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COVID-19 epidemic

I Started in December 2019 in Wuhan, China

I First community spread outside China and Korea reported in
late February 2020 in Italy

I European countries quickly implemented mitigation policies
such as lockdown

I U.S., Canada, and other countries followed suit by mid-March
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Are mitigation policies warranted?

I At first glance, protecting public from infectious disease
appears to be a responsible government action

I After second thought, draconian social distancing policies no
longer appear self-evident

1. Closure of schools and businesses have obvious economic costs
2. Social distancing prevents new infections but also building herd

immunity—hence policies may never achieve goal of ending
epidemic VoxEU column

3. Mathematical epidemic models used in policy-making ignore
forward-looking behavior by rational agents

I Calls for rigorous theoretical (and quantitative) analysis
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This paper

I Theoretically studies Susceptible-Infected-Recovered (SIR)
epidemic model with forward-looking, rational agents

I Features:
I Agents choose economic activity level optimally, understanding

infection risk
I Cases may be underreported and agents need to infer their

health status (empirically, only 20–40% of cases diagnosed)
I Government may have limited power to enforce optimal policy
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Main results (theoretical)

1. Prove existence of perfect Bayesian Markov competitive
equilibrium

I Here
I “Perfect Bayesian”: agents use Bayes rule on equilibrium path
I “Markov”: policy functions depend on state variables
I “Competitive”: agents ignore effects of their behavior on

aggregate variables

I Markov structure important because we can talk about optimal
policy at any point in time or point in state space

2. Prove approximate static efficiency of equilibrium
I Equilibrium inefficient due to externalities

I Static: infected agents infect others
I Dynamic: collective behavior of agents affects future dynamics

I Static externality by unknown infected agents small
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Main results (quantitative)

I Numerically solve for equilibrium and optimal policy of model
of COVID-19 epidemic

I Findings:
I Endogenous social distancing by agents mitigates epidemic,

but welfare gain modest (∼ 10% reduction in welfare costs)
I Additional welfare gain from lockdown policy small (< 10%)
I Quarantine effective, even with imperfect testing
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Literature

I Mathematical epidemic model: Kermack & McKendrick
(1927)

I Non-strategic economic epidemic model: Sethi (1978),
Kruse & Strack (2020)

I Strategic epidemic model:
I (HIV) Geoffard & Philipson (1996), Kremer (1996), Auld

(2003)
I (Community infectious disease) Reluga (2010), Chen (2012),

Fenichel (2013), Toxvaerd (2020)

I Failure of well-intended public health policy Toxvaerd
(2019)
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Society, agent types

I Agents: n = 1, . . . ,N (finite but large)

I Time: t = 0,∆, 2∆, . . . (discrete, infinite horizon)
I Agent types by health/information

I S : susceptible (no immunity)
I Ik : known infected (diagnosed)
I Iu: unknown infected (undiagnosed)
I Rk : known recovered (diagnosed)
I Ru: unknown recovered (undiagnosed)
I D: dead

I Behavioral types are denoted by h ∈ {U, Ik ,Rk ,D}, where
U = S ∪ Iu ∪ Ru is unknown type
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State variables

I Individual state variables are health/information status
h ∈ {U, Ik ,Rk ,D}

I Aggregate state variables are fraction of each agent type
I Let Nh be number of type h ∈ {S , Ik , Iu,Rk ,Ru,D} agents
I With slight abuse of notation, let h = Nh/N be fraction of

type h agents
I Then state space is set Z of z = (S , Ik , Iu,Rk ,Ru,D), where

S + Ik + Iu + Rk + Ru + D = 1,

N(S , Ik , Iu,Rk ,Ru,D) ∈ Z6
+

I Assume aggregate state observable (can be inferred from
random testing)
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Preferences

I Alive agents (excluding Ik) take action a ∈ A = [a
¯
, 1] ⊂ [0, 1]

with flow payoff u(a), where u(1) = 0, u′ > 0, u′′ < 0
I Interpretation: a is “economic activity level”, with a = 1 being

normal life and a = a
¯

being locked down

I Known infected (Ik) agents have utility function uI : A→ R,
single-peaked at aI ∈ A

I Dead agents receive flow utility uD < 0, where
uD ≤ uI (a) ≤ u(a) for all a ∈ A

I Agents maximize expected discounted payoffs at rate e−r∆,
where r > 0: discount rate
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Disease transmission
I Agents meet randomly and transmit infectious disease
I If n, n′ take actions an, an′ , then they meet with probability
λ∆anan′/N, where λ: meeting rate

I λ exogenous and depends on how society is organized, e.g.,
population density, commuting, shopping, teaching pattern

I Conditional on n meeting n′ and n′ being infected, n gets
infected with probability τ

I τ exogenous and depends on contagiousness and society
organization (greet by bowing, shaking hands, hugging, kissing)

I New infection diagnosed with probability σ ∈ (0, 1]
I If type h agents take average action ah, then infection

probability

Pr(get infected | a, susceptible) = β∆(aIk Ik + aU Iu)a,

where β = τλ: transmission rate
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Recovery, death, and vaccine arrival

I Every period, infected agents removed (recover or die) with
probability γ∆

I Iu agents always recover; conditional on removal, Ik agents die
with probability δ

I δ: Case Fatality Rate (CFR) (fatality rate among reported
cases)

I δ0 := σδ: Infection Fatality Rate (IFR) (fatality rate among all
cases)

I Recovered and dead agents remain so forever (lifelong
immunity)

I Vaccine arrives at Poisson rate ν; once vaccine arrives, all
alive non-infected agents become Rk
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Mathematical epidemic models

I Our framework is basic SIR(D) model
I Other variations:

I SI: infected agents remain infected forever
(e.g., Epstein-Barr virus infection)

I SIS: infected agents recover but can be reinfected
(e.g., seasonal influenza)

I SEIR: exposed agents are infected but not yet contagious

I For COVID-19, unclear whether immunity is lifelong
I Probably SIRDS (possibility of R → S as in influenza) more

appropriate, but in short run SIRD should be enough
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Assumptions

Assumption (Perfect competition)

Agents view the evolution of the aggregate state z as exogenous
and ignore the impact of their behavior on the aggregate state.

Assumption (Consistency)

On equilibrium paths, agents update their beliefs using the Bayes
rule. Off equilibrium paths, unknown (U) agents believe they are
susceptible with probability

µ(z) :=

{
S

S+Iu+Ru
if S > 0,

0 otherwise.

Skip equilibrium analysis
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Individual problems: known recovered and dead

I Let Vh(z) be value function of type h agents

I Because dead agents remain dead, Bellman equation is

VD = (1− e−r∆)uD + e−r∆VD ⇐⇒ VD = uD .

I Because known recovered agents remain recovered, Bellman
equation is

VRk
= max

a∈A

{
(1− e−r∆)u(a) + e−r∆VRk

}
.

I Optimal policy is clearly aRk
= 1 and value function is VRk

= 0
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Individual problems: known infected

I Known infected agents are removed with probability γ∆, and
conditional on removal, die with probability δ = δ0/σ

I Hence Bellman equation is

VIk = max
a∈A

{
(1− e−r∆)uI (a)

+ e−r∆((1− γ∆)VIk︸ ︷︷ ︸
stay infected

+ γ∆[(1− δ)VRk
+ δVD ])︸ ︷︷ ︸

removal

}
.

I Hence optimal policy is aIk = aI and value function is

VIk =
(1− e−r∆)uI + e−r∆γ∆δuD

1− e−r∆(1− γ∆)
,

where uI := uI (aI )
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Individual problems: unknown

I Suppose unknown agents adhere to policy function aU(z) and
have belief µ(z) above

I Let p(z) = β∆(aI Ik + aU(z)Iu) be probability of infection
with full action (a = 1)

I Then Bellman equation is

VU(z) = max
a∈A

{
(1− e−r∆)u(a) + e−r∆σµpaVIk︸ ︷︷ ︸

known infection

+ e−r∆(1− σµpa)︸ ︷︷ ︸
stay unknown

Ez(e−ν∆VU(z ′)︸ ︷︷ ︸
no vaccine

+ (1− e−ν∆)VRk︸ ︷︷ ︸
vaccine

)

}
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Value functions

Proposition (Value functions)

Fix a policy function aU : Z → A of unknown agents. Then there
exists a unique value function VU : Z → R satisfying the Bellman
equation. Furthermore,

VD = uD <
(er∆ − 1)uI + γ∆δuD

er∆ − 1 + γ∆
= VIk

<
eν∆σβ∆

e(r+ν)∆ − 1 + σβ∆
VIk ≤ VU(z) ≤ VRk

= 0.

I VD ≤ VIk and VU ≤ VRk
obvious

I VIk ≤ VU because U agents can always take a = 1 and uI ≤ u

Phelan & Toda Cleveland Fed & UCSD
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Best response of U agents

Proposition (Best response of U agents)

Fix a policy function aU : Z → A and a continuation value
VU : Z → R of unknown agents. Then the best response of an
unknown agent is

a∗ = φ

(
σµ(z)p(z)

er∆ − 1
(Ez e

−ν∆VU(z ′)− VIk )

)
,

where

φ(x) :=


1 if x ≤ u′(1),

(u′)−1(x) if u′(1) < x < u′(a
¯

),

a
¯

if x ≥ u′(a
¯

).

is inverse marginal utility function.
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Comparative statics

I Recall best response is

a∗ = φ

(
σµ(z)p(z)

er∆ − 1
(Ez e

−ν∆VU(z ′)− VIk )

)
I Because u′′ < 0, φ is decreasing, so a∗ decreasing in ν, µ, p, δ0

and increasing in uI , uD

I So U agents take higher action if vaccine arrival less likely,
infection less likely, death less likely, and infection and death
less scary
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Equilibrium

I Our equilibrium concept is perfect Bayesian Markov
competitive equilibrium

I “Perfect Bayesian”: agents use Bayes rule on equilibrium path
I “Markov”: policy functions depend on state variables
I “Competitive”: agents ignore effects of their behavior on

aggregate variables

I Justification of competitive behavior: N large

Phelan & Toda Cleveland Fed & UCSD
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Perfect Bayesian Markov competitive equilibrium

Definition (Markov equilibrium)

A (pure strategy) perfect Bayesian Markov competitive equilibrium
consists of unknown agents’ belief µ(z) of being susceptible,
transition probabilities {q(z , z ′)}z,z ′∈Z for aggregate state, value
functions {Vh(z)}h=U,Ik ,Rk ,D

, and policy functions {ah(z)}h=U,Ik ,Rk

such that

1. (Consistency) The belief µ(z) satisfies the Bayes rule on
equilibrium paths; the transition probabilities {q(z , z ′)} are
consistent with individual actions and the mechanisms of
disease transmission, symptom development, recovery, and
death,

2. (Sequential rationality) Bellman equations hold
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Existence of equilibrium

Theorem (Existence of equilibrium)

Under maintained assumptions, there exists a pure strategy perfect
Bayesian Markov competitive equilibrium, where the belief µ(z)
always satisfies

µ(z) :=

{
S

S+Iu+Ru
if S > 0,

0 otherwise.
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Idea of proof

I Let aU(z) be a guess of policy function and VU(z) associated
value function; note state space Z is finite, so (aU(z))z∈Z is
finite-dimensional

I Update aU(z) using best response function

I Can show continuity of this map Lemma

I Apply Brouwer fixed point theorem

Phelan & Toda Cleveland Fed & UCSD
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Externalities and efficiency

I Equilibrium is inefficient due to two types of externalities
I Static: when infected agents go out, they infect others in same

period
I Dynamic: agents’ collective behavior affects dynamics of

future state variables

I Dynamic externality is subtle: e.g., when agents stay home,
new infections reduced but epidemic prolonged

I Theoretically studying dynamic externality challenging, hence
focus on static externality
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Social welfare function

I In state z ∈ Z , utilitarian social welfare is

W(z) := (S + Iu + Ru)VU(z) + IkVIk (z) + RkVRk
(z) + DVD(z)

I Since agents’ behavior does not affect VRk
and VD , suffices to

consider
W (z) := UVU(z) + IkVIk (z)
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Lockdown and quarantine policies

I Since interested in eliminating static externality, take
continuation value VU ,VIk and transition probability q(z , z ′)
as given and maximize

W (aU , aIk , z) := U
[
(1− e−r∆)u(aU)+

e−r∆ Ez((1− σµpaU)e−ν∆VU(z ′) + σµpaUVIk (z ′))
]

+Ik

[
(1− e−r∆)uI (aIk ) + e−r∆ Ez((1− γ∆)VIk (z ′) + γ∆δVD)

]
.

I We refer to aU and aIk chosen by planner as lockdown and
quarantine policies

I Lockdown policy a†U is static efficient if it maximizes W given
aIk

Phelan & Toda Cleveland Fed & UCSD
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Approximate static constrained efficiency of equilibrium

Theorem (Static efficient lockdown policy)

Let a∗U(z) be the equilibrium policy of unknown agents and
m = mina∈A |u′′(a)| > 0. There exists a unique static efficient

lockdown policy a†U(z), which satisfies

0 ≤ a∗U(z)− a†U(z)

≤ σβ∆

m(er∆ − 1)
µ(z)a∗U(z)Iu Ez(e−ν∆VU(z ′)− VIk ).

In particular, if σ = 1 (so Iu = 0), then a†U(z) = a∗U(z).

Phelan & Toda Cleveland Fed & UCSD
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Intuition of theorem

I Proof is long and technical; uses fact that if f is monotone
and f , g are close, then roots of f and g are close Details

I Inequality a∗U ≥ a†U comes from fact that unknown agents are
not internalizing negative externality caused by unknown
infected agents

I Individual agents view utility loss from infection as linear
function of own activity, while planner views as quadratic due
to interaction between susceptible and unknown infected
agents

I Upper bound of a∗U − a†U comes from similarity of individual
and planner first-order conditions

Phelan & Toda Cleveland Fed & UCSD
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Epidemic dynamics

I Fix any policy functions (aU(z), aIk (z)) and induced transition
probabilities {q(z , z ′)},

I Then

Ez(St+∆ − St)/∆ = −βaU(z)(σaIk (z) + (1− σ)aU(z))St It ,

Ez(It+∆ − It)/∆ = (βaU(z)(σaIk (z) + (1− σ)aU(z))St − γ)It ,

Ez(Rt+∆ − Rt)/∆ = γ(1− δ)It ,

Ez(Dt+∆ − Dt)/∆ = γδIt .

I Standard SIR(D) model special case by letting aU = aIk = 1,
N →∞, ∆→ 0

I Definition: herd immunity achieved if R0St ≤ 1 (where
R0 = β/γ: reproduction number), implying İt ≤ 0

Phelan & Toda Cleveland Fed & UCSD
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Model specification

I One period is a day

I Annual 5% discounting, so r = 0.05/365.25

I Vaccine arrives in one year, so ν = 1/365.25

I Daily transmission rate β = 1/5.4, from meta-analysis of Rai
et.al. (2021)

I Daily recovery rate γ = 1/13.5, from You et.al. (2020), so
basic reproduction number R0 = β/γ = 2.5

I Infection fatality rate δ0 = 0.0027, from meta-analysis of
Ioannidis (2021)

I Diagnosis rate σ = 0.4 (Empirical case fatality rate
δ = 0.0133 implies σ = 0.2; whereas Diamond Princess
implies symptom 50%)

Phelan & Toda Cleveland Fed & UCSD
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Model specification

I Log utility, so u(a) = log a

I Assume uI (a) = u(a), so optimal action of Ik agents aI = 1
(worst case analysis)

I Calibrate uD = −12.22 from Sweden data, which did not
introduce lockdown

I Initial condition: I0 = 10−6, S0 = 1− I0, R0 = 0, D0 = 0

Phelan & Toda Cleveland Fed & UCSD

Optimal Epidemic Control



Introduction SIR model with rational agents Equilibrium analysis Numerical analysis Conclusion

Case fatality rate in Sweden
I δCFR = 0.0158, so reporting rate σ = 0.171 in Sweden

Phelan & Toda Cleveland Fed & UCSD

Optimal Epidemic Control



Introduction SIR model with rational agents Equilibrium analysis Numerical analysis Conclusion

Prevalence in Sweden
I To back up prevalence, use accounting equation

Dt+1 − Dt = γδIFRIt ⇐⇒ It = (Dt+1 − Dt)/γδIFR
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Myopic equilibrium
I Agents choose myopic optimal action a = 1 (standard SIR

model)
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Markov equilibrium
I Agents choose individually optimal actions aU(z), aIk (z)
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Equilibrium action of unknown agents
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Efficient action of unknown agents

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of susceptible (S)

10−3

10−2

10−1

100
Fr
ac
tio

n 
of
 in

fe
ct
ed

 (I
)

Efficient activit  function

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

Phelan & Toda Cleveland Fed & UCSD

Optimal Epidemic Control



Introduction SIR model with rational agents Equilibrium analysis Numerical analysis Conclusion

Recommended action over time
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Recommended action over equilibrium path
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Welfare cost and death toll

I σ: diagnosis rate

I Welfare gains from lockdown quite modest

Welfare loss (%) Death toll (per 100,000)
σ Myopic PBE SPP Myopic PBE SPP

0.1 2.04 1.80 1.68 242 209 172
0.2 2.04 1.81 1.70 242 208 175
0.4 2.04 1.82 1.74 242 207 178
0.7 2.03 1.83 1.76 242 204 179
1.0 2.04 1.81 1.76 242 201 178
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Importance of quarantine

I So far we assume infected agents choose aI = 1

I Suppose known infected agents are quarantined at aI = 0.4
(He et al. (2020) document that 44% of secondary cases were
infected prior to diagnosis of primary cases)

Welfare loss (%) Death toll (per 100,000)
σ Myopic PBE SPP Myopic PBE SPP

0.1 1.94 1.69 1.53 236 204 171
0.2 1.80 1.57 1.41 229 197 163
0.4 1.45 1.28 1.11 208 182 143
0.7 0.65 0.64 0.52 149 148 102
1.0 0.00 0.00 0.00 0 0 0
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Efficient action without vaccine

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of susceptible (S)

10−3

10−2

10−1

100
Fr
ac
tio

n 
of
 in

fe
ct
ed

 (I
)

Efficient acti ity function (T = 100)

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

Phelan & Toda Cleveland Fed & UCSD

Optimal Epidemic Control



Introduction SIR model with rational agents Equilibrium analysis Numerical analysis Conclusion

Recommended action over time without vaccine
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Recommended action on equilibrium path without vaccine

0 100 200 300 400 500 600
Days

0.5

0.6

0.7

0.8

0.9

1.0

Activity levels on equilibrium path (T = 100)

Equilibrium
Efficient
Static efficient

Phelan & Toda Cleveland Fed & UCSD

Optimal Epidemic Control



Introduction SIR model with rational agents Equilibrium analysis Numerical analysis Conclusion

Welfare cost and death toll

Welfare loss (%) Death toll (per 100,000)
σ Myopic PBE SPP Myopic PBE SPP

0.1 2.85 2.84 2.59 242 209 185
0.2 2.85 2.83 2.59 242 209 185
0.4 2.84 2.81 2.59 242 207 186
0.7 2.83 2.74 2.57 242 205 186
1.0 2.84 2.63 2.53 242 202 183
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Efficient and equilibrium susceptible shares

0 100 200 300 400 500 600
Days

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Susceptible shares for (σ = 0.4)
Equilibrium
Efficient
Herd immunity

Phelan & Toda Cleveland Fed & UCSD

Optimal Epidemic Control



Introduction SIR model with rational agents Equilibrium analysis Numerical analysis Conclusion

Conclusion

I Theoretically studied equilibrium model of epidemics with
imperfect testing and enforcement

I If a planner can intervene only temporarily, then some
lockdown is optimal, though this incentive vanishes as testing
becomes perfect

I Numerical findings:
I Endogenous social distancing by agents mitigates epidemic,

but welfare gain modest (∼ 10% reduction in welfare costs)
I Additional welfare gain from lockdown policy small (< 10%)
I Quarantine effective, even with imperfect testing
I When vaccine not expected soon, optimal policy is to

encourage people to go out initially and only discourage
around herd immunity level
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Continuity of fixed point

Lemma
Let (X , d) be a complete metric space and Θ be a topological
space. Endow X ×Θ with the product topology. Suppose
T : X ×Θ→ X is continuous and there exists β ∈ [0, 1) such that

d(T (x , θ),T (y , θ)) ≤ βd(x , y)

for all x , y ∈ X and all θ ∈ Θ. Then

1. for each θ ∈ Θ, there exists a unique x∗(θ) ∈ X such that
T (x∗(θ), θ) = x∗(θ), and

2. x∗ : Θ→ X is continuous.

Go back
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Lemma
Let I ⊂ R be an interval, f : I → R continuously differentiable
with f ′ 6= 0 on I , and g : I → R continuous. If f (a) = g(b) for
some a, b ∈ I , then

|a− b| ≤ |f (b)− g(b)|
minx∈[a,b] |f ′(x)|

.

Proof:
I By mean value theorem, there exists θ ∈ (0, 1) such that

f (b)− f (a) = f ′(c)(b − a), where c = (1− θ)a + θb
I Since f (a) = g(b), we obtain
|f (b)− g(b)| = |f (b)− f (a)| = |f ′(c)(b − a)| ≥ m |a− b|,
where m = minx∈[a,b] |f ′(x)| > 0

I Dividing both sides by m > 0, we obtain the desired result
Go back
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