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Rational asset price bubbles

� Bubble: asset price (P) > fundamental value (V )
� V = present value of dividends (D)

� Bubbles are often considered special or fragile:

Our main results are concerned with nonexistence of
asset pricing bubbles in those economies. These
results imply that the conditions under which
bubbles are possible—including some well-known
examples of monetary equilibria—are relatively
fragile.

—abstract of Santos and Woodford (1997)
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Pure bubble models

� It is well known that bubbles are possible
� Samuelson (1958): bubbles in OLG model
� Bewley (1980): bubbles in infinite-horizon model
� See Hirano and Toda (2024) for recent review

� Existing literature focuses on pure bubbles
� asset pays no dividends (D = 0)
� hence intrinsically worthless (V = 0)
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Possibility versus necessity of bubbles

� In pure bubble models, V = 0 is always equilibrium
(fundamental equilibrium)

� In many models, there also exist continuum of bubbly
equilibria

� Hence bubbles are possible but not necessary (inevitable)
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Contribution

� We prove Bubble Necessity Theorem in plausible general class
of economic models

� plain vanilla general equilibrium model
� there exist equilibria
� in all equilibria, P > V

� Bubble necessity condition: R < Gd < G , where
� G : economic growth rate
� Gd : dividend growth rate
� R: (counterfactual) autarky interest rate

� Modern macro-finance theory seems to presuppose P = V ; we
challenge this view and claim P > V is norm under
unbalanced growth
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Related literature

� Sufficient condition for bubbles Okuno and Zilcha (1983),
Aiyagari and Peled (1991): if autarky inefficient, then ∃
bubbly equilibrium

� Necessary condition for bubbles Kocherlakota (1992), Santos
and Woodford (1997): if ∃ bubble, then PV of aggregate
endowment = ∞

� Nonexistence of fundamental equilibria Wilson (1981)
� Our marginal contribution: making it a general and formal

theorem
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Definition of bubbles

� Asset dividend Dt ≥ 0, price Pt ≥ 0 at t = 0, 1, . . .

� With Arrow-Debreu (date-0) price qt > 0, no-arbitrage implies

qtPt = qt+1(Pt+1 + Dt+1), so

P0 =
T∑
t=1

qtDt + qTPT by iteration

� Letting T → ∞, get

P0 =
∞∑
t=1

qtDt︸ ︷︷ ︸
fundamental value V0

+ lim
T→∞

qTPT︸ ︷︷ ︸
bubble component

� If limT→∞ qTPT = 0, transversality condition holds and no
bubble; if > 0, bubble
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Bubble Characterization Lemma (Montrucchio, 2004)

Lemma
If Pt > 0 for all t, asset price exhibits bubble if and only if

∞∑
t=1

Dt

Pt
< ∞

� Hence bubble if and only if sum of dividend yields finite

� Since
∑∞

t=1 1/t = ∞ but
∑∞

t=1 1/t
α < ∞ for α > 1, ∃

bubble if price-dividend ratio Pt/Dt grows faster than linearly
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Proof

� From no-arbitrage condition qt−1Pt−1 = qt(Pt + Dt), get

qt−1Pt−1

qtPt
= 1 +

Dt

Pt

� Taking product from t = 1 to t = T , get

q0P0

qTPT
=

T∏
t=1

(
1 +

Dt

Pt

)
� Expanding terms and using 1 + x ≤ ex , get

1 +
T∑
t=1

Dt

Pt
≤ q0P0

qTPT
≤ exp

(
T∑
t=1

Dt

Pt

)
� Let T → ∞ and use definition of TVC
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Two-sector growth economy with land

� Two-period OLG model, utility (1− β) log y + β log z

� Two sectors with production functions

F1t(H,X ) = G t
1H,

F2t(H,X ) = G t
2H

αX 1−α,

where H: labor/human capital, X : land
� Sector 1 labor-intensive (service, finance, information, etc.)
� Sector 2 land-intensive (agriculture, construction, etc.)

� Assume G1 > G2, so productivity growth higher in Sector 1
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Equilibrium

� Equilibrium is sequence

{(Pt , rt ,wt , xt , yt , zt ,H1t ,H2t)}∞t=0 ,

where Pt : land price, rt : land rent, wt : wage, xt : land
holdings, (yt , zt): young and old consumption, (H1t ,H2t):
labor input

� Utility/profit maximization, market clearing (good, land,
labor)

� Profit maximization:

αG t
2H

α−1
2t = wt = G t

1 ⇐⇒ H2t = α
1

1−α (G2/G1)
t

1−α

� Rent: X = 1 implies

rt = (1− α)G t
2H

α
2t = (1− α)α

α
1−αG t

2(G2/G1)
αt

1−α
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Necessity of land bubble

� Young consumption yt = (1− β)wt = (1− β)G t
1

� In equilibrium, young must buy land: xt = 1

� Hence land price

Pt = Ptxt = wt − yt = βG t
1

� Dividend yield

rt
Pt

=
(1− α)α

α
1−αG t

2(G2/G1)
αt

1−α

βG t
1

=
(1− α)α

α
1−α

β
(G2/G1)

t
1−α ,

summable because G1 > G2, so by Bubble Characterization
Lemma ? , land bubble is inevitable
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GDP share of agriculture decreases with income
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Employment share of agriculture decreases over time

698 . Chapter 20 Structural Change and Economic Growth
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FIGURE 20.1 The share of U.S. employment in agriculture, manufacturing, and services, 1800–2000.

well. Some of the less-developed economies are still largely agricultural, but the time trend is
inexorably toward a smaller share of agriculture.

Figure 20.1 paints a picture of changes in sectoral employment that includes a significant
nonbalanced component. Kongsamut, Rebelo, and Xie (2001) refer to these changes in the
composition of employment and production as the “Kuznets facts.” They provide a tractable
model to reconcile this type of structural change with the Kaldor facts emphasized so far in
this book, that is, the relative constancy of factor shares and the interest rate. Even though it is
designed to match the Kaldor facts regardless of the stage of development, the tractability of
their model makes it a useful starting point for our analysis.

At the heart of Kongsamut, Rebelo, and Xie’s approach is the so-called Engel’s Law,
which states that as a household’s income increases, the fraction that it spends on food
(agricultural products) declines. While calling this observation a law may exaggerate its status,
this observation, first made by the nineteenth-century German statistician Ernst Engel, appears
to be a remarkably robust pattern in the data. Kongsamut, Rebelo, and Xie extend Engel’s Law
by positing that as a household becomes richer, it not only desires to spend less on food but also
more on services. In particular, consider the following infinite-horizon economy. Population
grows at the exogenous rate n, so that total labor supply is L(t) = exp(nt)L(0). The economy
admits a representative household that supplies labor inelastically and has standard preferences
given by ∫ ∞

0
exp(−(ρ − n)t)

c(t)1−θ − 1

1 − θ
dt, (20.1)

with θ ≥ 0, and c(t) denoting the per capita consumption of a Stone-Geary aggregate consisting
of agricultural, manufacturing, and services consumptions (recall Exercise 8.31 in Chapter 8):

c(t) = (cA(t) − γ A)η
A

cM(t)η
M

(cS(t) + γ S)η
S

, (20.2)

Figure Acemoglu (2009, Figure 20-1)
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Innovation and stock market bubble

� Two-period OLG model, utility (1− β) log y + β log z

� Neoclassical aggregate production function F (K , L), where K :
capital, L: labor

� Capital Kt and labor Lt exogenous (inessential)

� Rent: rt = FK (Kt , Lt)

� Wage: wt = FL(Kt , Lt)
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Dividend yield

� As before, price of stock (claim to rent) is

Pt = βwtLt = βFL(Kt , Lt)Lt

� Dividend equals aggregate rents:

Dt = rtKt = FK (Kt , Lt)Kt

� Hence dividend yield is

Dt

Pt
=

1

β

FK (Kt , Lt)Kt

FL(Kt , Lt)Lt
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Necessity of stock market bubble

� Suppose Kt , Lt grow at rates GK ,GL

� Suppose F exhibits constant elasticity of substitution (CES),
so

F (K , L) =
(
αK 1−1/σ + (1− α)L1−1/σ

) 1
1−1/σ

� Then dividend yield is

Dt

Pt
=

α

β(1− α)

(
(GK/GL)

t(K0/L0)
)1−1/σ

� Hence if GK > GL (so technological progress faster than labor
productivity growth) and σ < 1 (consistent with empirical
evidence), then Dt/Pt summable and stock market bubble
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Model

� Two period OLG model

� Utility of generation t is Ut(yt , zt+1)

� Time t endowments of young and old are (at , bt)

� Long-lived asset pays dividend Dt ≥ 0

� Budget constraints are

Young: yt + Ptxt = at ,

Old: zt+1 = bt+1 + (Pt+1 + Dt+1)xt ,

where Pt : asset price, xt : asset holdings of young
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Equilibrium

� Equilibrium notion is competitive equilibrium with sequential
trading

Definition
A competitive equilibrium consists of a sequence of prices {Pt}∞t=0

and allocations {(xt , yt , zt)}∞t=0 satisfying the following conditions:

1. (Individual optimization) The initial old consume
z0 = b0 + P0 + D0; for all t, the young maximize utility
Ut(yt , zt+1) subject to the budget constraints

2. (Commodity market clearing) yt + zt = at + bt + Dt for all t

3. (Asset market clearing) xt = 1 for all t
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Bubbly and asymptotically bubbly equilibria

Definition
An equilibrium is fundamental (bubbly) if P0 = V0 (P0 > V0).

� Definition of bubbly equilibria obvious

� However, want to rule out bubbly equilibria that are
asymptotically bubbleless

Definition (Asymptotically bubbly equilibria)

Let {Pt}∞t=0 be equilibrium asset prices. The asset is
asymptotically relevant (irrelevant) if

lim inf
t→∞

Pt

at
> 0 (= 0).

A bubbly equilibrium is asymptotically bubbly (bubbleless) if the
asset is asymptotically relevant (irrelevant).
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Assumptions

Assumption (A1)

For all t, the utility function Ut : R2
+ → [−∞,∞) is continuous,

quasi-concave, and continuously differentiable on R2
++ with

positive partial derivatives.

� Standard assumption

� Convenient to define marginal rate of substitution

Mt(y , z) :=
(Ut)z(y , z)

(Ut)y (y , z)
> 0
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Existence of equilibrium

Theorem (Existence)

If A1 holds, an equilibrium exists. The asset prices satisfy
0 ≤ Pt ≤ at and

Pt = min {Mt(yt , zt+1)(Pt+1 + Dt+1), at} ,

where (yt , zt+1) = (at − Pt , bt+1 + Pt+1 + Dt+1).

� Note that budget constraint yt + Ptxt = at and market
clearing xt = 1 forces yt = at − Pt

� Proof is by truncation & Tychonoff’s theorem
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Assumptions

� We now aim to prove necessity of bubbles under additional
assumptions

Assumption (A2)

The endowments {(at , bt)}∞t=0 satisfy

lim
t→∞

at+1

at
=: G ∈ (0,∞),

lim
t→∞

bt
at

=: w ∈ [0,∞).

� Asymptotically constant income growth and ratio
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Assumptions

� Define scaled forward rate function ft : R++ × R+ → R+ by

ft(y , z) :=
1

Mt(aty , atz)
=

(Ut)y (aty , atz)

(Ut)z(aty , atz)

� We impose following uniform convergence condition on ft

Assumption (A3)

There exists a continuous function f : R++ × R+ → R+ such that
ft → f uniformly on compact sets, that is, for any nonempty
compact set K ⊂ R++ × R+, we have

lim
t→∞

sup
(y ,z)∈K

|ft(y , z)− f (y , z)| = 0.
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CRRA example

� Suppose U exhibits constant relative risk aversion (CRRA), so
Ut(y , z) = u(y) + βu(z) with

u(c) =

{
c1−γ

1−γ if 0 < γ ̸= 1,

log c if γ = 1

� Here β > 0 is discount factor and γ > 0 is relative risk
aversion coefficient

� Then

ft(y , z) = f (y , z) =
1

β
(z/y)γ ,

so A3 obviously holds
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Bubble Necessity Theorem

Theorem (Bubble Necessity Theorem)

If A1–A3 hold and

f (1,Gw) < Gd := lim sup
t→∞

D
1/t
t < G ,

then all equilibria are asymptotically bubbly.

� This is the bubble necessity condition R < Gd < G
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Intuition

� If fundamental (or asymptotically bubbleless) equilibrium
exists, because Gd < G , asset becomes asymptotically
irrelevant (Pt ∼ G t

d ≪ G t)

� Then equilibrium autarky in long run, and interest rate
converges to

Rt =
1

Mt(yt , zt+1)
→ f (1,Gw) < Gd

� But then fundamental value of asset infinite, so
Pt ≥ Vt = ∞, contradiction

� Hence all equilibria must be asymptotically bubbly
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Proof

� Proof is technical and highly nontrivial (as we want to prove
that all equilibria are asymptotically bubbly)

� Here we mention steps

1. Let dt = Dt/at ; show dt is summable and hence dt → 0
2. Let pt = Pt/at ; show pt+1/pt is bounded above by universal

constant (use Euler equation)
3. Show that if pt sufficiently small, then pt+1/pt < 1 (use

f (1,Gw) < G )
4. If ∃ asymptotically bubbleless equilibrium, then (by definition)

pt gets arbitrarily close to 0, and hence must converge to 0 by
previous step

5. Derive a contradiction (use f (1,Gw) < Gd)
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Example, linear utility

� Suppose agents have linear utility U(y , z) = y + βz

� Then f (y , z) = 1/β

� Bubble necessity condition is 1/β < Gd < G

� Wilson (1981)’s example uses G = 1, Gd = 1/2, and β = 3
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Example, CRRA utility

� Suppose agents have CRRA utility

U(y , z) =
y1−γ

1− γ
+ β

z1−γ

1− γ

� Suppose endowments (aG t , bG t), dividend D > 0

� Then f (y , z) = 1
β (z/y)

γ

� Bubble necessity condition is

1

β
(bG/a)γ < 1 < G ⇐⇒ a > β−1/γGb,

so bubbles are inevitable whenever young (saver) are
sufficiently rich
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Robustness

� Paper discusses extensions to Bewley-type infinite-horizon
models with

� idiosyncratic investment shocks (model closest to Kiyotaki
(1998))

� idiosyncratic preference shocks (model closest to Chien and
Wen (2022))
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Concluding remarks

� Bubbles have generally been considered special or fragile

� Existing literature studies possibility of bubbles (“bubbles can
arise”)

� We proved the necessity of bubbles (“bubbles must arise”) in
some well-behaved economies

� It may open up new directions for research
� Leverage and bubbles (Hirano et al., 2022)
� Housing bubbles (Hirano and Toda, 2023a)
� Unbalanced growth and bubbles (Hirano and Toda, 2023b)
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