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Classical secretary problem

e Administrator sequentially interviews job applicants 1,..., N
in random order

e Can rank applicants already interviewed from best to worst

e Must accept or reject applicant immediately after interview,
with no recall

e What is optimal stopping rule to maximize probability of
hiring the best?
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Classical secretary problem

e Administrator sequentially interviews job applicants 1,..., N
in random order

e Can rank applicants already interviewed from best to worst

e Must accept or reject applicant immediately after interview,
with no recall

e What is optimal stopping rule to maximize probability of
hiring the best?

e Applications | have in mind:

e Film director seeks to identify best fit actor
e Department seeks to hire best junior candidate
e Racquet manufacturer seeks to sponsor next Rafael Nadal
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Solution to classical secretary problem

e Define threshold
& 1_
n* = min — .
COSEE
e Reject first n* — 1 applicants
e Accept next applicant if best among those already

interviewed, otherwise reject

e As N — oo, we can show
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Pr(success) — — ~ 0.37
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Question

e First n* — 1 applicants always rejected, so no incentive to
show up for interviews

e If applicants don’t show up, administrator can't learn
applicants’ abilities

e What is optimal strategy of administrator if applicants incur
cost ¢ € [0,1) (relative to job value) to complete interview
and must be incentivized to show up?
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This paper

e Prove existence of unique full learning equilibrium

e Administrator can tell whether current applicant is best among
those already invited for interviews

e Prove optimality of full learning equilibrium

e Among all equilibria, full learning equilibrium achieves
maximum success probability

e Characterize asymptotic behavior as N — oo
e Success probability 7y, exhibits power law decay N~¢
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Agents

e An administrator
e N > 2 job applicants, invited for interviews in order 1,2, ... N
e Applicant n has ability 6, > 0
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Actions

When invited for interview, applicant chooses action a =0
(decline interview) or a = 1 (complete interview)

Interview reveals output y = afl, where 6: ability

Immediately after interview n, administrator must accept or
reject applicant n based only on history of observed outputs
{)/17 cee aYn}

Game ends if applicant accepted; move to next applicant if
rejected; no recall
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Payoffs

e Applicant:

e Job value normalized to 1
e Completing interview costs ¢ € [0, 1)

e Administrator: if accept applicant with ability 6, then payoff is

1 ifo= maXi<np<n 9,,,
0 otherwise.

o All agents risk-neutral
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Information

Abilities {9,,}521 realized before game begins but private
information
N

n—1 have no ties

Administrator believes rank orders of {6,}
and equally likely with probability 1/N!
When administrator invites applicant n, presents past outputs
{)/17 s ayn—l}

Applicant chooses action a, € {0,1} and output y, = an0,
observed

After game ends, {9,7},':/:1 becomes public information and
payoffs realized
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Strategies

Let H, = R’ be set of outputs of first n applicants (Hp = 0)
Applicant n's strategy is a function
Sn: Hp—1 x (0,00) — {0,1}
e s,(y1,...,¥n-1,0) =1 (= 0) means applicant n with ability 6
completes (declines) interview given past outputs
(yla s 7yn—1)
Administrator's (mixed) strategy is a collection of functions
o= {0,,},’)/:1 with o, : H, — [0, 1]
e p=0,()1,...,¥n) is probability administrator accepts
applicant n given outputs (y1,...,¥n)
e commitment power, so choose o once and for all
Nash equilibrium is strategy profile (6%, s7, ..., sy) that is
mutually best response
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Full learning equilibrium

e Focus on full learning equilibrium

e We say equilibrium is full learning if for any equilibrium path
and n until game ends, we have

max 0 = max yi
1<k<n 1§k§ny

e This condition allows administrator to tell if current applicant
is best among those already interviewed
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Lemma

Asymptotic behavior Conclusion
Let (o*,sf,...,sy) be a full learning equilibrium. Then 61 = y,
and
g )= maXick<n Ok if Yo > Maxi<i<n—1 Yk,
n
< Maxi<k<n 0

if yn < Maxi<k<n—1 Yk
for n > 2 until the game ends.
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Lemma
Let (o*,sf,...,sy) be a full learning equilibrium. Then 61 = y,
and

g )= maXick<n Ok if Yo > Maxi<i<n—1 Yk,
n .
< maxi<k<n Ok if yn < Maxi<k<n—1 Yk

for n > 2 until the game ends.

Proof.
e If y, > maxi<k<n—1 Yk, then 0 < y, = ap0, so a, = 1 and
0, = Yn

e Hence 0, = y, = maxi<k<n Yk = Maxi<i<n Ok

o If y, < maxi<k<n—1 Yk then

0, < max 0y = max yy = max yr= max 0
"= 1<k<n 1<k<n y 1§k§n—1y 1<k<n-1

O

and inequality strict because no ties
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Partial characterization of equilibrium strategy

Lemma
Let (0*,s7,...,sy) be a full learning equilibrium. Then

> c ify, > maxi<k<n—1 Yk

=0 ify, < maxi<k<n—1 Yk

on(Y1s---sYn) {

1 if0 > maxi<k<n—1 Yk,

s;:(Yla oo aynflae) = {

0 ifd < mMaXi1<k<n—1Yk-

Conclusion
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Partial characterization of equilibrium strategy

Lemma
Let (0*,s7,...,sy) be a full learning equilibrium. Then

> c ify, > maxi<k<n—1 Yk
=0 ify, <maxi<k<n—1 Yk

on(Y1s---sYn) {

1 if0 > maxi<k<n—1 Yk,

s:(Yla oo a_ynflae) = {

0 ifd < mMaXi1<k<n—1Yk-

Idea:

e Administrator promises acceptance probability c if applicant
current best so as to incentivize completing interview

e Then current applicant completes interview if current best,
otherwise declines
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Dynamic programming

State is n and x € X = {0, 1}, where

e x = 1: applicant is current best
e x = 0: applicant is not current best

By random order, we have Pr(x’ =1) = ﬁ independent of x

Let V,(x) be value function; then Bellman equation is

n
n+1

Vn(o) = %

+1 Vn+1(1) +

Vn+1(0)

If x =1, need to promise acceptance probability p > ¢ to
incentivize applicant to complete interview
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Dynamic programming

o If accept, payoff is

Pr(&n: max_ 0y ]x:1>
1<k<N

= Pr(n is best among all | n is best among first n)
= Pr(n is best among all and first n)/ Pr(n is best among first n)
= Pr(n is best among all)/ Pr(n is best among first n)

= (1/N)/(1/n) =

e Hence Bellman equation is
Vo(1) = (1= p) [ Vaia (1) + " Vi (0)
n = Cg?él PN p ntl n+1 nt1 n+1
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Dynamic programming

Proposition

The value functions in a full learning equilibrium satisfy
VN(O) =0, VN(l) =1, and

Va(0) = 1 Vasa (1) + Vo (0),
V(1) = max, {p% +(1-p) Vn(O)}

e Define normalized value function v,(x) = Vj(x)/n

e Dividing Bellman equations by n, we get
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Normalized value functions

Proposition
The normalized value v,(x) = V,(x)/n satisfies vy(0) = 0,
vn(1l) = 1/N, and

1
Vn(O) = ;Vn—l—l(]-) + Vn+1(0)a
Vn(1) = max{c/N + (1 — c)v,(0),1/N}.
Furthermore, v,(0) is strictly decreasing in n and vp(1) is

decreasing in n.

e Strict monotonicity of v,(0) implies that there exists threshold
n* such that

e Accept current best applicant n with probability ¢ if n < n*
o Accept current best applicant n with probability 1 if n > n*
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Existence of full learning equilibrium

Theorem
For all N > 2 and ¢ € [0,1), there exists a unique full learning

equilibrium, which can be constructed as follows:
1. Define n* = min {n : ZQ’;}% < 1}.
2. Define o}, : H, — [0,1] by
1 ifn>n*"and 0 <y, = maxi<k<n Yk,

or(Y1,---s¥n) = if n < n* and 0 < y, = maxi<k<n Yk,

0 otherwise.
3. Define s} : Hy,—1 x (0,00) — {0,1} by

“( ) 1 if0 > maxi<k<n—1 Yk,
s ooy ¥Yn—1,0) = .
n1 Y=t 0 iff < maxi<k<n—1Yk-
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Optimality of full learning equilibrium

e This game has many equilibria (e.g., ignore first k candidates
and then learn)

e Which equilibrium is best?
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Optimality of full learning equilibrium

e This game has many equilibria (e.g., ignore first k candidates
and then learn)

e Which equilibrium is best?
Theorem

The full learning equilibrium is optimal in the sense that the
success probability is the highest among all equilibria.
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Proof idea

Proof is difficult because there are many ways to deviate
(learn or not learn)

Let P, n(y1,---,Yn) be success probability in any equilibrium
conditional on interviewing first n applicant and full learning
For n+ 1, possible deviations are (i) learn and accept with
probability p € [c, 1] conditional on current best, or (ii) not
learn and accept with probability p € [0, 1]

Use induction on j = N — n (number of remaining applicants)
to bound P, n(y1,--.,Yn) from above by continuation value
of full learning equilibrium

Then full learning equilibrium is optimal because
Py ny < V4(1) by induction
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Asymptotic behavior: threshold n*

Proposition
The threshold ny = min

—

n: ZLV;} iz < 1} satisfies

In particular, limy_,oo ny /N = 1/e = 0.367. ...
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o Let t = ny
e By definition, we have

N
Z»/
t

=

-1 N N
dXIIOg? > tZ*

1>
e

x| =
X | =

t

>
Il

e Similarly,

N-1 N—1

1 1 N1
1 2 < Sdx=log—— = t< 2
<Zk_/t_2xx €7 2 = *

k=t—1
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Asymptotic behavior: success probability 7y = V4(1)

Theorem
If c €0,1), then

lim Nmy =
N—o0

where [ is the gamma function. In particular, if c = 0 then
limy_oo mh =1/ =0.367....
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Asymptotic behavior: success probability 7y = V4(1)
Theorem
If c €]0,1), then

ecfl

r2-c)’

lim N¢nh =
Ngnoo ™
where [ is the gamma function. In particular, if c = 0 then
limy_oo mh =1/ =0.367....

e )y exhibits a power law decay with exponent —c
e Proof uses value function iteration, Gauss product formula for
gamma function

V4

n?nl

r(z):n“—?goz(z—i—l)---(z—i—n)’

and definition of Riemann integral (pretty cool)
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Conclusion

Concluding remarks

Extended classical secretary problem with incentives

Even if applicants incur interview cost c, threshold is same as
no cost

However, for applicants n < n*, administrator accepts with
probability ¢ if current best to incentivize completing interview

Future work: what if administrator observes noisy signal of
ability 8,, and can decide interview order?

31/31



References

«Or «Fr «=>r «F)r» El= AR



	Introduction
	Model
	Full learning equilibrium
	Asymptotic behavior
	Conclusion
	Appendix

