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Introduction
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Hedging interest rate risk

Many financial institutions have long-term commitments

® |nsurance companies: promise insurance payments

® Pension funds: promise (defined-benefit) pensions

® Banks: fund long-term projects with deposits
Asset-liability management: cover future liabilities by holding
sufficient assets

® Old problem, but still relevant (e.g., collapse of Silicon Valley

Bank)

If market complete, problem trivial by replicating liabilities
with zero-coupon bonds (dedication)
In practice, maturity of liabilities could exceed longest
maturity of government bonds, so market incomplete and can
only approximate (immunization)
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Bond price and duration

Consider cash flows fi,..., fy paid out at time ty,..., ty

® Assuming constant interest rate r, present value is

N

P=> e f,

n=1

Interest rate sensitivity of bond price is

N

_ dlogP  10P 1 .
D=5, = "par — p 2t

n=1

D is called duration because it is weighted average of time to
payment: D = ZnN:I wpt, for w, == e "f,/P, with

dw,=1
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Classical immunization

Interest rate need not be constant; if y(t) denote (pure) yield
at term t, bond price and duration are

N
P= Z eyt
Z the” tn)t,,

Here duration is sensitivity of bond price with respect to
parallel shift in yield curve

Classical immunization prescribes to match duration of asset
and liability so that equity (asset minus liability) is insensitive
to yield curve shifts (Macaulay, 1938; Samuelson, 1945;
Redington, 1952)
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Limitations of classical immunization

® By construction, only allows for parallel shifts to yield curve,
but in practice yield curve can change in many ways

® Because duration is only a scalar, when there are many bonds,
it is not obvious how to choose portfolio (indeterminacy)

® Generalizations have been proposed, for instance matching
convexity (high-order duration)

N
Z t,,)tnf

but it has been found to lead to portfolio instability and poor
performance

‘u \

® Many other ad hoc methods but lack of principle
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This paper

Propose new robust immunization method that maximizes
equity against arbitrary interest rate shock
Idea: span perturbations to yield curve by basis functions, and
optimize against worst case perturbation
Tools:

® functional analysis: Gateaux derivative

® numerical analysis: Chebyshev polynomials
Excellent performance in static and dynamic hedging
experiments
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Model

e Continuous time, t € [0, T]

® J available bonds for trade; bond j's cumulative payout
denoted by weakly increasing F; : [0, T] — R
® |f zero-coupon bond with face value 1 and maturity t;, then

0 if0§t<tj,
ZORE I
1 if <t <T

® If continuously pay out coupon c¢j, then Fj(t) = ¢t
e F:[0, T] — Ry: cumulative cash flow to be immunized
® y:[0, T] — R: yield curve

® Present value of liability is Riemann-Stieltjes integral

i
/ () 4F (1)
0
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Cumulative discount rate

Convenient to define “cumulative discount rate” x(t) := ty(t)

By definition of forward rate, we have

where f(u) is instantaneous forward rate at term u

Present value of asset/liability becomes functional

P(x) = /OTe_X(t)dF(t),

Fund manager’s problem is to choose bond portfolio
z = (z;) € R’ to approximate P(x) by Zle zjPj(x) in some
optimal way
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Robust immunization problem
Z C R7: set of admissible portfolios

‘H: set of admissible perturbations to cumulative discount rate
After perturbation h € H, portfolio value (“asset”) is

V(z,x + h): ZZJ (x+h)

Hence asset minus liability (“equity”) is
E(z,x+ h) = V(z,x+ h) — P(x+ h)
Fund manager seeks to maximize worst case equity, so solve

sup inf E(z, h
sup Jof Elex )
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Assumptions

Assumption (Discrete payouts)
The bonds and liability pay out on finitely many dates, whose
union is denoted by {t,}_, (0, T].

Assumption (Portfolio constraint)

The set of admissible portfolios Z C R? is nonempty and closed.
Furthermore, all z € Z satisfy value matching:

J
P(x) =Y zPj(x).
j=1

® Merely a normalization (objective function = 0 at h = 0)
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Space of cumulative discount rates

Let C"[0, T] be vector space of r-times continuously
differentiable functions on [0, T]

Space of forward rates is C[0, T] endowed with supremum
norm ||f||, = SUPte[o,T] 1£(2)]

® Since cumulative discount rate is integral of forward rate,
x(t) = [y f(u)du, let

X = {x e C'o, T]: x(0) = 0}

X is Banach space with norm ||x|| y = supcpo, 17 [X'(t)]
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Assumption

Assumption (Basis)
There exists a countable basis {h;}:-; of X such that for each
I €{1,...,N}, the | x N matrices H = (hi(ta)) and G = (h.(t))
have full row rank.
® This assumption allows us to

® approximate any x € X’ by finitely many basis functions, and
® avoid indeterminacy

e Example: if h; polynomial of degree i with h;(0) = 0, then
OK by Stone-WeierstraB theorem

¢ Intuitively, H (G) is matrix of perturbations to cumulative
discount rate (forward rate) evaluated at payout dates
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Admissible perturbations

To operationalize, define set of admissible perturbations by
Hi(D) = {h € span {hi}\_, : (Vn) [H(ta)| < A}

Intuition: perturb forward rate by at most +£A within span of
first I basis functions

Thus final maxmin problem is

su inf - E(z,x+ h
ZELB hEH/(A) ( )

Note: setting in classical immunization corresponds to / =1
and hi(t) =t (hence H(t) =1)
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Gateaux and Fréchet derivatives

® For perturbation h € X, rate of change in liability value is
Gateaux derivative

SP(x: h) = lim ~(P(x + ah) — P(x))

a—0 «

T
_ / e On(t) dF (1)

0

e Can define bounded linear operator P’(x) by

P(x)h = — /0 " e h(e) dF (),

called Fréchet derivative

Conclusion
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Sensitivity matrix/vector

* Define sensitivity matrix A = (a;;) € R'*7 and vector
b = (b;) € R! with respect to basis functions by

a“___5RKKh0__ 1 Te—Aﬂ_ ,

R o) ARLCLC
o _(SP(X, h,) o 1 Tefx(t) )

b, = P(X) = P(X)/g h,(t) dF(t)

® Note: b; is duration if h;(t) =t
e Convenient to define Ay € RUFD*J and b, € R/*! by

Ay = [‘Z’] and by = [b;’],

where ag;, bg = 1 defined analogously using ho(t) =1
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Sensitivity of equity
® Recall definition of equity
J
E(z,x) = zPj(x) - P(x)
j=1

e If perturbation is h= A Zl{zl wih; € H;(A), sensitivity of
equity becomes

1
ATy ARG

E(z,x+ h)=—(w,Az —b)

® For h € H;(A), coefficients w = (w;) need to satisfy certain
restrictions
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Auxiliary problem

e Straightforward to show h = A le':l wih; € H,;(A) if and
only if
W= {W eR':Gwe [—1,1]N} ,

where G = (hl(t,)) € RI*N
® This motivates solving auxiliary problem

sup inf —(w,Az—b) <= inf sup (w,Az —b)
zez weW ZE€Z wew

to solve maxmin problem

su inf  E(z,x+h
zeg hEH/(A) ( )
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Solution to auxiliary problem

Proposition (Minmax)
Suppose Assumptions hold, | > J — 1, and sensitivity matrix A4
has full column rank. Then

1. There exists (z*,w*) € Z x W that achieves minmax value

Vi(Z) = Z|r€1fz ;ggv (w,Az — b) .

2. VI(2) >0, and z € Z achieves V|(Z) = 0 if and only if
A+Z = b+.

Conclusion
o]
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Robust immunization

Theorem (Robust immunization)

1. Guaranteed equity satisfies

1
lim = inf E h) = —P(x)Vi(Z).
AM A sup, inf (z,x + h) (x)Vi(2)

2. Letting z* € Z be solution to auxiliary problem and

8; = zjPj(x)/P(x) be corresponding portfolio share, then

sup |E(z"x + )| < AP(x) (VI(Z) N S Heul)) .
heH, (D) 4

® Solution z* to auxiliary problem achieves guaranteed equity in
limit A} O
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Implementation

Implementation requires choice of basis functions {h;}:°,

Natural to use (Chebyshev) polynomials because Assumptions
satisfied and good approximation property (Trefethen, 2019)

Let T, : [-1,1] — R be Chebyshev polynomial defined by
Th(cosf) = cos nf

Map [—1,1] to [0, T] by affine transformation, so let
gi(t) = T;i_1(2t/ T — 1) be basis for forward rate

Define basis for cumulative discount rate by

h,-(t):/O gi(u)du
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Basis for forward rate

(T
2.5 : : () : :
=1
2L =2 |
1=3
i =
15} . 1
1
0.5+F ]
0k A
0.5 F ]
-1 L I
0 10 20 30 40 50

Years to maturity
21/38



Introduction Problem statement Robust immunization Evaluation Conclusion
00000 0000000 Q00000 000000 o]
OO@0000 0000

Basis for cumulative discount rate

50 hi(t)
i=1
40 b =2 J
i=3
1 =4
307 i=5 ]
20+ .

-20 . . . R

0 10 20 30 40 50
Years to maturity
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How good is forward rate approximation?

® Use 1985-2022 daily yield curve data from Giirkaynak et al.
(2007), who estimate Svensson (1994) model

® For each day s and term t, = n/12 (n=1,...,360), calculate
the d-day ahead forward rate change 51 4(t,) — fs(tn)

® Foreach sand d =1,...,100, run OLS regression
I
ferd(tn) - fs(tn) = Z")/isdgi(tn)+fs(tn)7 n=1,...,N
i=1

® Calculate goodness-of-fit measure

Zsszl Zrlyzl <Z§:1 aisdgi(tn)> i
oy Son (fed(tn) — fult))?

2

R2 =
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Goodness-of-fit
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Goodness-of-fit
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Implementing robust immunization

. Let
® t = (ty,...,ty) be 1 x N vector of asset/liability payout dates
® y={(y,...,yn) be 1 x N vector of yields
® f=(f,...,fn) be 1 x N vector of liabilities
® F = (fj») be J x N matrix of bond payouts

. Let I > J — 1, define basis functions {h;} as above, construct
matrices of

® basis functions H = (h;(t,)) € RN,
* derivatives G = (h!(t,)) = (gi(tn)) € RV,
® zero-coupon bond prices p = exp(—y ® t) € R*N

. Define sensitivity matrix/vectors by

A = (Hdiag(p)F')/(pf'),
b := Hdiag(p)f'/(pf’)
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Implementing robust immunization

4. Let
W= {W eR':Gwe [—l,l]N}

and solve auxiliary problem

Vi(2) = ;2; ;g){/)v (w,Az — b)

® |nner maximization large linear programming problem, so easy
to solve

e Quter minimization small convex minimization problem, so
easy to solve
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Static hedging

Liability: constant monthly cash flow with maturity 50 years

Asset: portfolio of zero-coupon bonds with maturity 1, 2, 5,
10, 30 years

For static hedging, use daily yield curve data as before, and
assume vyield curve instantaneously changes to d-day ahead

Evaluate performance on day s by relative return error

J
1
iPj s -P s
P(xs) 12:1: 25 Pj(Xs+d) (Xs+d)

Compare robust immunization (RI(0,1,2)) , high-order
duration (HD), and key rate duration (KRD) of Ho (1992)
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Average d-day ahead error
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Time series of 30-day ahead error
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Dynamic hedging

Estimate no-arbitrage model of Ang et al. (2008) by
maximum likelihood

Generate simulated data to evaluate dynamic hedging
Let s = A,2A,... be rebalancing date (A = one quarter)
Net asset value (NAV) of fund at date s is (with s~ = s — A)

J
Vs = Z oG8
cash =1 Imy
bond

Can show dynamic hedging reduces to static hedging except
reducing maturities by A everywhere
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Histogram of 10-year return error
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Average absolute return error
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Conclusion

® When the world is complicated, it is natural to optimize
against the worst case

® Robust immunization maximizes equity (asset minus liability)
against worst interest rate shock

® Easy to implement, excellent performance
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Robust immunization with principal components

® Suppose perturbations to forward rates have factor structure
® E.g., parallel shift is dominant
® For Ay > Aj > 0, consider set of admissible perturbations

Hi(A1, Az)
= {h . (Fa)(Vn) ‘ah’l(tn)‘ < Ay, |h’(t,,) — ah’l(tn)‘ < Ag}
® |dea:
® First, perturb forward rate in direction hj by magnitude at
most A1,

® Then perturb in arbitrary direction by magnitude at most A,
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Robust immunization with principal components
Theorem
Suppose the set

J
Z = ZGZ:Zaljzj:bl
j=1

is nonempty. Then guaranteed equity satisfies

1
lim — su nf E(z,x + h) = —P(x)Vi(21),
A2£2%HﬂhAg ( ) (x)Vi(21)

where the limit is taken over A1, Ay — 0, A1/Ay — oo, and
A%/Az — 0.
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