
Introduction Model Full learning equilibrium Asymptotic behavior Conclusion

Incentivizing Hidden Types in Secretary Problem

Longjian Li1 Alexis Akira Toda2

1Peking University

2University of California San Diego

Seminar @UCSD
October 7, 2022

1/31



Introduction Model Full learning equilibrium Asymptotic behavior Conclusion

Classical secretary problem

• Administrator sequentially interviews job applicants 1, . . . ,N
in random order

• Can rank applicants already interviewed from best to worst

• Must accept or reject applicant immediately after interview,
with no recall

• What is optimal stopping rule to maximize probability of
hiring the best?

• Applications I have in mind:
• Film director seeks to identify best fit actor
• Department seeks to hire best junior candidate
• Racquet manufacturer seeks to sponsor next Rafael Nadal
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Solution to classical secretary problem

• Define threshold

n∗ = min

{
n :

N−1∑
k=n

1

k
≤ 1

}
.

• Reject first n∗ − 1 applicants

• Accept next applicant if best among those already
interviewed, otherwise reject

• As N →∞, we can show

n∗

N
→ 1

e
≈ 0.37

Pr(success)→ 1

e
≈ 0.37
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Question

• First n∗ − 1 applicants always rejected, so no incentive to
show up for interviews

• If applicants don’t show up, administrator can’t learn
applicants’ abilities

• What is optimal strategy of administrator if applicants incur
cost c ∈ [0, 1) (relative to job value) to complete interview
and must be incentivized to show up?
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This paper

• Prove existence of unique full learning equilibrium
• Administrator can tell whether current applicant is best among

those already invited for interviews

• Prove optimality of full learning equilibrium
• Among all equilibria, full learning equilibrium achieves

maximum success probability

• Characterize asymptotic behavior as N →∞
• Success probability π∗

N exhibits power law decay N−c
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Agents

• An administrator

• N ≥ 2 job applicants, invited for interviews in order 1, 2, . . . ,N

• Applicant n has ability θn > 0
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Actions

• When invited for interview, applicant chooses action a = 0
(decline interview) or a = 1 (complete interview)

• Interview reveals output y = aθ, where θ: ability

• Immediately after interview n, administrator must accept or
reject applicant n based only on history of observed outputs
{y1, . . . , yn}

• Game ends if applicant accepted; move to next applicant if
rejected; no recall
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Payoffs

• Applicant:
• Job value normalized to 1
• Completing interview costs c ∈ [0, 1)

• Administrator: if accept applicant with ability θ, then payoff is{
1 if θ = max1≤n≤N θn,

0 otherwise.

• All agents risk-neutral
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Information

• Abilities {θn}Nn=1 realized before game begins but private
information

• Administrator believes rank orders of {θn}Nn=1 have no ties
and equally likely with probability 1/N!

• When administrator invites applicant n, presents past outputs
{y1, . . . , yn−1}

• Applicant chooses action an ∈ {0, 1} and output yn = anθn
observed

• After game ends, {θn}Nn=1 becomes public information and
payoffs realized
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Strategies

• Let Hn = Rn
+ be set of outputs of first n applicants (H0 = ∅)

• Applicant n’s strategy is a function
sn : Hn−1 × (0,∞)→ {0, 1}

• sn(y1, . . . , yn−1, θ) = 1 (= 0) means applicant n with ability θ
completes (declines) interview given past outputs
(y1, . . . , yn−1)

• Administrator’s (mixed) strategy is a collection of functions

σ = {σn}Nn=1 with σn : Hn → [0, 1]
• p = σn(y1, . . . , yn) is probability administrator accepts

applicant n given outputs (y1, . . . , yn)
• commitment power, so choose σ once and for all

• Nash equilibrium is strategy profile (σ∗, s∗1 , . . . , s
∗
N) that is

mutually best response
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Full learning equilibrium

• Focus on full learning equilibrium

• We say equilibrium is full learning if for any equilibrium path
and n until game ends, we have

max
1≤k≤n

θk = max
1≤k≤n

yk

• This condition allows administrator to tell if current applicant
is best among those already interviewed
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Lemma
Let (σ∗, s∗1 , . . . , s

∗
N) be a full learning equilibrium. Then θ1 = y1

and

θn

{
= max1≤k≤n θk if yn > max1≤k≤n−1 yk ,

< max1≤k≤n θk if yn ≤ max1≤k≤n−1 yk

for n ≥ 2 until the game ends.

Proof.

• If yn > max1≤k≤n−1 yk , then 0 < yn = anθn so an = 1 and
θn = yn

• Hence θn = yn = max1≤k≤n yk = max1≤k≤n θk

• If yn ≤ max1≤k≤n−1 yk , then

θn ≤ max
1≤k≤n

θk = max
1≤k≤n

yk = max
1≤k≤n−1

yk = max
1≤k≤n−1

θk ,

and inequality strict because no ties
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Partial characterization of equilibrium strategy

Lemma
Let (σ∗, s∗1 , . . . , s

∗
N) be a full learning equilibrium. Then

σ∗n(y1, . . . , yn)

{
≥ c if yn > max1≤k≤n−1 yk ,

= 0 if yn ≤ max1≤k≤n−1 yk ,

s∗n(y1, . . . , yn−1, θ) =

{
1 if θ > max1≤k≤n−1 yk ,

0 if θ ≤ max1≤k≤n−1 yk .

Idea:

• Administrator promises acceptance probability c if applicant
current best so as to incentivize completing interview

• Then current applicant completes interview if current best,
otherwise declines
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Dynamic programming

• State is n and x ∈ X = {0, 1}, where
• x = 1: applicant is current best
• x = 0: applicant is not current best

• By random order, we have Pr(x ′ = 1) = 1
n+1 independent of x

• Let Vn(x) be value function; then Bellman equation is

Vn(0) =
1

n + 1
Vn+1(1) +

n

n + 1
Vn+1(0)

• If x = 1, need to promise acceptance probability p ≥ c to
incentivize applicant to complete interview
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Dynamic programming

• If accept, payoff is

Pr

(
θn = max

1≤k≤N
θk | x = 1

)
= Pr(n is best among all | n is best among first n)

= Pr(n is best among all and first n)/Pr(n is best among first n)

= Pr(n is best among all)/Pr(n is best among first n)

= (1/N)/(1/n) =
n

N

• Hence Bellman equation is

Vn(1) = max
c≤p≤1

{
p

n

N
+ (1− p)

(
1

n + 1
Vn+1(1) +

n

n + 1
Vn+1(0)

)}
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Dynamic programming

Proposition

The value functions in a full learning equilibrium satisfy
VN(0) = 0, VN(1) = 1, and

Vn(0) =
1

n + 1
Vn+1(1) +

n

n + 1
Vn+1(0),

Vn(1) = max
c≤p≤1

{
p

n

N
+ (1− p)Vn(0)

}
= max

{
c

n

N
+ (1− c)Vn(0),

n

N

}
> 0

• Define normalized value function vn(x) := Vn(x)/n

• Dividing Bellman equations by n, we get
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Normalized value functions

Proposition

The normalized value vn(x) = Vn(x)/n satisfies vN(0) = 0,
vN(1) = 1/N, and

vn(0) =
1

n
vn+1(1) + vn+1(0),

vn(1) = max {c/N + (1− c)vn(0), 1/N} .

Furthermore, vn(0) is strictly decreasing in n and vn(1) is
decreasing in n.

• Strict monotonicity of vn(0) implies that there exists threshold
n∗ such that

• Accept current best applicant n with probability c if n < n∗

• Accept current best applicant n with probability 1 if n ≥ n∗
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Existence of full learning equilibrium

Theorem
For all N ≥ 2 and c ∈ [0, 1), there exists a unique full learning
equilibrium, which can be constructed as follows:

1. Define n∗ = min
{

n :
∑N−1

k=n
1
k ≤ 1

}
.

2. Define σ∗n : Hn → [0, 1] by

σ∗n(y1, . . . , yn) =


1 if n ≥ n∗ and 0 < yn = max1≤k≤n yk ,

c if n < n∗ and 0 < yn = max1≤k≤n yk ,

0 otherwise.

3. Define s∗n : Hn−1 × (0,∞)→ {0, 1} by

s∗n(y1, . . . , yn−1, θ) =

{
1 if θ > max1≤k≤n−1 yk ,

0 if θ ≤ max1≤k≤n−1 yk .
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Optimality of full learning equilibrium

• This game has many equilibria (e.g., ignore first k candidates
and then learn)

• Which equilibrium is best?

Theorem
The full learning equilibrium is optimal in the sense that the
success probability is the highest among all equilibria.
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Proof idea

• Proof is difficult because there are many ways to deviate
(learn or not learn)

• Let Pn,N(y1, . . . , yn) be success probability in any equilibrium
conditional on interviewing first n applicant and full learning

• For n + 1, possible deviations are (i) learn and accept with
probability p ∈ [c , 1] conditional on current best, or (ii) not
learn and accept with probability p ∈ [0, 1]

• Use induction on j = N − n (number of remaining applicants)
to bound Pn,N(y1, . . . , yn) from above by continuation value
of full learning equilibrium

• Then full learning equilibrium is optimal because
P1,N ≤ V1(1) by induction
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Asymptotic behavior: threshold n∗

Proposition

The threshold n∗N = min
{

n :
∑N−1

k=n
1
k ≤ 1

}
satisfies

N

e
≤ n∗N ≤

N − 1

e
+ 2.

In particular, limN→∞ n∗N/N = 1/e = 0.367 . . . .
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Proof

• Let t = n∗N
• By definition, we have

1 ≥
N−1∑
k=t

1

k
≥
∫ N

t

1

x
dx = log

N

t
=⇒ t ≥ N

e

• Similarly,

1 <
N−1∑

k=t−1

1

k
≤
∫ N−1

t−2

1

x
dx = log

N − 1

t − 2
=⇒ t ≤ N − 1

e
+ 2
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Asymptotic behavior: success probability π∗N = V1(1)

Theorem
If c ∈ [0, 1), then

lim
N→∞

Ncπ∗N =
ec−1

Γ(2− c)
,

where Γ is the gamma function. In particular, if c = 0 then
limN→∞ π

∗
N = 1/e = 0.367 . . . .

• π∗N exhibits a power law decay with exponent −c

• Proof uses value function iteration, Gauss product formula for
gamma function

Γ(z) = lim
n→∞

nzn!

z(z + 1) · · · (z + n)
,

and definition of Riemann integral (pretty cool)
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Concluding remarks

• Extended classical secretary problem with incentives

• Even if applicants incur interview cost c , threshold is same as
no cost

• However, for applicants n < n∗, administrator accepts with
probability c if current best to incentivize completing interview

• Future work: what if administrator observes noisy signal of
ability θn and can decide interview order?
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