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Hedging interest rate risk

• Many financial institutions have long-term commitments
• Insurance companies: promise insurance payments
• Pension funds: promise (defined-benefit) pensions
• Banks: fund long-term projects with deposits

• Asset-liability management: cover future liabilities by holding
sufficient assets

• Old problem, but still relevant (e.g., collapse of Silicon Valley
Bank)

• If market complete, problem trivial by replicating liabilities
with zero-coupon bonds (dedication)

• In practice, maturity of liabilities could exceed longest
maturity of government bonds, so market incomplete and can
only approximate (immunization)
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Bond price and duration

• Consider cash flows f1, . . . , fN paid out at time t1, . . . , tN
• Assuming constant interest rate r , present value is

P =
N∑

n=1

e−rtn fn

• Interest rate sensitivity of bond price is

D := −∂ logP

∂r
= − 1

P

∂P

∂r
=

1

P

N∑
n=1

tne
−rtn fn

• D is called duration because it is weighted average of time to
payment: D =

∑N
n=1 wntn for wn := e−rtn fn/P, with∑

wn = 1
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Classical immunization

• Interest rate need not be constant; if y(t) denote (pure) yield
at term t, bond price and duration are

P =
N∑

n=1

e−y(tn)tn fn,

D =
1

P

N∑
n=1

tne
−y(tn)tn fn

• Here duration is sensitivity of bond price with respect to
parallel shift in yield curve Example

• Classical immunization prescribes to match duration of asset
and liability so that equity (asset minus liability) is insensitive
to yield curve shifts (Macaulay, 1938; Samuelson, 1945;
Redington, 1952)
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Limitations of classical immunization

• By construction, only allows for parallel shifts to yield curve,
but in practice yield curve can change in many ways

• Because duration is only a scalar, when there are many bonds,
it is not obvious how to choose portfolio (indeterminacy)

• Generalizations have been proposed, for instance matching
convexity (high-order duration)

1

P

N∑
n=1

t2ne
−y(tn)tn fn,

but it has been found to lead to portfolio instability and poor
performance

• Many other ad hoc methods but lack of principle
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This paper

• Propose new robust immunization method that maximizes
equity against arbitrary interest rate shock

• Idea: span perturbations to yield curve by basis functions, and
optimize against worst case perturbation

• Tools:
• functional analysis: Gateaux derivative
• numerical analysis: Chebyshev polynomials

• Excellent performance in static and dynamic hedging
experiments
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Model
• Continuous time, t ∈ [0,T ]
• J available bonds for trade; bond j ’s cumulative payout
denoted by weakly increasing Fj : [0,T ] → R+

• If zero-coupon bond with face value 1 and maturity tj , then

Fj(t) =

{
0 if 0 ≤ t < tj ,

1 if tj ≤ t ≤ T

• If continuously pay out coupon cj , then Fj(t) = cj t

• F : [0,T ] → R+: cumulative cash flow to be immunized

• y : [0,T ] → R: yield curve

• Present value of liability is Riemann-Stieltjes integral∫ T

0
e−ty(t) dF (t)
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Cumulative discount rate

• Convenient to define “cumulative discount rate” x(t) := ty(t)

• By definition of forward rate, we have

x(t) =

∫ t

0
f (u)du,

where f (u) is instantaneous forward rate at term u

• Present value of asset/liability becomes functional

P(x) :=

∫ T

0
e−x(t) dF (t),

• Fund manager’s problem is to choose bond portfolio
z = (zj) ∈ RJ to approximate P(x) by

∑J
j=1 zjPj(x) in some

optimal way
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Robust immunization problem
• Z ⊂ RJ : set of admissible portfolios

• H: set of admissible perturbations to cumulative discount rate

• After perturbation h ∈ H, portfolio value (“asset”) is

V (z , x + h) :=
J∑

j=1

zjPj(x + h)

• Hence asset minus liability (“equity”) is

E (z , x + h) := V (z , x + h)− P(x + h)

• Fund manager seeks to maximize worst case equity, so solve

sup
z∈Z

inf
h∈H

E (z , x + h)
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Assumptions

Assumption (Discrete payouts)

The bonds and liability pay out on finitely many dates, whose
union is denoted by {tn}Nn=1 ⊂ (0,T ].

Assumption (Portfolio constraint)

The set of admissible portfolios Z ⊂ RJ is nonempty and closed.
Furthermore, all z ∈ Z satisfy value matching:

P(x) =
J∑

j=1

zjPj(x).

• Merely a normalization (objective function = 0 at h = 0)
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Space of cumulative discount rates

• Let C r [0,T ] be vector space of r -times continuously
differentiable functions on [0,T ]

• Space of forward rates is C [0,T ] endowed with supremum
norm ∥f ∥∞ = supt∈[0,T ] |f (t)|

• Since cumulative discount rate is integral of forward rate,
x(t) =

∫ t
0 f (u)du, let

X =
{
x ∈ C 1[0,T ] : x(0) = 0

}
• X is Banach space with norm ∥x∥X = supt∈[0,T ] |x ′(t)|
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Assumption

Assumption (Basis)

There exists a countable basis {hi}∞i=1 of X such that for each
I ∈ {1, . . . ,N}, the I × N matrices H = (hi (tn)) and G = (h′i (tn))
have full row rank.

• This assumption allows us to
• approximate any x ∈ X by finitely many basis functions, and
• avoid indeterminacy

• Example: if hi polynomial of degree i with hi (0) = 0, then
OK by Stone-Weierstraß theorem

• Intuitively, H (G ) is matrix of perturbations to cumulative
discount rate (forward rate) evaluated at payout dates
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Admissible perturbations

• To operationalize, define set of admissible perturbations by

HI (∆) :=
{
h ∈ span {hi}Ii=1 : (∀n)

∣∣h′(tn)∣∣ ≤ ∆
}

• Intuition: perturb forward rate by at most ±∆ within span of
first I basis functions

• Thus final maxmin problem is

sup
z∈Z

inf
h∈HI (∆)

E (z , x + h)

• Note: setting in classical immunization corresponds to I = 1
and h1(t) = t (hence h′1(t) = 1)
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Gateaux and Fréchet derivatives

• For perturbation h ∈ X , rate of change in liability value is
Gateaux derivative

δP(x ; h) := lim
α→0

1

α
(P(x + αh)− P(x))

= −
∫ T

0
e−x(t)h(t) dF (t)

• Can define bounded linear operator P ′(x) by

P ′(x)h = −
∫ T

0
e−x(t)h(t) dF (t),

called Fréchet derivative
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Sensitivity matrix/vector

• Define sensitivity matrix A = (aij) ∈ RI×J and vector
b = (bi ) ∈ RI with respect to basis functions by

aij := −
δPj(x ; hi )

P(x)
=

1

P(x)

∫ T

0
e−x(t)hi (t) dFj(t),

bi := −δP(x ; hi )

P(x)
=

1

P(x)

∫ T

0
e−x(t)hi (t) dF (t)

• Note: bi is duration if hi (t) = t

• Convenient to define A+ ∈ R(I+1)×J and b+ ∈ RI+1 by

A+ :=

[
a0
A

]
and b+ :=

[
b0
b

]
,

where a0j , b0 = 1 defined analogously using h0(t) ≡ 1
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Sensitivity of equity

• Recall definition of equity

E (z , x) :=
J∑

j=1

zjPj(x)− P(x)

• If perturbation is h = ∆
∑I

i=1 wihi ∈ HI (∆), sensitivity of
equity becomes

lim
∆→0

1

∆P(x)
E (z , x + h) = −⟨w ,Az − b⟩

• For h ∈ HI (∆), coefficients w = (wi ) need to satisfy certain
restrictions
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Auxiliary problem

• Straightforward to show h = ∆
∑I

i=1 wihi ∈ HI (∆) if and
only if

W :=
{
w ∈ RI : G ′w ∈ [−1, 1]N

}
,

where G = (h′i (tn)) ∈ RI×N

• This motivates solving auxiliary problem

sup
z∈Z

inf
w∈W

−⟨w ,Az − b⟩ ⇐⇒ inf
z∈Z

sup
w∈W

⟨w ,Az − b⟩

to solve maxmin problem

sup
z∈Z

inf
h∈HI (∆)

E (z , x + h)
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Solution to auxiliary problem

Proposition (Minmax)

Suppose Assumptions hold, I ≥ J − 1, and sensitivity matrix A+

has full column rank. Then

1. There exists (z∗,w∗) ∈ Z ×W that achieves minmax value

VI (Z) := inf
z∈Z

sup
w∈W

⟨w ,Az − b⟩ .

2. VI (Z) ≥ 0, and z ∈ Z achieves VI (Z) = 0 if and only if
A+z = b+.
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Robust immunization

Theorem (Robust immunization)

1. Guaranteed equity satisfies

lim
∆↓0

1

∆
sup
z∈Z

inf
h∈HI (∆)

E (z , x + h) = −P(x)VI (Z).

2. Letting z∗ ∈ Z be solution to auxiliary problem and
θj := zjPj(x)/P(x) be corresponding portfolio share, then

sup
h∈HI (∆)

|E (z∗, x + h)| ≤ ∆P(x)

(
VI (Z) +

1

4
∆T 2e∆T (1 + ∥θ∥1)

)
.

• Solution z∗ to auxiliary problem achieves guaranteed equity in
limit ∆ ↓ 0
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Implementation

• Implementation requires choice of basis functions {hi}∞i=1

• Natural to use (Chebyshev) polynomials because Assumptions
satisfied and good approximation property (Trefethen, 2019)

• Let Tn : [−1, 1] → R be Chebyshev polynomial defined by
Tn(cos θ) = cos nθ

• Map [−1, 1] to [0,T ] by affine transformation, so let
gi (t) = Ti−1(2t/T − 1) be basis for forward rate

• Define basis for cumulative discount rate by

hi (t) =

∫ t

0
gi (u) du
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Basis for forward rate
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Basis for cumulative discount rate
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How good is forward rate approximation?

• Use 1985–2022 daily yield curve data from Gürkaynak et al.
(2007), who estimate Svensson (1994) model

• For each day s and term tn = n/12 (n = 1, . . . , 360), calculate
the d-day ahead forward rate change fs+d(tn)− fs(tn)

• For each s and d = 1, . . . , 100, run OLS regression

fs+d(tn)− fs(tn) =
I∑

i=1

γisdgi (tn) + ϵs(tn), n = 1, . . . ,N

• Calculate goodness-of-fit measure

R2
d :=

∑S
s=1

∑N
n=1

(∑I
i=1 γ̂isdgi (tn)

)2

∑S
s=1

∑N
n=1(fs+d(tn)− fs(tn))2
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Goodness-of-fit
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Goodness-of-fit
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Implementing robust immunization

1. Let
• t = (t1, . . . , tN) be 1× N vector of asset/liability payout dates
• y = (y1, . . . , yN) be 1× N vector of yields
• f = (f1, . . . , fN) be 1× N vector of liabilities
• F = (fjn) be J × N matrix of bond payouts

2. Let I ≥ J − 1, define basis functions {hi} as above, construct
matrices of

• basis functions H = (hi (tn)) ∈ RI×N ,
• derivatives G = (h′i (tn)) = (gi (tn)) ∈ RI×N ,
• zero-coupon bond prices p = exp(−y ⊙ t) ∈ R1×N

3. Define sensitivity matrix/vectors by

A := (H diag(p)F′)/(pf ′),

b := H diag(p)f ′/(pf ′)
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Implementing robust immunization

4. Let

W :=
{
w ∈ RI : G ′w ∈ [−1, 1]N

}
and solve auxiliary problem

VI (Z) := inf
z∈Z

sup
w∈W

⟨w ,Az − b⟩

• Inner maximization large linear programming problem, so easy
to solve

• Outer minimization small convex minimization problem, so
easy to solve
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Static hedging

• Liability: constant monthly cash flow with maturity 50 years

• Asset: portfolio of zero-coupon bonds with maturity 1, 2, 5,
10, 30 years

• For static hedging, use daily yield curve data as before, and
assume yield curve instantaneously changes to d-day ahead

• Evaluate performance on day s by relative return error

1

P(xs)

∣∣∣∣∣∣
J∑

j=1

zsjPj(xs+d)− P(xs+d)

∣∣∣∣∣∣
• Compare robust immunization (RI(0,1,2)) ? , high-order
duration (HD), and key rate duration (KRD) of Ho (1992)
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Average d-day ahead error
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Time series of 30-day ahead error

1990 1995 2000 2005 2010 2015 2020

Year

10!3

10!2
A

b
so

lu
te

re
tu

rn
er

ro
r

RI(1)
HD

KRD

30/38



Introduction Problem statement Robust immunization Evaluation Conclusion

Histogram
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Tail probability
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Value at risk
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Dynamic hedging

• Estimate no-arbitrage model of Ang et al. (2008) by
maximum likelihood

• Generate simulated data to evaluate dynamic hedging

• Let s = ∆, 2∆, . . . be rebalancing date (∆ = one quarter)

• Net asset value (NAV) of fund at date s is (with s− = s −∆)

Vs := Rs−Cs−︸ ︷︷ ︸
cash

+
J∑

j=1

zs−je
−xs(tj−∆)

︸ ︷︷ ︸
bond

− fs︸︷︷︸
liability

• Can show dynamic hedging reduces to static hedging except
reducing maturities by ∆ everywhere
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Histogram of 10-year return error
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Average return error

0 2 4 6 8 10

Immunization period (years)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
A

ve
ra

ge
ab

so
lu

te
re

tu
rn

er
ro

r
RI(1)
HD

KRD

36/38



Introduction Problem statement Robust immunization Evaluation Conclusion

99th percentile of return error
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Conclusion

• When the world is complicated, it is natural to optimize
against the worst case

• Robust immunization maximizes equity (asset minus liability)
against worst interest rate shock

• Easy to implement, excellent performance

38/38



References

References

Ang, A., G. Bekaert, and M. Wei (2008). “The Term Structure
of Real Rates and Expected Inflation”. Journal of Finance 63.2,
797–849. doi: 10.1111/j.1540-6261.2008.01332.x.
Gürkaynak, R. S., B. Sack, and J. H. Wright (2007). “The U.S.
Treasury Yield Curve: 1961 to the Present”. Journal of
Monetary Economics 54.8, 2291–2304. doi:
10.1016/j.jmoneco.2007.06.029.
Ho, T. S. Y. (1992). “Key Rate Durations: Measures of
Interest Rate Risks”. Journal of Fixed Income 2.2, 29–44. doi:
10.3905/jfi.1992.408049.
Macaulay, F. R. (1938). Some Theoretical Problems Suggested
by the Movements of Interest Rates, Bond Yields and Stock
Prices in the United States since 1856. National Bureau of
Economic Research.

39/38

https://doi.org/10.1111/j.1540-6261.2008.01332.x
https://doi.org/10.1016/j.jmoneco.2007.06.029
https://doi.org/10.3905/jfi.1992.408049


References

References

Redington, F. M. (1952). “Review of the Principles of
Life-office Valuations”. Journal of the Institute of Actuaries
78.3, 286–340. doi: 10.1017/S0020268100052811.
Samuelson, P. A. (1945). “The Effect of Interest Rate
Increases on the Banking System”. American Economic Review
35.1, 16–27.
Svensson, L. E. O. (1994). Estimating and Interpreting Forward
Interest Rates: Sweden 1992–1994. Tech. rep. 4871. National
Bureau of Economic Research. doi: 10.3386/w4871.
Trefethen, L. N. (2019). Approximation Theory and
Approximation Practice. Extended. Philadelphia, PA: Society
for Industrial and Applied Mathematics. doi:
10.1137/1.9781611975949.

40/38

https://doi.org/10.1017/S0020268100052811
https://doi.org/10.3386/w4871
https://doi.org/10.1137/1.9781611975949


References

Yield curve and parallel shift

0 10 20 30 40 50

Maturity

0

1

2

3

4

5
Y

ie
ld

(%
)

Yield curve on 02-Dec-2016

41/38



References

Yield curve and parallel shift Return

0 10 20 30 40 50

Maturity

0

1

2

3

4

5
Y

ie
ld

(%
)

Yield curve on 02-Dec-2016
Parallel shift

42/38



References

Robust immunization with principal components

• Suppose perturbations to forward rates have factor structure
• E.g., parallel shift is dominant

• For ∆1 ≫ ∆2 > 0, consider set of admissible perturbations

HI (∆1,∆2)

:=
{
h : (∃α)(∀n)

∣∣αh′1(tn)∣∣ ≤ ∆1,
∣∣h′(tn)− αh′1(tn)

∣∣ ≤ ∆2

}
• Idea:

• First, perturb forward rate in direction h′1 by magnitude at
most ∆1,

• Then perturb in arbitrary direction by magnitude at most ∆2
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Theorem
Suppose the set

Z1 :=

z ∈ Z :
J∑

j=1

a1jzj = b1


is nonempty. Then guaranteed equity satisfies

lim
1

∆2
sup
z∈Z

inf
h∈HI (∆1,∆2)

E (z , x + h) = −P(x)VI (Z1),

where the limit is taken over ∆1,∆2 → 0, ∆1/∆2 → ∞, and
∆2

1/∆2 → 0.
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