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Question

Finding discrete approximations of probability distributions
and stochastic processes is practically important:

Solving dynamic economic models
(e.g., optimal portfolio, consumption/saving, general
equilibrium, etc.)
Estimating dynamic economic models
Option pricing by Monte Carlo simulations

This paper: simple framework for discretizing distributions
and stochastic processes.
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Issues with existing methods

Existing methods use integration formula

E[g(X )] =

∫

g(x)f (x)dx ≈
M
∑

i=1

wi ,Mg(xi ,M)f (xi ,M).

Newton-Cotes type or Gauss type quadrature (Miller & Rice
1983) works for only 1 dimension and the discrete set
DM = {xi ,M} is constrained by the quadrature method.

If DM is arbitrarily given, approximation may not be accurate
because moments of f not exact
(Tauchen 1986, Adda & Cooper 2003).

Multidimensional case with exact moments is computationally
intensive (DeVuyst & Preckel 2007).
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Problem

Given
1 continuous density f : RK → R,
2 generalized moments T̄ =

∫

T (x)f (x)dx ,
(T : RK → R

L is moment defining function)
3 arbitrary discrete points DM = {xi ,M}M

i=1,

can we approximate f by a discrete distribution

PM = {p(xi ,M)}M
i=1

with exact moments T̄?

This paper: propose a numerical algorithm that is accurate
and computationally very simple.
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Solution

1 Start from some integration formula (e.g., trapezoidal)

E[g(X )] =

∫

g(x)f (x)dx ≈
M
∑

i=1

wi ,Mg(xi ,M)f (xi ,M).

2 Approximate f by solving the minimum Kullback-Leibler
information problem

min
{p(xi,M)}

M
∑

i=1

p(xi ,M) log
p(xi ,M)

w(xi ,M)f (xi ,M)

s.t.
M
∑

i=1

p(xi ,M)T (xi ,M) = T̄ ,
∑

i=1

p(xi ,M) = 1, p(xi ,M) ≥ 0.
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Dual problem

Using Fenchel duality, the dual of the minimum K-L
information problem is

min
λ∈RL

[

−
〈

λ, T̄
〉

+ log

(

M
∑

i=1

wi ,M f (xi ,M) e〈λ,T (xi,M)〉
)]

.

Primal problem is constrained optimization with a large
number of unknowns (M).

Dual problem is unconstrained optimization with a small
number of unknowns (L).
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Tanaka & Toda (2013)

Theorem

Suppose that T̄ ∈ convT (DM). Then the solution of the primal

problem is given by

p(xi ,M) =
wi ,M f (xi ,M)e〈λ̄M ,T (xi,M)〉

∑M
i=1 wi ,M f (xi ,M)e〈λ̄M ,T (xi,M)〉 ,

where λ̄M is a solution of the dual problem.

Theorem

Suppose that T̄ ∈ int(convT (DM)). Then

1 the dual function is continuous and strictly convex, and

2 the solution λ̄M uniquely exists.
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Assumptions

Assume that

1 T̄ = 0 ∈ int(convT (DM)),
(Since

∫

T (x)f (x)dx = T̄ ⇐⇒
∫

(T (x)− T̄ )f (x)dx = 0, we
can set T̄ = 0 w.l.o.g.)

2 integration formula converges, so for any bounded g

lim
M→∞

M
∑

i=1

wi ,M f (xi ,M)g(xi ,M) =

∫

RK

f (x)g(x)dx ,

3 integration formula converges for ‖T‖ as well:

lim
M→∞

M
∑

i=1

wi ,M f (xi ,M) ‖T (xi ,M)‖

=

∫

RK

f (x) ‖T (x)‖ dx =: I‖T‖ < ∞.
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Notations for errors

For any measurable g , let

E
(a)
g ,M =

∣

∣

∣

∣

∣

M
∑

i=1

wi ,M f (xi ,M)g(xi ,M)−
∫

RK

f (x)g(x)dx

∣

∣

∣

∣

∣

be the error of the initial integration formula, and

Eg ,M =

∣

∣

∣

∣

∣

M
∑

i=1

p(xi ,M)g(xi ,M)−
∫

RK

f (x)g(x)dx

∣

∣

∣

∣

∣

be the error of our approximation method.

Previous assumptions imply E
(a)
g ,M

→ 0 for any bounded g and

E
(a)
T ,M ,E

(a)
‖T‖,M → 0 as M → ∞.
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Main result

Theorem

Let g be measurable with |g(x)| ≤ G and α > 0 be large enough

such that

Cα := inf
λ∈RL

‖λ‖=1

1

2

∫

RK

f (x) (max {0,min {〈λ, T (x)〉 , α}})2 dx > 0.

Then, for any ε with 0 < ε < Cα, there exists a positive integer Mε

such that for any M with M ≥ Mε, we have

Eg ,M ≤ E
(a)
g ,M + G



E
(a)
1,M + 6

I‖T‖ + E
(a)
‖T‖,M

Cα − ε
E
(a)
T ,M



 .

Hence Eg ,M = O

(

max
{

E
(a)
g ,M

,E
(a)
1,M

,E
(a)
T ,M

})

→ 0 as M → ∞.
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Numerical experiment 1

Compute E[g(X )] for g(x) = ex and X ∼ N(0, 1) or
X ∼ Be(2, 4).

For X ∼ N(0, 1), start from trapezoidal formula with

DM = {nhM |n = 0,±1,±2, . . . ,±N} ,

where M = 2N + 1 and hM = 1/
√
N .

For X ∼ Be(2, 4), start from trapezoidal formula with

DM = {nhM |n = 0, 1, 2, . . . , 2N} ,

where M = 2N + 1 and hM = 1/2N.

In each case, N = 1, . . . , 12 and match up to L polynomial
moments (L = 2, 4, 6).
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Relative errors for the Gaussian case (X ∼ N(0, 1))
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Relative errors for the beta case (X ∼ Be(2, 4))
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Numerical experiment 2

Consider VAR(1) process

yt = Ayt−1 + ǫt , ǫt ∼ N(0,Ψ),

where yt = (zt , gt) and

A =

[

0.9809 0.0028
0.0410 0.9648

]

, Ψ =

[

0.00872 0
0 0.02622

]

.

(Example of Gospodinov & Lkhagvasuren (2014))

Unconditional variance is

Σ =

[

0.0024 0.0024
0.0024 0.0127

]

.

Match 1st and 2nd conditional moments using algorithm.
Generate 1000 samples of length 2,000,000, discard first
200,000 as burn in.
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N = 5 N = 9
TT Tau. GL0 GL TT

Root mean squared error

σ̂2
z 0.894 433 99 9 0.014

σ̂2
g 9.011 363 139 10 0.071

ρ̂zg 19.814 40 23 11 3.777

Bias

σ̂2
z 0.893 433 99 -5 -0.001

σ̂2
g 9.010 362 138 -7 -0.004

ρ̂zg -19.473 -38 -22 -6 -0.076

Standard deviation

σ̂2
z 0.023 12 8 8 0.014

σ̂2
g 0.116 8 7 6 0.071

ρ̂zg 3.663 10 9 9 3.778

Table: All results scaled by 10−3. Tau.: Tauchen (1986), GL0, GL:
Gospodinov & Lkhagvasuren (2014) without & with moment targeting,
TT: Tanaka & Toda.
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Concluding remarks

Our method Starting from an initial integration formula, we
“fine-tuned” probabilities by minimizing the K-L
information subject to prescribed moment
constraints.
Although the primal problem is a constrained
minimization problem with many unknowns, the
dual is unconstrained with a small number of
unknowns, hence computationally simple.

Results Provided an error bound and proved the weak
convergence to the true density.
Our method is much more accurate than
existing methods.
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Appendix

Pathological case for N(0, 1)
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Figure: 6th order discrete approximation of N(0, 1) with M = 9 grid
points.
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Appendix

Pathological case for Be(2, 4)
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Figure: 6th order discrete approximation of Be(2, 4) with M = 9 grid
points.
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