Leverage, Endogenous Unbalanced Growth, and Asset Price Bubbles¹

Tomohiro Hirano¹ Ryo Jinnai² Alexis Akira Toda³

¹Royal Holloway, University of London

²Hitotsubashi University

³Emory University

¹Link to paper: https://arxiv.org/abs/2211.13±00 ← → ← 章 → ← 章 → ■ |= → へ @ →

Introduction

- Casual inspection of modern economic history suggests presence of asset price bubbles
- Examples:
 - Japanese real estate bubble in late 1980s
 - U.S. dot-com bubble in late 1990s
 - U.S. housing bubble in mid 2000s
- Kindleberger (2000) documents 38 bubbly episodes in 1618-1998 period
- Rational bubble: asset price (P) > fundamental value (V)
 - V = present value of dividends (D)

Fundamental difficulties

- Dominant view in macro-finance: asset price reflects fundamentals (P = V)
- Fundamental difficulty in generating bubbles attached to dividend-paying assets
 - If D non-negligible relative to aggregate endowment, then P = V (Santos and Woodford, 1997)
 - Bubble exists if and only if dividend yield D_t/P_t summable (Montrucchio, 2004)
 - Hence bubbles impossible in stationary models with D>0
- Given fundamental difficulties, existing literature almost exclusively focus on D=0 (pure bubble)
 - Many shortcomings including lack of realism, equilibrium indeterminacy, inability to connect to empirical literature

This paper

- Proposes macro-finance theory to think about bubbles attached to dividend-paying assets
- Keyword: unbalanced growth, unlike stationary world characterized by balanced growth
- Balanced or unbalanced growth endogenously determined by financial leverage:
 - Low leverage: weak financial accelerator, balanced growth, fundamental value
 - High leverage: strong financial accelerator, unbalanced growth, bubble
- Hence with financial (or technological) development and presence of fixed factor like land, bubbles become inevitable

Introduction

Related literature

- Financial accelerator: Greenwald and Stiglitz (1993), Kiyotaki and Moore (1997), Lorenzoni (2008), Brunnermeier and Sannikov (2014) etc.
- Unbalanced growth: Baumol (1967), Matsuyama (1992), Buera and Kaboski (2012), etc.
- Rational bubbles: Samuelson (1958), Bewley (1980), Tirole (1985), Scheinkman and Weiss (1986), Kocherlakota (1992), Hirano and Toda (2024a,c), etc.
- Necessity of bubbles: Wilson (1981), Hirano and Toda (2024b)

Model overview

Key features of model:

- Infinite horizon: $t = 0, 1, \dots$
- Infinitely-lived heterogeneous agents
- Incomplete markets
- Leverage constraint
- AK model at individual level, neoclassical production with land at aggregate level

Agents

- Continuum of agents with mass 1 indexed by $i \in I = [0, 1]$
- Log utility (inessential; only for tractability)

$$\mathsf{E}_0 \sum_{t=0}^{\infty} \beta^t \log c_t$$

Rational expectations

Productivity

- AK model at individual level: invest $i_t \to \text{capital } k_{t+1} = z_t i_t$
- Productivity z_t drawn from cdf Φ , IID across agents and time
- Note: productivity known before investment

Assumption

 $\Phi: [0,\infty) \to [0,1)$ is absolutely continuous with $\int_0^\infty z \, d\Phi(z) < \infty$.

Production

- Aggregate capital K, land X
- Neoclassical production function f(K, X)
 - CES example: $f(K, X) = A(\alpha K^{1-\rho} + (1-\alpha)X^{1-\rho})^{\frac{1}{1-\rho}}$
 - $1/\rho$ is elasticity of substitution
- Let $F(K, X) = f(K, X) + (1 \delta)K$, where δ : capital depreciation rate

Assumption

 $F: \mathbb{R}^2_{++} \to \mathbb{R}_+$ is homogeneous of degree 1, concave, continuously differentiable with positive partial derivatives, and satisfies

$$\lim_{K\to\infty}\frac{F(K,1)}{K}=\lim_{K\to\infty}F_K(K,1)=:m>0.$$

Land and REIT

- Land in unit supply
- In background, perfectly competitive financial intermediaries securitize land into real estate investment trust (REIT); hence land is just a risk-free asset (bond)
- Land rent at time t is $F_X(K_t, 1)$
- Hence gross risk-free rate from t to t+1 is

$$R_t := \frac{P_{t+1} + F_X(K_{t+1}, 1)}{P_t},$$

where P_t : land price

Budget constraint

- Let w_t be wealth of typical agent carried over from previous period
- Then agent decides allocation

$$\underbrace{c_t}_{\text{consumption}} + \underbrace{i_t}_{\text{tr}} + \underbrace{b_t}_{\text{bond}} = w_t$$

• Because capital is $k_{t+1} = z_t i_t$, time t+1 wealth is defined by

$$w_{t+1} \coloneqq \underbrace{F_K(K_{t+1}, 1)z_ti_t}_{\text{income from capital}} + \underbrace{R_tb_t}_{\text{income from REIT}}$$

Leverage constraint

Agents are subject to leverage constraint

$$0 \le \underbrace{i_t}_{\text{investment}} \le \lambda \underbrace{(i_t + b_t)}_{\text{equity}},$$

- $\lambda \geq 1$: exogenous leverage limit
- $i_t + b_t = w_t c_t$: "equity"
- Noting $1 1/\lambda \ge 0$, we obtain

$$\underbrace{-b_t}_{\text{borrowings}} \leq \underbrace{(1-1/\lambda)}_{\text{collateral ratio}} i_t,$$

so leverage constraint equivalent to borrowing constraint

Equilibrium

- Due to log utility, optimal consumption $c_t = (1 \beta)w_t$
- Hence can aggregate individual behavior and rational expectations equilibrium reduces to aggregate dynamics of
 - R_t: gross risk-free rate
 - \bar{z}_t : productivity threshold for investment
 - W_t: aggregate wealth
 - K_t: aggregate capital
 - P_t : land price
- Below, we derive aggregate dynamics

Investment

- If produce capital, return on investment is $F_X(K_{t+1}, 1)z_t$
- If invest in risk-free asset, return is R_t
- Hence productivity threshold is

$$F_{\mathcal{K}}(\mathcal{K}_{t+1},1)z_t > R_t \iff z_t > \bar{z}_t \coloneqq \frac{R_t}{F_{\mathcal{K}}(\mathcal{K}_{t+1},1)}$$

Due to leverage constraint, optimal asset allocation is

$$(i_t, b_t) = egin{cases} (0, eta w_t) & ext{if } z_t \leq ar{z}_t, \ (\lambda eta w_t, (1-\lambda) eta w_t) & ext{if } z_t > ar{z}_t. \end{cases}$$

Aggregate wealth

- Let $W_t := \int_I w_{it} \, \mathrm{d}i$ be aggregate wealth
- Recall individual wealth $w_t = F_X(K_t, 1)k_t + R_{t-1}b_{t-1}$
- Aggregating and noting bonds backed by land,

$$W_t := F_K(K_t, 1)K_t + R_{t-1}P_{t-1}$$

= $F_K(K_t, 1)K_t + P_t + F_X(K_t, 1) = F(K_t, 1) + P_t$,

where last line follows from

- homogeneity of *F*,
- definition of risk-free rate R_{t-1}

• Aggregating individual capital $k_{t+1} = z_t i_t$, aggregate capital is

$$K_{t+1} = \beta \lambda W_t \int_{\bar{z}_t}^{\infty} z \, \mathrm{d}\Phi(z)$$

 Aggregating bond holdings b_t and noting bonds backed by land, land price is

$$P_t = \underbrace{\beta W_t \int_0^{\bar{z}_t} \mathrm{d}\Phi(z)}_{\text{savings by unproductive}} + \underbrace{\beta (1-\lambda) W_t \int_{\bar{z}_t}^{\infty} \mathrm{d}\Phi(z)}_{\text{borrowings by productive}}$$
$$= \beta W_t (\lambda \Phi(\bar{z}_t) + 1 - \lambda)$$

Financial accelerator

- Our model produces financial accelerator
- When land price $P_t \uparrow$, current wealth

$$W_t = F(K_t, 1) + P_t \uparrow$$

• When current wealth $W_t \uparrow$, next period capital

$$K_{t+1} = \beta \lambda W_t \int_{\bar{z}_t}^{\infty} z \, \mathrm{d}\Phi(z) \uparrow$$

and also $W_{t+1} \uparrow$

Increased wealth feeds back to land price:

$$P_{t+1} = \beta W_{t+1}(\lambda \Phi(\bar{z}_{t+1}) + 1 - \lambda) \uparrow$$

Asymptotic behavior

- Asymptotic behavior of model depends on leverage λ
 - High $\lambda \to \text{high investment} \to \text{economy grows}$
 - Low $\lambda \to \text{low investment} \to \text{economy converges}$
- Suppose economy asymptotically grows at rate G > 1, so

$$K_t \sim kG^t$$
, $W_t \sim wG^t$, $P_t \sim pG^t$

Elasticity of substitution and land rents

• Let σ be asymptotic elasticity of substitution between capital and land:

$$\sigma = -\lim_{K \to \infty} \frac{\partial \log(K/X)}{\partial \log(F_K/F_X)}$$

- Recalling $F_K/K \to m > 0$, can show $\sigma > 1$ regardless of F
- Then land rent $r_t \sim rG^{t/\sigma}$ grows at rate $G^{1/\sigma} < G$
- Risk-free rate converges to

$$R_t = \frac{P_{t+1} + r_{t+1}}{P_t} \to G$$

Hence productivity threshold converges to

$$ar{z}_t = rac{R_t}{F_{\mathcal{K}}(\mathcal{K}_{t+1},1)}
ightarrow rac{G}{m}$$

• Letting $t \to \infty$ in equilibrium conditions, get long-run growth condition

$$G/m = \frac{\beta \lambda \int_{G/m}^{\infty} z \, \mathrm{d}\Phi(z)}{1 - \beta(\lambda \Phi(G/m) + 1 - \lambda)}.$$

• Setting G=1 and solving for λ , we get G>1 if and only if

$$\lambda > \bar{\lambda} := \frac{1-\beta}{\beta} \frac{1}{\int_{1/m}^{\infty} (mz-1) d\Phi(z)}.$$

Proposition

Let Z be random variable with cdf Φ and assume $\beta \, \mathsf{E}[\mathsf{m}\mathsf{Z} \mid \mathsf{m}\mathsf{Z} \geq 1] > 1$. Let $\bar{\lambda}$ be leverage threshold as above. Then

- 1. If $\lambda < \bar{\lambda}$, there exists a unique equilibrium converging to steady state.
- 2. If $\lambda > \bar{\lambda}$, there exists a unique equilibrium with order of magnitude $K_t \sim kG^t$, $W_t \sim wG^t$, $P_t \sim pG^t$, where G > 1satisfies long-run growth condition.

Fundamental value and land bubble

- Model features no aggregate uncertainty
- Let $q_t := 1/\prod_{s=0}^{t-1} R_s$ be date-0 price of consumption delivered at time t (price of zero-coupon bond with maturity t)
- By definition, fundamental value of land is present value of land rents

$$V_t \coloneqq \frac{1}{q_t} \sum_{s=t+1}^{\infty} q_s r_s,$$

We say land price exhibits bubble if $P_t > V_t$

Unbalanced growth and asset bubble

- With growth G>1, we know $R_t\sim G$ and $r_t\sim G^{t/\sigma}$ (with $\sigma > 1$
- Thus, growth rate of economy (G) exceeds growth rate of rents ($G^{1/\sigma}$): unbalanced growth
- Under unbalanced growth, fundamental value of land

$$V_t \sim \sum_{s=t+1}^{\infty} G^{t-s} r_s \sim G^{t/\sigma}$$

- But with growth, we know $P_t \sim G^t > G^{t/\sigma} \sim V_t$, so land necessarily exhibits bubble
 - Asset bubbles are fundamentally nonstationary phenomena (Hirano and Toda, 2024a,b)

Theorem

Let $\bar{\lambda}$ be leverage threshold. Then

- 1. If $\lambda < \bar{\lambda}$, we have $P_t = V_t$ for all t. The economy exhibits balanced growth and the price-rent ratio converges to a positive constant.
- 2. If $\lambda > \bar{\lambda}$, we have $P_t > V_t$ for all t. The economy exhibits unbalanced growth and the price-rent ratio diverges to ∞ .
- Economy exhibits phase transition
 - Low λ : exogenous growth (G=1), fundamental value
 - High λ : endogenous growth (G > 1), asset bubble

Numerical example

- CES production function
- Exponentially distributed productivities: $\Phi(z) = 1 e^{-\gamma z}$
- Parameters: $\beta = 0.95$, $\alpha = 0.5$, $\delta = 0.08$, $\gamma = -\log(0.1)$ (so Pr(z > 1) = 0.1
- Vary leverage λ and elasticity of substitution in production function $1/\rho$

Phase transition

Leverage-driven bubble

- Set $\rho = 1$ (Cobb-Douglas)
- Change leverage λ from 1 to 2, then back to 1 (unanticipated)

Consider special case with linear production function

$$F(K,X)=mK+DX$$

- Can be interpreted as two-sector economy
 - 1. Modern capital-intensive sector
 - 2. Traditional land-intensive sector (agriculture)
- For analytical tractability, consider "large open economy"
 - Open economy: interest rate R constant
 - Large economy: external savings/borrowings negligible \rightarrow pins down R
- Can show existence and uniqueness of equilibrium
- Can characterize wealth distribution

V-shaped interest rate

Proposition

Equilibrium gross risk-free rate R is strictly decreasing (increasing) for $\lambda < \bar{\lambda}$ ($\lambda > \bar{\lambda}$).

- In fundamental regime, as leverage relaxed, marginal investor becomes less productive, hence low interest rate
- In Bubbly regime, as leverage relaxed, $G = R \uparrow$

Bubbles and wealth inequality

- Use Beare and Toda (2022) formula to compute Pareto exponent
- In fundamental regime, as leverage relaxed, unproductive agents earn low $R \to \text{higher wealth inequality}$
- In bubbly regime, as leverage relaxed, R↑ and unproductive catch up

Concluding remarks

- Proposed macro-finance theory to think about bubbles attached to dividend-paying assets
 - Model circumvents shortcomings of pure bubble models including lack of realism, equilibrium indeterminacy, and inability to connect to empirical literature
- Balanced or unbalanced growth endogenously determined by financial leverage:
 - Low leverage: weak financial accelerator, balanced growth, fundamental value
 - High leverage: strong financial accelerator, unbalanced growth, bubble
- Hence with financial (or technological) development and presence of fixed factor like land, bubbles become inevitable

- Baumol, W. J. (1967). "Macroeconomics of Unbalanced Growth: The Anatomy of Urban Crisis". American Economic Review 57.3, 415-426.
- Beare, B. K. and A. A. Toda (2022). "Determination of Pareto Exponents in Economic Models Driven by Markov Multiplicative Processes". *Econometrica* 90.4, 1811–1833. DOI: 10.3982/ECTA17984.
- Bewley, T. (1980). "The Optimum Quantity of Money". In: Models of Monetary Economies. Ed. by J. H. Kareken and N. Wallace. Federal Reserve Bank of Minneapolis, 169–210. URL: https://researchdatabase.minneapolisfed.org/ collections/tx31qh93v.

- Brunnermeier, M. K. and Y. Sannikov (2014). "A Macroeconomic Model with a Financial Sector". American Economic Review 104.2, 379-421. DOI: 10.1257/aer.104.2.379.
- Buera, F. J. and J. P. Kaboski (2012). "The Rise of the Service Economy". American Economic Review 102.6, 2540–2569. DOI: 10.1257/aer.102.6.2540.
- Greenwald, B. C. and J. E. Stiglitz (1993). "Financial Market Imperfections and Business Cycles". Quarterly Journal of Economics 108.1, 77–114, DOI: 10,2307/2118496.
- Hirano, T. and A. A. Toda (2024a). "Bubble Economics". Journal of Mathematical Economics 111, 102944. DOI: 10.1016/j.jmateco.2024.102944.

- Hirano, T. and A. A. Toda (2024b). "Bubble Necessity Theorem". *Journal of Political Economy*. DOI: 10.1086/732528.
- Hirano, T. and A. A. Toda (2024c). "Rational Bubbles: A Clarification". arXiv: 2407.14017 [econ.GN].
- Kindleberger, C. P. (2000). *Manias, Panics, and Crashes*. 4th ed. New York: John Wiley & Sons.
- Kiyotaki, N. and J. Moore (1997). "Credit Cycles". *Journal of Political Economy* 105.2, 211–248. DOI: 10.1086/262072.
- Kocherlakota, N. R. (1992). "Bubbles and Constraints on Debt Accumulation". *Journal of Economic Theory* 57.1, 245–256.

 DOI: 10.1016/S0022-0531(05)80052-3.
- Lorenzoni, G. (2008). "Inefficient Credit Booms". Review of Economic Studies 75.3, 809–833. DOI: 10.1111/j.1467-937X.2008.00494.x.

- Matsuyama, K. (1992). "Agricultural Productivity, Comparative Advantage, and Economic Growth". Journal of Economic Theory 58.2, 317–334. DOI: 10.1016/0022-0531(92)90057-0.
- Montrucchio, L. (2004). "Cass Transversality Condition and Sequential Asset Bubbles". *Economic Theory* 24.3, 645–663. DOI: 10.1007/s00199-004-0502-8.
- Samuelson, P. A. (1958). "An Exact Consumption-Loan Model of Interest with or without the Social Contrivance of Money". Journal of Political Economy 66.6, 467–482. DOI: 10.1086/258100.
- Santos, M. S. and M. Woodford (1997). "Rational Asset Pricing Bubbles". *Econometrica* 65.1, 19–57. DOI: 10.2307/2171812.

- Scheinkman, J. A. and L. Weiss (1986). "Borrowing Constraints and Aggregate Economic Activity". Econometrica 54.1, 23–45. DOI: 10.2307/1914155.
- Tirole, J. (1985). "Asset Bubbles and Overlapping Generations". *Econometrica* 53.6, 1499–1528. DOI: 10.2307/1913232.
- Wilson, C. A. (1981). "Equilibrium in Dynamic Models with an Infinity of Agents". Journal of Economic Theory 24.1, 95–111. DOI: 10.1016/0022-0531(81)90066-1.

Figure: Japanese bubble in late 1980s

Return