrix. Show that if z > ρ(A), then
the matrix zI − A is regular and (zI − A)−1 is nonnegative. (Here ρ(A) is the
spectral radius of A, which is the largest absolute value of all eigenvalues.)

Solution: Let z > ρ(A) and B = 1
z
A. Then B is nonnegative and ρ(B) =

ρ(A)/z < 1. Take any r ∈ (ρ(B), 1) and any matrix norm ‖·‖. Since∥∥Bk
∥∥1/k → ρ(B) < r as k →∞ by the Gelfand spectral radius formula, we

have
∥∥Bk

∥∥1/k ≤ r and hence
∥∥Bk

∥∥ ≤ rk for sufficiently large k. Therefore∥∥I +B + · · ·+Bk
∥∥ ≤ ‖I‖+ · · ·+

∥∥Bk
∥∥

is bounded above, so the geometric series C =
∑∞

k=0 B
k is convergent. Fur-

thermore,

(I −B)C =
∞∑
k=0

Bk −B
∞∑
k=0

Bk =
∞∑
k=0

Bk −
∞∑
k=1

Bk = I.

Therefore I −B is regular and (I −B)−1 = C ≥ 0. Since A = zB, it follows
that zI − A = z(I −B) is regular and (zI − A)−1 = 1

z
C is nonnegative.

2. Let C ⊂ RN be a convex set. A nonnegative function f : C → R is called log-convex
if either (i) f(x) = 0 for all x ∈ C or (ii) f(x) > 0 for all x ∈ C and log f is convex.
Prove the followings.

(a) (5 points) If f is log-convex, then fλ is log-convex for all λ ≥ 0.

Solution: If f is log-convex, then log fλ = λ log f is convex, so fλ is log-
convex.

(b) (5 points) If f, g are log-convex, then fg is log-convex.

Solution: If f, g are log-convex, log(fg) = log f + log g is convex, so fg is
log-convex.

(c) (10 points) If f, g are log-convex, then f + g is log-convex. (Hint: you may use
Hölder’s inequality

N∑
n=1

unvn ≤

(
N∑
n=1

upn

)1/p( N∑
n=1

vqn

)1/q

,



where un ≥ 0, vn ≥ 0, and p, q > 1 are numbers such that 1/p+ 1/q = 1.)

Solution: Take any x1, x2 ∈ C and α ∈ (0, 1). Since f is log-convex, we
have

log f((1− α)x1 + αx2) ≤ (1− α) log f(x1) + α log f(x2)

=⇒ f((1− α)x1 + αx2) ≤ f(x1)1−αf(x2)α.

The same inequality holds for g. Define the vectors u = (f(x1)1/p, g(x1)1/q)′ ∈
R2 and v = (f(x2)1/p, g(x2)1/q)′ ∈ R2, where 1/p = 1−α and 1/q = α. Then
by Hölder’s inequality we obtain

f((1− α)x1 + αx2) + g((1− α)x1 + αx2) ≤ f(x1)1−αf(x2)α + g(x1)1−αg(x2)α

= u1v1 + u2v2 ≤ ‖u‖p ‖v‖q
= (f(x1) + g(x1))1−α(f(x2) + g(x2))α.

Taking the logarithm, we obtain

log(f + g)((1− α)x1 + αx2) ≤ (1− α) log(f + g)(x1) + α log(f + g)(x2),

so f + g is log-convex.

3. (a) (5 points) Let MN(R) be the set of real N ×N matrices. What is the definition
of a matrix norm on MN(R)?

Solution: A matrix norm ‖·‖ : MN(R) → R is a function such that (i)
‖A‖ ≥ 0 for all A, with ‖A‖ = 0 if and only if A = 0, (ii) ‖αA‖ = |α| ‖A‖
for all α ∈ R, (iii) ‖A+B‖ ≤ ‖A‖+ ‖B‖, and (iv) ‖AB‖ ≤ ‖A‖ ‖B‖.

(b) (5 points) For A = (amn) ∈ MN(R), define ‖A‖ =
√∑N

m=1

∑N
n=1 a

2
mn. Prove

that ‖·‖ is a matrix norm.

Solution: Properties (i) and (ii) are trivial. Property (iii) is immediate from
the Cauchy-Schwarz inequality. To show (iv), let

A =

a
′
1
...
a′N

 , B =
[
b1 · · · bN

]
,

so am is the m-th row vector of A and bn is the n-th column vector of B.
Then the (m,n)-th entry of AB is a′mbn = 〈am, bn〉. By the Cauchy-Schwarz
inequality, we obtain

‖AB‖2 =
∑
m,n

〈am, bn〉2 ≤
∑
m,n

‖am‖2 ‖bn‖2

=

(
N∑
m=1

‖am‖2

)(
N∑
n=1

‖bn‖2

)
= ‖A‖2 ‖B‖2 .
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(c) (10 points) Let C be a convex set. Let A(x) = (amn(x)) be a nonnegative
matrix, where each amn : C → R is log-convex. (See the previous problem for
the definition of a log-convex function.) Let f(x) = ρ(A(x)), where ρ is the
spectral radius. Show that f is log-convex. (Hint: you may use the property

ρ(A) = limk→∞
∥∥Ak∥∥1/k

.)

Solution: By the results from the previous problem, the set of log-convex func-
tions is closed under addition, multiplication, and nonnegative powers. Since
amn ≥ 0 and amn is log-convex, it follows that all elements of Ak are log-convex.

Consider the matrix norm ‖A‖ =
√∑

m,n a
2
mn. Since this matrix norm is the com-

position of addition and positive powers, it follows that
∥∥Ak(x)

∥∥ is log-convex.

Therefore
∥∥Ak(x)

∥∥1/k
is also log-convex, and so is the limit

f(x) = ρ(A(x)) = lim
k→∞

∥∥Ak(x)
∥∥1/k

.

4. Consider the optimization problem

minimize f(x)

subject to gi(x) ≤ 0 (i = 1, . . . , I),

where f, gi : RN → R are differentiable. Let C =
{
x ∈ RN

∣∣ (∀i)gi(x) ≤ 0
}

be the
constraint set and x̄ ∈ C.

(a) (5 points) Define the tangent cone of C at x̄, denoted by TC(x̄).

Solution: According to the lecture note,

TC(x̄) =
{
y ∈ RN

∣∣∣ (∃) {αk} ≥ 0, {xk} ⊂ C, lim
k→∞

xk = x̄, y = lim
k→∞

αk(xk − x̄)
}
.

(b) (5 points) Define the linearizing cone of C at x̄, denoted by LC(x̄).

Solution: According to the lecture note,

LC(x̄) =
{
y ∈ RN

∣∣ (∀i ∈ I(x̄)) 〈∇gi(x̄), y〉 ≤ 0
}
,

where I(x̄) = {i | gi(x̄) = 0} is the active set (the index of binding con-
straints).

(c) (10 points) Define the Guignard constraint qualification. Prove that when all
constraints are linear, so gi(x) = 〈ai, x〉 − ci for some 0 6= ai ∈ RN and ci ∈ R,
then the Guignard constraint qualification holds.
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Solution: According to the lecture note, the Guignard constraint qualifica-
tion is the condition LC(x̄) ⊂ coTC(x̄), where co denotes the convex hull.

Suppose gi(x) = 〈ai, x〉 − ci for all i. Since ∇gi = ai, the linearizing cone is

LC(x̄) =
{
y ∈ RN

∣∣ (∀i ∈ I(x̄)) 〈ai, y〉 ≤ 0
}
.

Take any y ∈ LC(x̄) and consider the point x(t) = x̄ + ty for t ≥ 0. Let us
show that x(t) ∈ C if t ≥ 0 is small enough. If i ∈ I(x̄), then 〈ai, x̄〉− ci = 0.
Therefore

〈ai, x(t)〉 − ci = 〈ai, x̄〉 − ci + t 〈ai, y〉 ≤ 0.

If i /∈ I(x̄), then 〈ai, x̄〉 − ci < 0. Therefore by continuity 〈ai, x(t)〉 − ci < 0
if t ≥ 0 is small enough. Now for t > 0 we have

y =
x̄+ ty − x̄

t
=
x(t)− x̄

t
,

so letting t → 0 we obtain y = limt↓0
x(t)−x̄

t
∈ TC(x̄). Therefore LC(x̄) ⊂

TC(x̄) ⊂ coTC(x̄).

5. Consider the problem

maximize
4

3
x3

1 +
1

3
x3

2

subject to x1 + x2 ≤ 1,

x1 ≥ 0, x2 ≥ 0.

(a) (5 points) Are the Karush-Kuhn-Tucker conditions necessary for a solution?
Answer yes or no, then explain why.

Solution: Yes (2 points). Since the objective function is continuous and
the constraint set is compact, there is a solution. Since the constraints are
linear, the constraint qualification holds automatically. Therefore the KKT
conditions hold (3 points).

(b) (5 points) Are the Karush-Kuhn-Tucker conditions sufficient for a solution? An-
swer yes or no, then explain why.

Solution: No (2 points). Since the objective function is convex but the
problem is a maximization problem, the first-order conditions are not suffi-
cient (3 points). Note that KKT conditions are sufficient for convex mini-
mization or concave maximization problems.

(c) (5 points) Write down the Lagrangian.

Solution:

L(x1, x2, λ1, λ2, λ3) =
4

3
x3

1 +
1

3
x3

2 + λ1(1− x1 − x2) + λ2x1 + λ3x2.
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(d) (5 points) Compute the solution.

Solution: Since the objective function is increasing in both x1 and x2,
clearly the constraint x1 + x2 ≤ 1 binds. Therefore x1 + x2 = 1. The
first-order condition is

0 =
∂L

∂x1

= 4x2
1 − λ1 + λ2,

0 =
∂L

∂x2

= x2
2 − λ1 + λ3.

If x1 = 0, then x2 = 1, and the function value is 1
3
. If x2 = 0, then x1 = 1,

and the function value is 4
3
. If x1, x2 > 0, then by complementary slackness

λ2 = λ3 = 0. Solving the first-order conditions we get x1 =
√
λ1/2 and

x2 =
√
λ1. Since x1 + x2 = 1, we get x1 = 1

3
and x2 = 2

3
. Then the function

value is
4

3

(
1

3

)3

+
1

3

(
2

3

)3

=
4 + 8

81
=

4

27
.

Therefore the solution is (x1, x2) = (1, 0).

6. (20 points) Choose one of the following theorems and state it as precisely as possible:

• separating hyperplane theorem

• contraction mapping theorem

• implicit function theorem

Solution: See the lecture note.
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You can detach this sheet and use it as scratch paper.
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