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Introduction
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Empirically, the rich save more
» Fagereng, Holm, Moll, & Natvik (2019)
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Empirically, the rich save more

» Understanding saving behavior of the rich is important
because

» If rich have lower marginal propensity to consume (MPC), then
consumption tax regressive and may not be desirable from
equity perspectives

» MPC heterogeneity implies wealth distribution matters for
determining aggregate consumption and hence for monetary
policy (Kaplan et al., 2018)
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Homotheticity v.s. non-homotheticity

» High saving rate of rich seem to contradict homotheticity
» Homothetic preferences = (asymptotically) linear policies
» Hence asymptotically constant saving rate
» Most explanations of high saving rate of rich based on
non-homothetic preferences

» Carroll (2000): ‘capitalist spirit’ (utility from holding wealth)
» De Nardi (2004): bequest
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Introduction
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Homotheticity v.s. non-homotheticity

» High saving rate of rich seem to contradict homotheticity
» Homothetic preferences = (asymptotically) linear policies
» Hence asymptotically constant saving rate
» Most explanations of high saving rate of rich based on
non-homothetic preferences
» Carroll (2000): ‘capitalist spirit’ (utility from holding wealth)
» De Nardi (2004): bequest
» However, non-homothetic preferences have undesirable
properties
> Inconsistent with balanced growth
» Many parameters and calibration arbitrary
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Contributions

1. “Homothetic theory” of high saving rate of the rich

» (Technical) Prove asymptotic linearity of consumption
functions
. cla,z)  _
lim c(2.2) = ¢(z) = constant
a— o0 a
in general Markovian setting with stochastic discount factor 5,
returns R, and income Y
» (Technical) Exact analytical characterization of asymptotic
MPC ¢(z)
» (Surprising) Necessary and sufficient condition for ¢(z) = 0

2. Calibrate model and show zero asymptotic MPC (hence
increasing and large saving rate) empirically plausible
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Literature

» Income fluctuation problem: Schechtman & Escudero
(1977 JET); Chamberlain & Wilson (2000 RED); Li &
Stachurski (2014 JEDC); Ma, Stachurski, & Toda (2020 JET)

» Concavity of consumption: Carroll & Kimball (1996 ECMA)

» Saving rate: Dynan, Skinner, & Zeldes (2004 JPE);
Fagereng, Holm, Moll, & Natvik (2019 WP)

» Asymptotic linearity (heuristic): Toda (2019 JME);
Gouin-Bonenfant & Toda (2018 WP)

» Other properties: Carroll (2009 JME); Carroll (2020 QE)
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Asymptotic linearity
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Income fluctuation problem

Income fluctuation problem

Consider
o0
maximize Eo Z Bru(ce)
t=0
subject to atr1 = Rep1(ar — ¢) + Yeya,
0<c < ay,
where

» [: discount factor
> ¢, Y;: consumption and non-financial income
> a;: asset at beginning of time t including current income

» R;: asset return fromt —1to t
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Asymptotic linearity
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Income fluctuation problem

(More general) income fluctuation problem

Consider
[ele) t
maximize Eq Z (H 6,-) u(ct)
t=0 \i=0
subject to arr1 = Reyi(ar — ) + ey,
0 é Ct S at7
where

» B¢ discount factor from time t — 1 to t (set fp = 1)
> ¢, Y:: consumption and non-financial income
> a;: asset at beginning of time t including current income

» R;: asset return fromt —1to t
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Income fluctuation problem

Stochastic processes

Stochastic processes {f:, R, Yt}t21 obey
Bt = B(Ztaﬁt), Ry = R(Ztvgt), Yi = Y(Ztant)v

where
» 3, R, Y: nonnegative measurable functions

» {Z:},>(: time-homogeneous finite state Markov chain taking
values in Z = {1,..., Z} with transition probability matrix P

» innovation processes {e¢},{Ct},{n:} 1D over time and
mutually independent
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Income fluctuation problem

Assumptions
A1 (Inada condition)

u:[0,00) = RU{—o0} is twice continuously differentiable on
(0,00) and satisfies ' > 0, v” < 0, v/(0) = 00, and v'(c0) =0
A2 (spectral condition)
The following conditions hold:

1. E;8<ocand E,BR< < forall ze Z

2. r(PDg) <1 and r(PDsg) < 1

3. E;Y<ooand E; V(YY) <ooforallzeZ

Here
> r: spectral radius
» Dx: diagonal matrix with Dx(z,z) = E, X = E[X | Z = ¢]
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Income fluctuation problem

Existence and uniqueness

Theorem (Ma, Stachurski, Toda (2020), Theorem 2.2)

Suppose A1-A2 hold. Then the income fluctuation problem has a
unique solution. Furthermore, the consumption function c(a, z)
can be computed by policy function iteration.
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Income fluctuation problem

Existence and uniqueness

Theorem (Ma, Stachurski, Toda (2020), Theorem 2.2)

Suppose A1-A2 hold. Then the income fluctuation problem has a
unique solution. Furthermore, the consumption function c(a, z)
can be computed by policy function iteration.

» Because borrowing constraint ¢; < a; may bind, Euler
equation becomes

U/(Ct) = maxX {Et Bt-ﬁ-lRt—i-lul(Ct—i-l)a u’(at)}

» Given candidate policy c(a, z), policy function iteration
updates c(a, z) by £ = Tc(a, z), where

u(€) = max {Ez BRU(c(R(a—€)+ ¥, 2)), u’(a)}
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Asymptotic linearity

Additional assumptions for asymptotic linearity

Al' (CRRA)

The utility function exhibits constant relative risk aversion vy > 0:
=7
— 1
logec. (y=1)

Furthermore, E, 5R1*7 < oo for all z.

» Condition E, BF\’P7 < 00 unnecessary but makes exposition
simpler
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Asymptotic linearity

Heuristic derivation of asymptotic MPC

» uis CRRA, so v/(c) =c™7
» Setting c(a, z) ~ ¢(z)a (linear), Euler equation becomes

e(2) ~ E, BRYTE(Z2) (1 - &(2))

» Setting x(z) = ¢(2)77, we get
An AN\ 7
x(z) ~ <1 + (Ez BRl—WX(Z)) V)
» Setting D = Dgg1—, we get

x(z) = (Fx)(z) = (1 + (PDX)(z)l/'Y>77

so x should be fixed point of F
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Asymptotic linearity

[o]e] lelele]

Asymptotic linearity

Theorem (Asymptotic linearity)
Suppose A1’ and A2 hold, c(a, z) be consumption function, and
D = Dypis.

1. If r(PD) < 1, then

2(z) = Jim S22 ez

for all z € Z, where x* = (x*(2))%_; € RY is unique fixed
point of F : Ri — ]Ri defined by

(F)(2) = (1+ (PD)(2)"7)

2. If r(PD) > 1 and PD irreducible, then lim,_,o c(a,z)/a =0
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Asymptotic linearity

Discussion

» In typical income fluctuation problem, people assume “finite
value condition” E, 6R1*'7 < 1, but unnecessary

> p. 244 of Samuelson (1969 REStat), Eq. (9) of Krebs (2006
ET), Eq. (3) of Carroll (2009 JME), Eq. (18) of Toda (2014
JET), Eq. (3) of Toda (2019 JME)
» When E, SR > 1, asymptotic MPC can be zero
(surprising)
> Theorem does not cover all cases because assumes
E, BR'™ < oo and requires irreducibility of PD, but these
assumptions can be dropped
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Asymptotic linearity

General case

> Let K = PD, where P: transition probability matrix, D:
diagonal with D(z,z) = E, BR'™7 € [0, ]
» Use convention BR1™7 = (BR)R~" and 0 - co = 0, so always
well-defined

» Relabel states such that

K=1]: . 1],
0 - Ky

where each diagonal block K; irreducible
» Recall: square matrix A reducible if 9 permutation matrix P
such that PT AP is block upper triangular with at least two
diagonal blocks
» Hence irreducible decomposition of K always exists
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Asymptotic linearity

Complete characterization

Theorem

Suppose A2 holds and utility is CRRA (v). Express K = PD as
block upper triangular with irreducible diagonal blocks. Define
{Xn}oS o € [0,00]% by xo =1 and x, = Fxn_1, where F is as
before. Then {x,} monotonically converges to x* € [1,00]% and

v . c(a2)
) = Jin %7

= x*(2)"Y7 € [0,1].

Furthermore, €(z) = 0 if and only if there exist j, z € Z;, and
m € N such that K™(z,2) > 0 and r(Kj) > 1.
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Asymptotic linearity
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Examples

Example: log utility

> If v =1, then x* = Fx* becomes
x* =14 PDx* <= x* = (I - PD)™1,

where D = Dg = diag(...,E, f,...)
» Since r(PD) < 1 by A2, we always have ¢(z) >0
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Examples

Example: 11D returns

» If b= b(z) = E, BR'™7 does not depend on z, then D = bl
> If x = k1 is a multiple of the vector 1, then
PDx = bPk1 = bkl because P is transition probability matrix

» Hence if b < 1, x* = Fx™ reduces to
x*(z) = (14 (bx*(2))Y7) = &(z2) = x*(z) ¥ = 1- b/

» Therefore with constant discounting (3(z,¢) = 3) and
risk-free saving (R(z,() = R), asymptotic MPC is constant
regardless of income shocks:

_ 1— (BRY™MY7 if BR¥7 < 1,

(z) =

C .
0 otherwise.
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Asymptotic MPC and saving rates
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Saving rates of the rich
» From budget constraint, saving rate (excluding capital loss) is

change in wealth

—
Sppq = dt+1 — at
T max{(Rer1 — 1)(ar — <), 0} + Ve
~ —~—
capital gains labor income
R-1)-(1-
RN Oec/a)ela

(R—1)+t(1—c/a)+ Y/a

> Letting a — 00, asymptotic saving rate is

A

Ry 0-gee
(R-1)*(1-29)
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Asymptotic MPC and saving rates
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Impossibility of positive saving rates

Proposition

Consider a canonical Bewley model in which agents are
infinitely-lived and relative risk aversion ~y, discount factor 5, and
return on wealth R > 1 are constant. Then in the stationary
equilibrium the asymptotic saving rate is negative.
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Asymptotic MPC and saving rates
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Proof.
» Stachurski & Toda (2019 JET) show SR < 1 in stationary
equilibrium
» Since R > 1, we obtain 3R'™7 = (BR)R~" < 1. By previous
example, asymptotic MPC is ¢ = 1 — (BR¥™)Y/7 € (0,1).
» Hence
c
TR "
<~ (R-1)(1-¢)<c¢c
= (R-1)(BR*)7 <1 (BRV)N
<~

(BR)YY < 1. O

—

5=
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Asymptotic MPC and saving rates
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Stochastic 3, R need not help

Proposition

Consider a Bewley model in which agents are infinitely-lived,
relative risk aversion ~y is constant, and {B¢, R¢},~q is 1ID with

ER > 1 and E 3R < 1. If the stationary equilibrium wealth
distribution has an unbounded support, then the asymptotic saving
rate evaluated at R =ER is nonpositive.
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Asymptotic MPC and saving rates
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Proof.
» Since by assumption E SR~ < 1, by previous example the
asymptotic MPC is ¢ = 1 — (EBR™)Y/7 € (0, 1).
» Hence asymptotic saving rate evaluated at ER > 1 is

ER-D(1—2a) =
e (ER-1(1-7) <
— ER(1-2)< L

5=1- 0

» Since ER(1 — €) is the expected growth rate of wealth for
infinitely wealthy agents, if wealth distribution unbounded and
ER(1—¢) > 1, then wealth grow at the top, violating
stationarity. L]
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Asymptotic MPC and saving rates
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Numerical example with ¢ =0

» Constant discount factor 5 and RRA ~

» Gross portfolio return is
Re(0) =1+ (1 —7)(0°RS + 6°RP + 6" RT — 1),

where R;: stock return, Rtb: business return, Rf: risk-free
rate, 7: capital income tax

» Business return

Rb _ 1—1p,, R?  with probability 1 — pp,
‘ 0 with probability pp,

> Income growth deterministic: Yiy1/Y: = €€
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Asymptotic MPC and saving rates
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Calibration

» One period is a month, annual 4% discounting
» Stock return GARCH(1,1),

1
log R; = p — Eaf + €,

€t = O'tCt, Ct ~ HD/V(O7 1)

0f =w+ a1+ pog_y,

calibrated from monthly stock return and discretize using
Farmer & Toda (2017)

» Business bankruptcy rate 2.5% following Luttmer (2010)

» Portfolio data constructed from Saez & Zucman (2016),
(6°,6%,67) = (0.5546,0.0827,0.3627)

» Income growth g calibrated from real per capita GDP growth
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Asymptotic MPC and saving rates
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Asymptotic MPC with GARCH(1,1) returns
» Zero asymptotic MPC possible with v above 4-5

annual discount rate)

QM & AAT

e r(PD,;R) =1
e r(PDl;Rl—v) =1

y (risk aversion)
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Asymptotic MPC and saving rates
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Consumption functions at low asset level

» Can't see any meaningful difference between v = 3,5

y=3

Y=5

=
N
w

consumption
o =
94 o
wv o

2.00

0 20 40 60 80 100
asset
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Asymptotic MPC and saving rates
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Consumption functions at high asset level

» Consumption with v =5 much lower and more concave

3.0

consumption
= - N N
o U o

o
wn

o
o

00 02 04 06 08 1.0 00 02 04 06 08 10
asset 1e10 asset 1e10
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Asymptotic MPC and saving rates
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Consumption rate

» y=3:r(PD)<landT>0
» y=5:r(PD)>1and =0

y=3
0
10 az=0/2
theo. lev.
5 — o*=q,
& theo. lev.
© 252
=101 — T=%
g theo. lev.
2
aQ
€
3
w
S 10-2
S 10
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Asymptotic MPC and saving rates
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Saving rate

» v=3: r(PD) <1 and 5 small
» y=5:r(PD)>1ands=1

=3 =5
1.2 Y 1.2 1
— o%=0}
1.0 ?=a2 1.0
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@©
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Outline of proof

Show that

1. policy function iteration leads to increasingly tighter upper
bounds on consumption functions that are asymptotically
linear with explicit slopes,

2. slopes of upper bounds converge using fixed point theory of
monotone convex maps, and

3. consumption functions have linear lower bounds with identical
slopes to limit of upper bounds, implying asymptotic linearity.
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Space of candidate consumption functions

» Let C be space of candidate consumption functions such that
c:(0,00) x Z— R is (i) continuous, (ii) increasing in first
element, (iii) 0 < c(a,z) < a for all a, z, and (iv)

sup W' (c(a,2)) — v'(a)| < o
(a,2z)€(0,00)xZ

» For c,d € C, define marginal utility distance

ple,d)= sup  |u(c(a,2)) — v/ (d(a,2))] < o0
(a,2)€(0,00)xZ

» Ma, Stachurski, & Toda (2020) show (C, p) is complete
metric space
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Time iteration operator

» Given candidate policy ¢ € C, define Tc(a, z) by the value
¢ € (0, a] that solves Euler equation

U/ (€) = max {Ez BRU(c(R(a— &) + ¥, 2)), u'(a)}

» Ma, Stachurski, & Toda (2020 JET) show T :C — C is
contraction mapping
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lterating T leads to tighter upper bounds

Proposition
Let everything be as in Theorem. If c € C and
c(a,z)

limsup =~ < x(z)~ /"
a—00 a

for some x(z) > 1 for all z € Z, then

lim sup Tea,2) < (Fx)(z)~Y/7.

a—o0
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Proof.
» Let {ap, a,} be sequence such that a, 1T oo and
an(z) = Te(an, z)/ap — limsup,_,, Tc(a, z)/a
» Use Euler equation, definition of T, and Fatou’s lemma to

show claim
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Characterizing limit of iteration of F

Proposition
Let (Fx)(z) == (1 + (PDx)(z)*/")”. Then F has a (necessarily
unique) fixed point x* € RZ if and only if r(PD) < 1.
Take any xp € Ri and define x, = Fx,—1 for all n € N.
1. If r(PD) < 1, then x, — x*

2. If r(PD) > 1 and PD irreducible, then x,(z) — oo
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Proof.

» F=¢oK, where ¢(t) = (14 t'/7)Y and K = PD

> ¢ increasing and concave (convex) if v <1 (> 1)

» Case r(PD) < 1: apply Du (1990) below to F

> If 3 fixed point x*, then x* = Fx* > Kx*; multiplying left

Perron vector y of K, get y'x* > r(K)y’'x*, hence
r(K) <1 0O

Theorem (Du, 1990)

If X partially ordered Banach space, A : X — X monotone, convex
or concave, and Ju < v such that Au > u and Av < v, then A
has unique fixed point on [u, v] and can be computed by iterating
Xp = AXp_1
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Lower bound

Proposition
Let everything be as in Theorem. Suppose r(PD) < 1 and let
x* e ]Ri+ unique fixed point of F. Restrict candidate space to

Co={ceCl|c(a,z) >€e(z)a foralla>0andzelZ},

where ¢(z) = x*(z)~Y/7 € (0,1]. Then TCy C Co.

Corollary

Consumption function satisfies c(a, z) > x*(z)~'/7a.

Proof.

Let co(a,z) = a € Cp. lterating T : Cop — Cp, consumption function
(fixed point of T) must be in Cp. O
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Proof of Proposition.

> If TCy & Co, then dc € Cy,a > 0,z € Z such that
§=Tc(a,z) <e(z)a< a
» Using Euler equation and concavity of u (v’ decreasing),

u'(e(z)a) < /() = E, BRu/(c (f?(a &+ Y,2)
< E, BRU(«(Z)(R(a— &)+ V) < E. BRU(«(2)R[L - €(2)]a)
» Using v/(c) = ¢~ and €(z) = x*(z)~ /7, we obtain
x*(z) < E; BRYIXx*(2)[1 — x*(2) Y]
= x'(2) < (1+ (B BRX(2)) = (F)(2),

contradiction because x* fixed point of F O]
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Proof of Theorem: case r(PD) > 1

» Define ¢p € C by cp(a,z) =aand ¢, = T"p eC

» By previous result, limsup,_,. ¢a(a,2)/a < x,(2)~Y/7, where
xo =1 and x, = Fx,—1

» Clearly ¢(a,z) < a= ¢y(a,z), so c(a,z) < cy(a, z) by
induction

» If r(PD) > 1 and PD irreducible, then x,(z) — oo, so

a—00 a a—o0 a

as n— oo
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Proof of Theorem: case r(PD) < 1

» By same argument,

limsup cla.2) < limsup cn(a,2) < xp(2) 7V = X (2) W
a—00 a a—00 a
» But we know c(a, z)/a > x*(z)~1/7
» Hence
lim c(a.2) = x*(z)""
a—oo a
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Conclusion

v

With homothetic preferences, policy functions are
asymptotically linear

v

Asymptotic linearity is expected but proof not simple

v

Surprisingly, €(z) = lim,,o c(a,z)/a = 0 is possible

>
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May explain why the rich save so much
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